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Extraction of the Relevant Delays for
Temporal Modeling

Cyril Goutte

Abstract—When modeling temporal processes, just like in pat-
tern recognition, selecting the optimal number of inputs is a cen-
tral concern. In this paper, we take advantage of specific features
of temporal modeling to propose a novel method for extracting the
inputs that attempts to yield the best predictive performance. The
method relies on the use of estimators of generalization error to
assess the predictive performance of the model. This technique is
first applied to time series processing, where we perform a number
of experiments on synthetic data, as well as a real life dataset, and
compare the results to a benchmark physical method. Finally, the
method is extended to system identification and illustrated by the
estimation of a linear FIR filter on functional magnetic resonance
imaging (fMRI) signals.

Index Terms—Delay estimation, functional magnetic resonance
imaging, generalization error, identification, modeling, time series.

I. OVERVIEW

I N THIS PAPER, we will be concerned with modeling the
future behavior of a system based on its past plus, possibly,

some exogenous control signal with application to time series
prediction and system identification. Predictive performance de-
pends, among other things, on the design of a proper input or
regression vector. With too few inputs, the model does not have
sufficient information and is unable to grasp the inner workings
of the system, resulting in a large approximation error. On the
other hand, a model with irrelevant inputs is overparameterized,
which usually results in poor predictive performance, as sug-
gested by the curse of dimensionality [1], [2].

We will focus mainly on time series prediction and later
address the problem of system identification. In this context,
potential inputs are past values, or delays, of the time series.
Our aim is to select delays that are necessary to model the
system while discarding unnecessary delays that could harm
the overall performance. To our knowledge, the only provably
optimal, general input selection method is exhaustive search,
which is NP-complete and computationally unfeasible unless
the number of inputs is very limited. Our method is related to
iterative feature selection techniques used in traditional statis-
tics [3]. It builds on the specificities of temporal processing
to provide an original way of selecting potential inputs. The
relevance of a candidate delay is assessed directly by its effect
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on predictive performance that is measured using estimators of
generalization error.

The following sections are organized as follows. First, we
give a general presentation of feature selection applied to time
series modeling from the statistical and physical points of view
(Section II). We suggest the use of estimators of generalization
error to evaluate the quality of a subset of features. Our
extraction of the relevant delays (ERD) method is described in
Section III as a principled alternative. The second part of the
paper contains a number of experiments conducted on three
different datasets. Time series predictions (Section IV) are
addressed using the well-known artificial Hénon map and a
real-world time series measuring the mean monthly flow of
the Fraser river; ERD is then applied to system identification
(Section V) using a functional magnetic resonance imaging
(fMRI) dataset. We conclude with a discussion of the method
and results.

II. FEATURE SELECTION

Let us consider a standard time-series modeling problem; a
sequence of measurements , is collected. We
wish to predict from a set of past values , .1

Extracting the relevant delays consists of finding the set of
delays such that the input vector

(1)

yields the best prediction of .

A. Physical Approach

The physical approach relies on estimating theembedding
dimensionof the time series [4]. This is essentially equivalent
to finding the set ofprimarydelays, i.e., delays with an explicit
influence on the observed values. For example, for a time series
generated by , 1 is the only primary delay. As

, we can also estimate using ;
however, 2 is a secondary (not a primary) delay.

Several methods have been proposed to estimate the embed-
ding dimension and the embedding space of a time series. Pi
and Peterson [5] have introduced the “-test” in the neural net-
works literature. He and Asada [6] proposed the use of “Lips-
chitz quotients” to identify the order of nonlinear input–output
systems. An independent but essentially similar method was ap-
plied to time series in the signal processing literature [7]. These
methods all rely on the assumption that the underlying map-
ping is continuous and reasonably smooth. The existence of a

1Note that we do not address the problem of obtaining the best sampling fre-
quency, i.e., length of the basic time delay (difference betweent+ 1 andt).
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continuous mapping between and means that close in-
puts and are mapped to close outputs and .
On the other hand, for insufficient input spaces (i.e., missing
delays), close inputs can correspond to arbitrarily distant out-
puts (see Section IV for a practical example). Quantifying this
closeness is done either by estimating the probability that two
outputs are close given close inputs (-test) or by calculating the
ratio between output and input distances (Lipschitz quotients).
An important side effect is that all input–output pairs have to be
considered, requiring extensive calculation.

