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rather than 

3) Equation (24) is missing a fi. This equation should read 

[E;:: LZ1I G)'"' 1 ( ) 1 -  - 
&[V""' ( 2 )ho ( 3 ) + n,V("'- ')  ( 3  )hi') ( 3 )]. 

(1) 

4) The matrix I b defined at the beginning of Section 111-B should 
be 

\ b = - (  1 - 1  -1 ) 
$2 1 -1 

rather than 

5 )  Equations (32)-(35) are missing a 4. These equations should 
read 

(2) 

(3) 

autoregressive (AR) model [3]. The popularity of this model is due 
to the fact that the maximum likelihood estimators of the parameters 
can be computed analytically. Maximum likelihood estimation of the 
parameters of the Gaussian, minimum phase, autoregressive moving 
average (ARMA) model is also well-known [4], [5] ,  and maximum 
likelihood estimation has been done for the nonGaussian, minimum 
phase AR-model as well [6].  This has all been done using the well- 
known prediction-error-based maximum likelihood (PEML) method 
and has therefore been limited to minimum phase ARMA models. 
In this correspondence, a new algorithm known as the back-filtering- 
based maximum likelihood (BFML) method is presented, and it is 
able to handle nonminimum phase and noncausal ARMA models. 
The BFML method is therefore an altemative to the higher order 
statistics approach [7], [8].  

11. THE BFML METHOD 

We will assume the following stochastic signal model for the given 
signal y ( n ): 

+z 

y ( n )  = h ( n )  * e ( 7 1 )  = h ( i ) e ( n  - i )  (1) 
,=--c1: 

where e (  n )  denotes the driving stochastic signal, and 71 = 1.. . . . -1- 
is the discrete-time index. P (  11 ) is independent identically distributed 
with probability density function f e C  , I )  ( e (  n ) ) .  The filter h ( I I  ) does 
not have to be minimum phase or even causal. The first task for 
deriving a maximum likelihood estimator is to find the likelihood 
function f, ( y; 8)  as a function of the parameter vector 6'. The second 
task is to derive a fast optimization algorithm. The idea behind 
the BFML method is to interpret the filtering in (1) as a matrix 
transformation from e ( 11 ) to y ( t j  ). This transformation is linear: 

