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Maximum Likelihood Estimation of the Attenuated 
Ultrasound Pulse 

Klaus Bolding Rasmussen 

Abstract-The attenuated ultrasound pulse is divided into two parts: a 
stationary basic pulse and a nonstationary attenuation pulse. A standard 
ARMA model is used for the basic pulse, and a nonstandard ARMA 
model is derived for the attenuation pulse. The maximum likelihood 
estimator of the attenuated ultrasound pulse, which includes a maximum 
likelihood attenuation estimator, is derived. The results of this correspon- 
dence are of great importance for deconvolution and attenuation imaging 
in medical ultrasound. 
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1. INTRODUCTION 

In medical ultrasound, a short pressure pulse is emitted from a 
transducer. The ultrasound pulse then propagates in a narrow beam 
in the tissue. When the pulse arrives at inhomogeneities in the tissue, 
a part of the pulse is scattered back and received by the transducer. By 
mechanically or electronically changing the beam direction, an image 
of the acoustical properties of the tissue can be formed. Usually, 
only the envelope of the received signal is displayed. The attenuation 
of the tissue is not displayed directly. As the attenuation of the 
tissue is a clinically relevant feature, several attenuation estimation 
methods have been developed, e.g., the spectral-shift method and 
the spectral-difference method [3] ,  [4]. However, none of these 
attenuation estimation methods are based on the maximum likelihood 
principle. Attenuation estimation is of interest in medical ultrasound 
for another reason. The resolution of the envelope-detected image is 
poor because of the extent of the ultrasound pulse. The resolution 
can be improved by deconvolution, e.g., [6], but an estimate of the 
attenuated ultrasound pulse is needed by the deconvolution algorithm. 
This applies to both the axial and to the lateral direction, but only the 
axial (I-D) case is treated in this correspondence. As the maximum 
likelihood estimate of the attenuated ultrasound pulse includes a 
maximum likelihood attenuation estimate, it is seen that there is a 
close connection between attenuation estimation and pulse estimation. 

This correspondence is organized as follows. In Section 11, a non- 
standard ARMA model of the attenuated ultrasound pulse is derived. 
The maximum likelihood estimator of the attenuated ultrasound pulse 
in a constant attenuating medium is derived in Section 111. Section 
IV presents an example, and the conclusion is given in Section V. 

11. A PARAMETRIC MODEL OF THE ATTENUATED 
ULTRASOUND PULSE 

The propagation of ultrasound waves takes place in three dimen- 
sions, but we consider I-D effects only. The attenuated ultrasound 
pulse can be divided into two parts: a stationary basic pulse and a 
nonstationary attenuation pulse. The basic pulse consists mainly of 
the electromechanical response of the transducer and the scattering 
function; see [7, ch. 81. 

The signal y (  I I  j received by the transducer is given by 

where I (  = 1.. . . .*Y denotes the discrete-time index, 2 = eJd the 
:-transform variable, H I  (;) the stationary basic pulse, and H2 ( 2 ,  n ) 
the nonstationary attenuation pulse. The radian frequency is denoted 
J. The 1 -D reflection sequence 11 ( n  ) is assumed Gaussian i.i.d. with 
zero mean and variance U ; .  A standard ARMA model is used for 
the basic pulse 

(4) 

Maximum likelihood estimation of the parameters of nonstationary 
models is possible in the time domain only. The following ARMA 
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111. MAXIMUM LIKELIHOOD ESTIMATION 

If the basic pulse H I (  2 )  is not known a priori, then we will 
assume it is minimum phase and estimate it along with the attenuation 
parameters. If the reflection sequence is nonGaussian distributed, then 
the minimum phase assumption can be relaxed [8], but this issue 
is not examined further in this correspondence. For the purpose of 
finding the likelihood function, a scaled version of the signal 71 ( 1 1  ) 
is introduced: 

model is therefore proposed for the time-dependent attenuation pulse 

where e (  n )  is independent Gaussian distributed with zero, mean and 
time-dependent standard deviation (see (7)) 

The deviations in the log-spectrum domain between the proposed 
ARMA model and the linear-with-frequency characteristic are illus- 
trated in Fig. 1. The linear-with-frequency characteristic has been 
observed to be a good approximation for most soft biological tissues 
[4]. Considering that the linear-with-frequency characteristic already 
is an approximation of the physical case, the proposed ARMA model 
seems to be a reasonable compromise between modelling capacity 
and mathematical convenience. Requiring that the modelling error 
should be zero at 

= 0 corresponding to 2 = 1 
*' = ~ / 2  corresponding to 3 = j 
J = TI corresponding to z = -1 

results in 

We then have that the received signal y( I I  ) is given by the convolution 
of a monic minimum phase filter, and the signal e (  11 ) (see ( 5 ) )  

The minus-log-likelihood function is (see Sec. 7.4 of [ 5 ] )  

(14) 

where 

( 7 )  
1 - r(rr) 
1 + c ( n )  

= exp(-tr(n)/2) 

0 
c( TI ) = t anh( c) ( 1 2  )/a ) (8) 

where n ( n )  is the cumulative attenuation coefficient at J = TI. 