Note that the techniques mentioned above are nonparametric,
rely on the data alone, and need not specify a given model.
This can turn out to be disadvantageous since for a given data
set, only one set of relevant delays is selected, regardless of
the ability of the model to actually implement the underlying
mapping using them. Flexible models such as neural networks
should overcome this limitation by their uniform approximation
capabilities [8]. However, we will see that in practice, a given
model often benefits from the inclusion ofsecondarydelays (cf.
Section IV).

B. Statistical Approach

From a statistical point of view, the extraction of the rele-
vant delays is a special case of feature selection, which is itself
a part of the more general problem of analyzing the structure
in the data [3]. The statistical approach relies on specifying a
(parametric or nonparametric) modelwith which we try to
estimate the input–output mapping . In conven-
tional feature selection, an important assumption is the avail-
ability of all necessary variables. Provided that our data are sam-
pled correctly, this assumption is usually satisfied in the case
of time series.2 In the following, delaysare positive integers

, , variablesor featuresare past values of the
time series , andinputsare the vectors containing
these past values. Finding the relevant delays is then equivalent
to finding the input that gives optimal predictive performance.
Conventional feature selection relies on three different compo-
nents:

1) a selection method searching through possible subsets of
variables;

2) an evaluation criterion assessing the quality of each
subset;

3) a stop condition, which decides whether a satisfactory
subset was obtained.

To our knowledge, the only general optimal method for se-
lecting the best features amongis to perform an exhaustive
search through all possible subsets of variables. This op-
timal approach becomes unfeasible for moderate values of.
Furthermore, in temporal modeling, the maximum delay and,
thus, the total number of variables, is not known beforehand,
but we would typically accept to probe quite far into the past. For
monotonous evaluation criteria, the branch and bound algorithm
[9] provides an efficient alternative. Unfortunately, the predic-
tive ability is not a monotonous criterion. Common suboptimal

2It breaks down when a long-term delay is needed, ranging further in the
past than the data itself. However, the relevance of such long-term delays is
questionable, as there would be no data to identify the associated parameter(s).

alternatives perform an iterative search by regularly increasing
or decreasing the number of selected features [3].

Forward Selection:Starting from an empty set (no vari-
ables), add variables according to the evaluation criterion until
the stop condition is reached.

Backward Elimination: Starting with a full set (all possible
variables), delete one variable at a time according to the evalu-
ation criterion until the stop condition is reached.

Stepwise Regression:Alternate between both methods, by,
e.g., performing a backward elimination after each inclusion or
choosing between adding or deleting variables according to the
evolution of the evaluation criterion.

Note that the focus in neural networks research, for example,
is almost entirely on backward elimination through various
pruning schemes [10]. All these suboptimal methods rely
heavily on the evaluation criterion. Typical choices include, for
example, the statistic [3], extensions to nonlinear models, or
mutual information [11]. We will now present an alternative to
these choices.

C. Generalization Approach

In the context of nonparametric modeling, our goal is to ob-
tain the best prediction. We will thus use a measure of the pre-
dictive abilities as our evaluation criterion. For a modelmap-
ping an input vector to output

, the risk measures the cost associated with es-
timating the output observed in with the model . As-
suming Gaussian noise on the output usually leads to the choice
of the quadratic risk, . Thegeneraliza-
tion error (or expected risk) associated with modelis defined
as the expectation of the risk over the unknown, but fixed, joint
input–output distribution

(2)

This is also known as the prediction error or the integrated
squared error. Ideally, the evaluation criterion for a given
subset should be the generalization error of the model using
this subset as input [12]. However, (2) cannot be used directly
because the joint input–output probability is unknown. It
will be estimated from the available data , with

.
Thesplit-sample(SS) estimator is obtained by replacing the

joint distribution by its empirical estimator on the vali-
dation set

(3)

where is the cardinality of , and is the model estimated
on the training set .3 Note that and must be
disjoint in order for to be an unbiased estimate of .