y = 'He  (2) 

~~~i~~~ Likelihood Estimation of the parameters of 
~ ~ ~ ~ i ~ i ~ ~ ~  phase and ~~~~~~~~l ARMA Models 

where e and y are S x 1 column vectors. 'H is a AY x 
Toeplitz matnx. It IS known (see Sec. 8-1 of P I )  that 

nonsymmetnc 

(3) 

where the back-filtered sequence F( t i :  8 )  as an -1- x 1 column vector 
is given by 

n,;=, f t ( , t ) ( F o l :  8): 0 )  
I det('H)I 

Klaus Bolding Rasmussen f,(y:O) = 

Abstract-The well-known prediction-error-based maximum likelihood 
(PEML) method can only handle minimum phase ARMA models. This 

likelihood (BFML) method, which can handle nonminimum phase and 
noncausal ARMA models. The BFML method is identical to the PEML 
method in the case of a minimum phase ARMA model, and it turns 
out that the BFML method incorporates a noncausal ARMA filter with 
poles outside the unit circle for estimation of the parameters of a causal, 
nonminimum phase ARMA model. 

paper presents a new method known as the back-filtering-based maximum € ( e )  = F t ( O ) - ' y .  (4) 

Note that the back-filtered sequence depends on 8; see Fig. 1. The 
BFML estimate OBF*\ILF of the true parameter vector & R L  F is 

( 5 )  
n;=, f e ( , t ) ( d T 1 : @ ) : O )  

ldet(RFI)l . 
H B E L I L E  = aignidx 

I. INTRODUCTION 

Parameter estimation for stochastic signal models has always 
received much attention in signal and image processing. It has proved 
usable in low-rate coding of speech signals [l] .  in deconvolution 
of seismic signals [2], and in many other applications [3]. The 
most used stochastic signal model is the Gaussian, minimum phase, 
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For the purpose of finding a convenient expression for the likelihood 
function, we will introduce the ;-transform H ( t )  of h ( n ) :  

+x 

H ( 2 )  = h ( u ) : - " .  (6) 
, t = - - Z  

Now, let H (  2 )  be of ARMA form 
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Fig. 1 .  Difference between P (  1 1 )  and f (  I ? :  8 ) .  

where H I  (:) is minimum phase, i.e., all poles and zeros are inside 
the unit circle. Ha[ 2 )  is maximum phase, i.e., all poles and zeros 
are outside the unit circle. All r-transforms with no poles or zeros 
on the unit circle can be written on the form A4:iH(:), where -4 is 
a real number, and r is an integer. By convention. we will include 
the gain -4 and delay 2’  in the description of f ’ e ( , c ) ( r ( ~ / ) ]  rather 
than in h ( n ) .  A :.-transform defined by (6) with poles outside the 
unit circle does not describe an unstable filter. It describes a stable, 
noncausal filter (see Ch. 4 of [IO]). It should be noticed, however. 
that if the filter corresponding to a :-transform with poles outside the 
unit circle is implemented in the straightforward causal way. then the 
implementation is unstable. The filtering or transformation from c (  1 
to y (  n 1 is implemented as a causal recursive filtering with HI ( :) = 
(D1(:))/(,41 ( 2 ) )  followed by an anticausal recursive filtering with 
H Z  ( : 1 = ( I32 ( : ] ) / (  -42 ( 2 ) 1. The back-filtering or transformation 
from y[n) to f (  T I :  0 )  is implemented as an anticausal recursive filter- 
ing with 1/( Hz( :: 0 ) )  = (.&( :: H I ) / (  & (  :: H ) )  followed by a causal 
recursive filtering with l/(H1(::0) j = (-41 ( 2 :  H j  ) / (Dl  (::Oj j .  The 
transformation matrix corresponding to the causal filter HI (:) is 
lower triangular with ones in the diagonal, and the transformation 
matrix corresponding to the anticausal filter H2 ( : 1 is upper triangular 
with ones in the diagonal. Consequently, Idet(’H)I = 1. and the 
BFML estimator O B F Z I L E  is therefore simplified to 

where 

It is further possible to extend the BFML method to the case of an 
ARMA filter followed by an invertible, memoryless nonlinearity [ 1 I]. 
The maximization of the likelihood function is done by an iterative 
Gauss-Newton-type algorithm; see [ 1 I ]  for details. In [ 1 I]. it is also 
shown how this can be done recursively. 

111. MODEL ORDER SELECTION 
In practice, the numbers of minimum/maximum phase poles/zeros 

are not known a priori, and they also have to be estimated. These 
numbers are fixed during the iterative Gauss-Newton optimization, 
and they have to be determined by some other means. The Gaussian 
probability distribution plays a central role in this respect. To begin 
with, if the input c (  1 1 )  is Gaussian distributed, then it is not possible 
to differentiate minimum phase poles from maximum phase poles by 
using conventional estimation techniques. and the same applies to 
zeros. This is because the Gaussian likelihood function is a function 
of the autocovariance only. On the other hand, it can be proved that 
it is possible to estimate the ARMA filter except for a pure delay and 
gain factor for all nonGaussian distributions of the input e ( n )  [12]. 