According to (8), we have that I C (  R )I  < 1 for all n ( n ) and H P  ( 2. n ) 
is therefore ensured to be minimum phase in agreement with the 
physics (see Sec. 5.5 of [I]). In practice, the linear-with-frequency 
characteristic and the assumption of large signal-to-noise ratio are 
often valid only in a certain frequency band. The received signal 
should, if this is the case, undergo a sampling rate conversion [2] so 
that only the usable frequency band is present in the discrete-time 
signal. The attenuation coefficient at = w, which is denoted by 
nl ( n  - l) ,  is related to the cumulative attenuation coefficient: 

n ( / ' ) = ~ I ( T I - l ) + c ) ( ~ 1 - 1 ) .  (9) 

If the received signal comes from a uniform area with constant 
attenuation (I 1 , we have that 

The prediction error ~ ( n )  is, unlike the signal e ( n ) ,  a function of 
the assumed parameter vector 0.  The statistics of the signal e ( n )  
are a function of the true parameter vector @TRUE. The difference 
between c ( n  ) and e(  TI ) is illustrated in Fig. 2. In Fig, 2, it is also 
illustrated that the signal tx( 71 ) is a function of the assumed parameter 
vector 0 and that the statistics of the signal y ( n )  are a function of 
the true parameter vector 0 7 ~ 1  E,. The maximum likelihood estimate 
HLILF: is the value of 0 that minimizes the minus-log-likelihood 
function 1.. The maximization of the likelihood function is done by 
a Gauss-Newton-type algorithm; see [9] for details. The algorithm 
in this section is extendable to multiple independent received 1-D 

n(n)  = ( I 1  - l)n1. (10) signals and to the case of varying attenuation [9] as well. 
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Fig. 3. Generated signal y ( n ) .  

IV. EXAMPLE 

The synthetic generated signal y ( n )  shown in Fig. 3 has the 
following data: 

s = 1500 

H I ( ; )  = 1 
0 0  = 1 

n(1) = 0 { 0.01 for 501 5 11 5 1000 
otherwise n l ( n ) =  

n (  1500) = 5 

Using the fixed values 

H I ( 2 )  = 1 

n(1) = 0 

and the initial guess 

01 = 0 

U0 = 2 

it took six iterations to find 

nl  = 0.0100 * 0.0004 

00 = 0.9918 3~ 0.0514 

for 501 5 n 5 1000. The values after f are the estimated standard 
deviations. The spectral-difference approach [3], [4] resulted in 

0 1  = 0.0089 k 0.0006 

using the two nonoverlapping segments 501 5 n 5 750 and 
751 5 n 5 1000. 

V. CONCLUSION 

The information utilized by the maximum likelihood attenuation 
estimator is essentially the same information utilized by a short- 
time Fourier-transform-based method like the spectral-difference ap- 
proach. However, because the received signal is nonstationary, even 
in the case of constant attenuation, the spectral-difference approach 
has to use overlapping and small segments if the spectral-difference 
approach is to perform as well as the maximum likelihood approach. 
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Conditions for Third-Order Stationarity and Ergodicity 
of a Harmonic Random Process 

Harish Parthasarathy, Surendra Prasad, and S. D. Joshi 

Abstract-The finite data estimates of the complex third-order moments 
of a signal consisting of random harmonics are analysed. Conditions for 
the third-order stationarity and ergodicity are obtained. Explicit formulas 
for the estimation error and its variance, as well as their limiting large 
sample values are derived. A special case relevant to quadratic phase 
coupling is considered, and these results are stated for this case. The 
variance is shown to comprise an ergodic and a nonergodic part. 

I. INTRODUCTION 
The bispectrum has been shown to be a very useful tool in 

signal processing in the recent past, especially in nongaussian signal 
processing, gaussian noise cancellation, detecting phase relations 
among the harmonic components of a signal and in the study and 
identification of nonlinear and nonminimum phase systems [1]-[4]. 
One of the issues that arises in the practical implementation of 
any algorithm that uses the bispectrum or alternately the third-order 
moments is whether their estimates based on a finite observation 
interval of the signal are consistent or not. Brillinger or Rosenblatt 
[5] ,  [6] have obtained fairly general results on the asymptotic statistics 
of the kth-order spectral estimates. However, a formal treatment of 
the exact statistics of the bispectral estimates of a harmonic random 
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