The cross-validation4 (CV) estimator [13], [14] resamples
the validation and training sets from the available data in order

3WhereT = DnV meansT = ft 2 D; t =2 Vg.
4The split-sample method is sometimes referred to as “cross-validation” in

the neural networks literature. This is inconsistent with the definition of [13],
and we will here reserve the term exclusively for the averaging method (4).
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to increase the reliability of the resulting estimator. In-fold
CV, is split into disjoint subsets of roughly
equivalent size . The split-sample estimators (3)
calculated using each in turn as a validation set are averaged
over the subsets

(4)

where for notational convenience, we introduce , which is
the model estimated excluding the subsetcontaining . This
means that . Note that (3)
does not estimate the generalization error (2), but it does esti-
mate its average over all possible datasets of the same size sam-
pled from .

Finally, a number of analytical asymptotic estimators of the
average generalization error have been proposed in the litera-
ture, e.g., final prediction error (FPE) [15], generalized predic-
tion error (GPE) [16], final prediction error for regularized prob-
lems (FPER) [17], or network information criterion (NIC) [18].
Without loss of generality,5 we will settle for a GPE-like expres-
sion, i.e., an FPE with aneffective number of parameters

(5)

where is the training error (or empirical risk) on dataset
: . For unregularized linear

models, , which is the number of parameters. For reg-
ularized and/or nonlinear models, we generally have ,
and the exact expression fordepends on the estimator and the
regularization method (see, e.g., [17] and [19]).

Estimators of generalization error, whether they are based on
cross-validation or asymptotics, will now be used as evaluation
criterion in order to derive an original delay extraction scheme.

III. EXTRACTION OF THE RELEVANT DELAYS

The above presentation of statistical feature selection applies
to general regression problems. Time series prediction, and, to
some extent, system identification, have a number of distinct
characteristics. On the one hand, all potential features are avail-
able, but there is no upper bound on the maximum delay. This
makes the extraction of relevant delays a rather bad candidate
for backward elimination schemes. On the other hand, the
chronological order yields a natural ordering of variables that
our method uses as a natural selection criterion. The rationale
for this scheme is that primary delays will always be tested
for inclusion before secondary delays. As a consequence,
secondary delays will never be included unless 1) the model
is unable to represent the underlying mapping using primary
delays alone, or 2) the secondary delay is also a primary delay.6

5Other estimators lead to similar expressions, and their subsequent use is
straightforward.

6If y(t) = g(y(t�1); y(t�2)), 2 is a primary delay but is also a secondary
delay, through the primary delay 1.

The ERD method takes all delays in their natural order and
adds a candidate variable if and only if it yields asignificant
decrease in generalization error. The algorithm can be described
as follows.

1) Initialize: ; no input selected; (time series
variance).

2) Model: d = d + 1; add delay to selected inputs; Estimate
generalization error for resulting model.

3) Test: If issignificantlysmaller than , then keep delay
and cut ; else, discard delay

4) Iterate: Go to step 2 until stop condition is reached.

A. Optimality and Suboptimality

In the ideal case of a complete model (i.e., contains the target
mapping) and sufficient amount of noise-free data (i.e., fairly
larger than the number of parameters), the above method is op-
timal. To see this, consider the maximum primary delay .
Clearly, all models obtained for have strictly posi-
tive generalization errors . Due to the completeness of the
model class, there is a model using delays up to , which
yields , and due to the noise-free assumption, this model
can be estimated. As models using cannot yield
any decrease in generalization error, no further delay will be
selected.

For more general situations, we are not aware of any proof
that the model is optimal. Indeed, the experiments presented
below suggest that it is not, although results appear to be close to
optimum. The correctness and near optimality of the extracted
delays will depend on several factors, the approximation capa-
bilities of the model and the noise level among them.