Furthermore, in [6], it is proved that the variance of the maximum 
likelihood estimator of the parameters of a causal AR model is largest 
in the Gaussian case. This result is true also in the general case of 
a noncausal ARMA model as the proof in [6] can be extended to 
this case easily. The model order selection problem for the BFML 
approach does not differentiate much from the usual PEML case. 
In fact, almost any one of the traditional approaches, e.g., Akaike’s 
information theoretic criterion, can be used. An overview of these 
approaches is given in Ch. 16 of [SI. One possible approach is to 
select several promising models and then optimize for each model. 
The resulting minima should then be tested for statistical significance. 
If the situation in this model order selection approach is that the 
number of zeros (or poles) is given, say .I7,,, then the number of 
possibilities, i.e.. combinations of minimum/maximum phase zeros. 
that must be tested is .I-(, + 1. 

IV. EXAMPLE 
In this section, an example of how the BFML method works is 

presented. It has not been the intention that the example should 
represent any specific application. It is only meant to illustrate the 
procedure of the new method. Let the input e ( n )  be zero mean 
Laplacian distributed: 

?S*, (- b y )  
: --x < P ( I 1  j < +x: , j  > 0. 

2.1 . f , ( < , , ( f . ( I 1 1 )  = 

(16) 
The variance of e (  r ] ]  i s  I-{?( n ) }  = 2j’ .  Now, let the true model be 

where e l  ( 1 1 )  is zero mean Laplacian distributed with j = 1. The 
variance of y[ 1 1  j is T- {y (  I I  1 } = S. The filter is of the all-pass type 
with a pole at -0.5 and a zero at -2. The filter is transformed to the 
form appropriate for the BFML method 

where t ( 1 1 )  = 21-I ( I ( 1 )  ) is zero mean Laplacian distributed with 
I = 2. The negative log-likelihood function is 

A simulation with 1024 samples was performed using (17) for 
generation of data ! / ( I /  I and (18) for the identification. The initial 
guess 

( 1 1  (1 1 = 0.2: 

h( 1) = 0.2.5 
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~~~:~~~~ 

1 ~ ~ ~ , ~ ~ 1  

TABLE I 

LAPLACIAN ARMA MODELS AND DIFFERENT SIGNAL-TO-NOISE RATIOS SNR 
THE NEGATIVE LOG-LIKELIHOOD FUNCTION I.( 0 )  FOR DIFFERENT 

H ( z ; 4  P 

2 2408 2470 2976 

2 2331 2401 2917 

2 2426 2477 2944 

2 2408 2470 2976 

TABLE I1 

FOR THE LAPLACIAN. NONMINIMUM PHASE ARMA MODEL 
THE BIAS INCREASES AS THE SIGNAL-TO-NOISE RATIO SNR DECREASES 

0.5000 2.0000 f 0.5404 1.9600 

resulted in I’ = 2328 for 

n i ( 1 )  = 0.5070 f 0.0189 

b 2 (  1) = 0.3461 41 0.0185 

3 = 1.9602 + 0.0625 

after ten iterations. The values after + are the estimated standard 
deviations. 

Now, white Gaussian noise is added to the measurements y ( n ) .  
Table I shows the negative log-likelihood function 17(0 )  for the true 
ARMA model and the corresponding ARMA models with mirrored 
poles and zeros. For all ARMA models, the I‘(0)’s  are shown for 
different signal-to-noise ratios. We have that only differences between 
the I’(0)’s greater than ~ & % ( 3 ) / 2  M 3 are statistical significant 
at level 5% [ l l ] .  It is seen that the correct ARMA model can be 
identified even for very low signal-to-noise ratios. As noticed in 
Section 111, this would not be possible using the usual Gaussian 
likelihood function even in the noise-free case. Table I1 shows the 
BFML estimates using the true values as the initial guess. It is seen 
that the BFML estimates become a little biased as the signal-to-noise 
ratio decreases. 

V. CONCLUSION 

A parameter estimation method known as the BFML method, 
which can handle nonminimum phase and noncausal ARMA models, 
has been derived. The likelihood function is found interpreting 
filtering as a matrix transformation. The BFML method is identical 
to the usual PEML method in the case of a minimum phase ARMA 
filter, and the BFML method can therefore be seen as an extension of 
the PEML method. Although the BFML method is derived assuming 

noiseless measurements, it performed well even for low signal-to- 
noise ratios. 
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On the Estimation of Bispectral Density Function in 
the Case of Randomly Missing Observations 

M. M. Gabr and T. Subba Rao 

Abstract-The estimation of the bispectral density function of a sta- 
tionary stochastic process when some observations are missing according 
to a point binomial distribution is considered in the paper. The existence 
of the bispectrum, and its estimation are considered. The methods are 
illustrated with simulated examples. 

I. INTRODUCTION AND DEFINITIONS 

Second order spectra plays an important role in signal processing 
and the need for power spectral analysis arises in a variety of contexts 
such as the design of optimal filters, detection of narrow band signals, 
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