Note that the traditional caveat against sequential selection
is its inability to handle variables that are combinations of other
variables. This arises naturally in temporal modeling as each ob-
servation is a (possibly nonlinear) mapping of previous values.
However, chronological selection ensures that each variable is
tested for inclusion before the variables on which it depends,
guaranteeing a parsimonious selection.

B. Significant Decrease in Error

Step 3 of the above algorithm requires that we assess the sig-
nificance of an observed decrease in generalization error. This
requirement avoids the inclusion of a delay leading to negligible
decrease in estimated generalization error, which could happen
by chance alone. We take advantage of the fact that the estima-
tors presented in (3)–(5) are based on averaging over the data.
The CV and asymptotic estimators can be put in the general ex-
pression

(6)

where for CV and
for GPE [16].7 For the split-

sample estimator (3), , and the average
runs over instead of .

7Other estimators like FPER or NIC will lead to similar forms with different
expressions for the penalty term of̂P .
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We wish to test whether , which is the generalization error
for the model with delays (current best in the algorithm), is
significantly different from , which is the generalization
error for the model with delays (augmented with the can-
didate delay), using the residuals and and their
average and , which are unbiased estimators of
and , respectively. Assuming that the difference between
the residuals and is approximately normally dis-
tributed and using the fact that all residuals are calculated on the
same data, we assess the significance of an observed decrease
in generalization error by using a one-tailed pairedtest [20]
between the residuals. Note that by construction, the candidate
model has an additional delay, meaning that fewer input–output
pairs can be formed. In order to apply the paired
-test, we will discard the additional data points used by the

smaller model. This waste of a couple of examples is counter-
balanced by the superior power of the paired-test, compared
with the nonpaired version.

The choice of the -test is typical for assessing the sig-
nificance of a difference in means when we are willing to
make a normal assumption about the individual differences

. An efficient nonparametric alternative is
the Wilcoxon matched-pairs signed-ranks test [21], which has
an asymptotic relative efficiency (compared with the-test) of
0.95 in the normal case. This means that the price for relaxing
some of the parametric assumptions in the-test is that it needs
asymptotically only 5% more data to assess a given difference
with the same significance.

As in standard iterative subset selection, the significance level
has an influence on the result. When , no delays are se-

lected. However, contrary to the standard case, does not
necessarily select all delays. This is because the estimators of
generalization take the increase in model complexity into ac-
count and do not always decrease for larger models (this is also
observed with, e.g., Mallow’s [22]). Note that it has been
reported that the traditional choice of (the 5% sig-
nificance level) tends to be overly conservative. In agreement
with standard practice in subset selection [23], we will choose

, a range in which experimental results seem
to be stable. Finally, an additional level of generalization esti-
mation can be invoked to tune the value of(e.g., CV in [24]),
but the overall process becomes cumbersome and has not been
pursued here.

C. Stop Condition

The stop condition is motivated by practical or by
problem-specific considerations. As mentioned above, models
with larger delays in the input will have less input–output pairs
available; for a sequence of measurements and inputs with
maximum delay (1), at most training examples
can be formed. This means that with increasing delays, 1)
the estimation becomes more difficult (less data for more
parameters), and 2) the degrees of freedom in the statistical test
decreases, such that the difference in estimated generalization
error must be larger in order to become significant. The
available data provides a natural upper bound for the maximum
possible delay; the selection is stopped when the data becomes
insufficient for proper estimation. Most parametric models,

such as linear models or neural networks, require at least
as many examples as parameters. Statistical rules-of-thumb
suggest a ratio of at least 10 examples per parameter. For the
Hénon map example below (Section IV-A) and a linear model,
the maximum possible delay becomes 500 (data points) minus
six (parameters in the candidate model), i.e., (and

if one requires 10 data per parameter).
On some problems, and typically when modeling a physical

system, it may make sense to introduce stronger constraints to
reflect additional knowledge on the phenomenon or require-
ments on the model. In the fMRI experiments presented below
(Section V), the resulting filter tentatively models the haemo-
dynamic response to neuronal activation. As the experiment is
performed as a series of consecutive runs and we are interested
in the response to a typical activation pattern, it is sensible to
limit the delay extraction to one run, i.e., 48 delays in that case.

Because the selection criterion is independent of the stop cri-
terion, the influence of the latter is in how conservative the re-
sulting model will be. Any criterion that stops the algorithm ear-
lier will necessarily yield a model with fewer (or as many) de-
lays selected, i.e., it will be more conservative. It is, thus, fair to
say that the maximum delay gives the least conservative model
(everything being otherwise equal). Adding stronger (e.g., phys-
ical) constraints on the maximum delay will potentially trade a
more conservative model for an increase in interpretability. Note
finally that due to the decreasing degrees of freedom when less
data are available, the last included delay is usually (in the ex-
amples we have processed) much smaller than .

IV. TIME SERIESPREDICTION

A. Hénon Map

Let us first consider a time series generated by the
well-known Hénon map [25]

(7)

We apply several methods on a dataset containing 500 points.
An independent set of 10 000 elements is sampled from (7) to
assess the resulting generalization abilities. The noisy map, with
additive Gaussian noise ( ) is also investigated. We
consider two models:

• linear model (obviously a bad choice to model the non-
linear Hénon map) using FPE [15] as an estimator of gen-
eralization error;

• kernel smoother [26], [27] using theleave-one-out(i.e.,
-fold) CV estimator;

and four delay selection methods

1) the -test [5], estimating the embedding dimension;
2) the ERD method (Section III);
3) a “divine guidance” or large validation set (LVS) method;
4) the traditional -inclusion scheme.

The “divine guidance” method selects delays on the basis of a
large independent dataset providing a reliable estimator of gen-
eralization. This method is, of course, impractical on real data
and is used in order to check the behavior of the estimators used
in ERD.
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Fig. 1. Output distance versus input when input contains the first delay.
Each point represents a pair of data, and only points with the 1% smallest
input distances have been included. Many close inputs lead to distant outputs,
indicating an insufficient input space.

Fig. 2. Output distance versus input when input contains the first two delay.
Each point represents a pair of data, and only the points with the 1% smallest
input distances have been included. The output distance is always small,
indicating a sufficient input space.

In -inclusion, a candidate delay is included iff

(8)

where and are the empirical risks, or training
errors, for the models with delays and delays (respec-
tively), calculated on the same data, andis the -distribution
threshold for an confidence level 1 and degrees of
freedom. A candidate delay is therefore included when it yields
a significant improvement inobservedperformance.

Figs. 1 and 2 show a plot proposed by Aleksic [28] to inves-
tigate the embedding dimension. All points correspond to a pair
of data with small and give the output
distance against . Clearly, with only
one delay in the input (Fig. 1), close inputs do not guarantee

TABLE I
DELAYS SELECTED ON THEHÉNON MAP DATASET BY FOUR METHODS: LARGE

VALIDATION SET (LVS), EXTRACTION OF THE RELEVANT DELAYS (ERD),
F -INCLUSION, AND �-TEST

Fig. 3. Results on the Hénon map for both models and both noise conditions
with four selection schemes: Large validation set (LVS), extraction of the
relevant delays (ERD),F -inclusion, and�-test.

close outputs. Therefore, there is no continuous mapping from
to . On the other hand, with the first two de-

lays (Fig. 2), all pairs with close inputs also have close outputs.
This suggests that a continuous mapping between the first two
delays and the time series value can be implemented. Accord-
ingly, the -test selects the first two delays from the dataset [5].
For noise-free data and the kernel smoother model, all other se-
lection methods also select these two delays and are able to im-
plement the Hénon map perfectly from the 500 available obser-
vations. In the remaining situations, they always select at least
one additional delay, depending on the model-noise combina-
tion (see Table I).

All resulting models are tested on the large noise-free test
set in order to check their generalization abilities (Fig. 3). Pre-
dictably, the kernel smoother provides much better performance
than the linear model. Note that the-test outperforms a statis-
tical method ( -inclusion) only once: for the “kernel noisy
data” combination. This is due to its emphasis on extracting the
primary delays; as efficient as the-test may be at extracting the
“true” delays, it suffers from not addressing the relevant goal in
our context, namely, prediction of future time series values. The
relative edge of the-test for that particular model-noise combi-
nation is rather due to the inferior performance of-inclusion.
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Fig. 4. Mean monthly flow of the Fraser river recorded in Hope, B.C., Canada,
between January 1925 and January 1945 (solid line). The one- and ten-year
moving averages are shown as dotted and dashed lines, respectively.

This suggests that -inclusion is ill-suited to flexible nonlinear
models. This is because (8) does not penalize overfitting; on the
contrary, when becomes overly small, the statistic will
be artificially increased, leading to an exceedingly optimistic
selection (15 delays, instead of two or three). Notice the close
agreement between LVS and ERD, suggesting that the estima-
tors of generalization error (FPE and CV) perform well. ERD
tends to be more parsimonious, yielding five and three delays
for the linear model, instead of seven and seven, for similar per-
formance. Finally, on noisy data, even with the flexible kernel
smoother, ERD and LVS select an additional, secondary delay.
This is because we try to learn the underlying relationship from
a limited amount of data. This additional delay, although not the-
oretically necessary, yields a 30% improvement in performance.

B. Fraser River

Let us now turn our attention to a real dataset, which is an-
alyzed in [29] and publicly available. The data records mean
monthly measurements of the flow of the Fraser river in Hope,
B.C., Canada, from March 1913 to December 1990. It contains
946 values with a rough periodicity and maxima every 11–13
months (see Fig. 4). The dataset is split in half: The first 473 ob-
servations are used for model estimation and delay extraction,
and the last 473 are used for testing the generalization abilities
of the resulting model. In the following experiments, the data
have been log-transformed and centered. The selection method
using the large validation set is, of course, not sensible in this
context, as no extra data is available. Accordingly, we will con-
sider only two selection schemes (the-test and the proposed
ERD) applied to three models:

• linear model;
• kernel smoother;
• nonlinear neural network model (multilayer perceptron

with one hidden layer).
The parameters of the linear and neural network models are esti-
mated by minimizing the mean squared error on the transformed
data. The estimators of generalization error are the FPE [15] and
GPE [16], respectively, for these models and the leave-one-out
estimator, as above, for the kernel smoother. The nonparametric

TABLE II
DELAYS EXTRACTED, FOREACH MODEL, BY BOTH METHODS: THE PROPOSED

EXTRACTION OF THE RELEVANT DELAYS (ERD) AND THE �-TEST

Fig. 5. Result for three different models of both extraction schemes: the
proposed extraction of the relevant delays (ERD, full marks) and the�-test
(empty marks). The three models are linear, kernel smoother, and nonlinear
neural network (NN).

-test selects six delays, whereas the ERD extracts six to 12 de-
lays, depending on the model (see Table II). Not surprisingly,
the more flexible models, i.e., kernel smoother and neural net-
work, use fewer delays, whereas the linear model uses twice as
many.

Notice that although the-test and ERD extract the same
number of delays for two out of three models, these delays do
not coincide. Typically, ERD probes further into the past: across
two periods for the neural network and even four for the linear
model. This is an interesting artifact of the-test method; as the
size of the input space grows larger, fewer and fewer pairs of
points have close inputs. As a result, the variance of the esti-
mated probabilities increases, and the test is unable to reliably
select additional delays.

The generalization abilities of the resulting models are as-
sessed using the test set. On Fig. 5, points far above the dotted
line indicate probable overfitting. Not surprisingly, the kernel
smoother overfits the data quite severely. This model is known to
suffer acutely from the curse of dimensionality and has difficul-
ties handling high-dimensional inputs when only one smoothing
parameter is used [30]. Surprisingly, the best overall perfor-
mance is achieved by the combination of ERD and linear model.
The flexible neural network model does marginally worse and
seems to overfit slightly. Note that with a good training algo-
rithm, the neural network should be able to outperform the linear
modelusing the same inputs. However, the ERD scheme has
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Fig. 6. Right: Brain map indicating the 21 activated voxels (black) analyzed
with ERD. The background is an anatomical reference obtained from the
average activation. Left: average time series for the activated voxels (thick line)
and reference stimulus (thin black).

predictably extracted different sets of delays for both models.
In particular, the linear model uses three additional long-term
delays (26, 35, and 48).

Again, these results illustrate the limitations of the physical
approach when prediction performance is the target. The statis-
tical approach based on model performance gathers more infor-
mation in the past and yields an improvement in performance
that is, here, most impressive for the linear model.

V. SYSTEM IDENTIFICATION

The ERD scheme can be extended to some simple system
identification problems, such as the identification of linear or
nonlinear finite input response (FIR) filters [31]. The data is ac-
quired during a functional magnetic resonance imaging (fMRI)
experiment. While the subject lies in the scanner, he is asked to
either lie motionless (rest) or perform a simple motor task (ac-
tivation), namely, left-handed finger-to-thumb opposition. Two

slices of whole brain echo-planar fMRI images are ac-
quired every 2.5 s. The dimension of each voxel is
mm. Nine runs of 48 images are acquired in the following se-
quence: 12 images (30 s) of rest, 24 images (60 s) during ac-
tivation, and 12 images of rest again. The complete time series
consists of 432 measurements (18 min) in each voxel. In the fol-
lowing experiments, we focus on the area containing the
brain and only one slice.

The fMRI signal measures the haemodynamic response
to focal neuronal activation. It is widely believed that the
response in the brain can be characterized as a convolution of
the reference stimulus signal representing the activation with a
linear filter. In our experiment, the reference stimulus is a
square wave with positive values for the scans acquired while
the subject was performing the motor task and negative values
during rest (Fig. 6). Previous approaches tried to characterize
the haemodynamic response using several convolution filters:
Poisson [32], Gamma [33], or FIR filter with a fixed length
[34]. We will try to extend the latter to general FIR filters by
extracting the delays that yield the best modeling performance.
In other words, we are looking for the set of delays
such that

(9)

Fig. 7. Top: Delays extracted for each voxel (grey) and effective filter delay
(solid black). Bottom: Test error for the seven-parameter FIR filter versus the
ERD filter. Crosses indicate voxels for which the effective delay is less than 10
seconds; circles indicate voxels with longer delays (more than 15 s). One voxel
with very large test error in both cases has been discarded to improve clarity.

models the observed fMRI signal as well as possible. The
extension of the ERD algorithm presented in Section III is
straightforward. In step 2 of the algorithm, the delays added
to the inputs should be the delays of the stimulus reference

rather than of the time series . The modeling and
generalization estimations are independent of the particular
choice of inputs, and the rest of the algorithm is not affected
by this extension.

Based on the cross-correlation between the time series
and the reference signal , we isolate 20 voxels that display
a significant activation (see Fig. 6) distributed in two groups that
cover the primary motor area and the supplementary motor area.
As expected, the left-handed opposition produces a contralateral
activation in the right hemisphere. The ERD algorithm is run on
each voxel using five out of the nine runs, corresponding to 240
data points, for delay extraction and modeling, whereas the re-
maining four runs (192 points) are used to test the generaliza-
tion abilities of the resulting model. The stop condition is set by
limiting the extraction to 48 delays, i.e., one run. In agreement
with standard statistical practice in subset selection [23], the sig-
nificance level of the paired-test is set to 20%. The selected
delays range from 1–45 (see the top of Fig. 7). The “effective
delay” of each filter is estimated by computing the average of
the delay indices , weighted by the absolute filter coefficients

. As a result, the activated voxels can be roughly divided in
two categories: 14 out of the 20 filters have an average delay
between 3 and 10 s, which is roughly within the accepted range
of 5–10 s. The remaining voxels have average delays above 15
s, suggesting that the extracted delays do not make sense from a
biological point of view, although they efficiently model the re-
lationship between the reference signal and the fMRI .

The performance of the resulting filters is compared with a
FIR filter of fixed size. As the average haemodynamic delay has
been observed between 5–10 s [35], i.e., two to four images, we
will use an FIR filter with seven delays as reference. In Fig.
7, points above the dotted diagonal mean higher test error, i.e.,
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Fig. 8. Voxels with short-term delays (top) between 3–10 s and voxels
with long-term delays (bottom), of more than 15 seconds with no biological
explanation. The brain maps on the left show the location of the analyzed
voxels (black dots); the right plot shows the average fMRI signal in these
voxels (thick) and the reference signal (thin).

worse modeling, for the fixed-length filter. Most voxels benefit
from using extracted delays, whereas a few display a small de-
crease in performance. Overall, the ERD filters yield better or
comparable performance while using far fewer parameters (2.5
on average). Finally, Fig. 8 displays the location and average
fMRI activation signal of both groups of voxels. The voxels with
short-term delays (top) and long-term delays (bottom) seem to
have slightly different patterns of activation, especially in the
last four runs. However, the small sample sizes (14 and 6, re-
spectively) makes a strict comparison difficult.

VI. DISCUSSION ANDCONCLUSIONS

The physical approach adopted by the-test investigates the
“true” delays with a physical meaning, i.e., the primary delays.
As a consequence, the method displays the following salient
features.

1) It is data intensive.
2) It extracts one set of delays independently of the model.
3) The selected delays have a natural physical interpretation.

On the other hand, the statistical approach of the ERD or-in-
clusion focuses on model performance. It selects the delays for
which the model yields the best estimated generalization error
by directly optimizing a relevant performance criterion. The re-
sulting delays might not, however, be easily interpreted. This
is exemplified by the fMRI example (see Section V), where a
quarter of the resulting filters have no apparent biological justi-
fication. A second difference is that the variables selected by the
statistical methods are model dependent. Note, however, that the
overhead is usually limited, as the computational requirements
depend on the model estimation; for example, the use of ERD
on linear models is extremely fast. ERD improves on traditional

statistical selection methods by focusing on the relevant per-
formance criterion, namely, the generalization error. An inter-
esting side effect of the estimators of generalization error is that
they naturally take into account the limited size of the available
dataset. A similar effect is known from the AIC [36] and BIC
[37] information criteria: BIC selects the asymptotically optimal
model size, which AIC tends to overestimate, while effectively
minimizing the average generalization error for finite datasets.
Similarly, ERD selects additional delays that help prediction. In
the Hénon map example, the selection of yields better
performance according to both the large validation set method
and the independent test set. It should also be noted that it is the
minimumgeneralization, rather than its value, that matters, such
that the method could very well accommodate an estimator with
a consistent bias.

The ERD method is essentially a forward selection method
(see Section II-B). It is straightforward to extend it to backward
elimination or stepwise regression using the same evaluation
criterion. As we argued in Section III, backward elimination is
ill suited to temporal modeling. However, stepwise regression
can be applied by alternating forward and backward steps.
With many models, this can be addressed during the model
estimation, e.g., using an adaptive metric approach for kernel
smoothing [30], Gaussian processes [38], or pruning and
regularization for linear models or neural networks [19], [39],
[40]. These methods automatically discard irrelevant variables
in the input vector. An additional interesting prospect for future
research is the extension of the ERD scheme to more general
system identification architecture, e.g., auto-regressive filter
with exogenous input (ARX). Note that, in that case, the filter
input consists of the system output and the control signal

, and the precise ordering of the candidate inputs has to be
determined.

As a conclusion, we have presented a generalization-based
method for the extraction of the relevant delays in temporal
modeling with a focus on time series prediction and system
identification. This method is related to traditional forward se-
lection methods and is therefore well founded. It is easy to im-
plement and requires little time in addition to model estimation.
Furthermore, it accommodates efficiently the tradeoff between
number of selected delays (model size) and model flexibility
(approximation error). The method provides interesting results
on a number of experiments performed in different contexts.
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