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Extraction of the Relevant Delays for
Temporal Modeling

Cyril Goutte

Abstract—When modeling temporal processes, just like in pat- on predictive performance that is measured using estimators of
tern recognition, selecting the optimal number of inputs is a cen- generalization error.
tral concern. In thl_s paper, we take advantage of specific f(_aatures The following sections are organized as follows. First, we
of temporal modeling to propose a novel method for extracting the . | tati f feat lecti lied to fi
inputs that attempts to yield the best predictive performance. The g'V? G generz:;l presentation 9 _ea Ure Seiec !on apP ied 1o _|me
method relies on the use of estimators of generalization error to S€ries modeling from the statistical and physical points of view
assess the predictive performance of the model. This technique is (Section Il). We suggest the use of estimators of generalization
first applied to time series processing, where we performanumber error to evaluate the quality of a subset of features. Our
of experiments on synthetic data, as well as a real life dataset, and gy raction of the relevant delays (ERD) method is described in
compare the results to a benchmark physical method. Finally, the Section Il] incioled alt fi Th d t of th
method is extended to system identification and illustrated by the Ection a,s a principled afterna |\{e. € Second part or e
estimation of a linear FIR filter on functional magnetic resonance Paper contains a number of experiments conducted on three
imaging (fMRI) signals. different datasets. Time series predictions (Section 1V) are

Index Terms—Pelay estimation, functional magnetic resonance addressed gSIng the WeII-known artificial Hénon map and a
imaging, generalization error, identification, modeling, time series. real-world time series measuring the mean monthly flow of
the Fraser river; ERD is then applied to system identification
(Section V) using a functional magnetic resonance imaging
(fMRI) dataset. We conclude with a discussion of the method

N THIS PAPER, we will be concerned with modeling theand results.

future behavior of a system based on its past plus, possibly,
some exogenous control signal with application to time series Il. FEATURE SELECTION

prediction and systemidentification. Predictive performance de-| ot s consider a standard time-series modeling problem: a
pends, among other things, on the design of a proper i”pUts%rquence of measurements), 1 < ¢ < T is collected. We
regression vector. With too few inputs, the model does not haygsp, 1o predicty(t) from a set of pgst valuaﬁ(t —d),d> 01

sufficient information and is unable to grasp the inner Workingffxtracting the relevant delays consists of finding the set.of
of the system, resulting in a large approximation error. On ﬂ&%lays(dl do, - - dy) such that the input vector
other hand, a model with irrelevant inputs is overparameterized, Y "

which usually results in poor predictive performance, as sug- z(t) = [y(t —d)y(t — d2) - - y(t — d)] 1)
gested by the curse of dimensionality [1], [2]. i o

We will focus mainly on time series prediction and lateYi€!ds the best prediction af(t).
address the problem of system identification. In this context,
potential inputs are past values, or delays, of the time series. ) . o .
Our aim is to select delays that are necessary to model thd e physical approach relies on estimating émebedding
system while discarding unnecessary delays that could haffiensionof the time series [4]. This is essentially equivalent
the overall performance. To our knowledge, the only provabl finding the set oprimary delays, i.e., delays with an explicit
optimal, general input selection method is exhaustive seartHluénce on the observed values. For example, for a time series
which is NP-complete and computationally unfeasible unleg§nerated by (f) = g(z(f—1)), Listhe only primary delay. As
the number of inputs is very limited. Our method is related #(t) = g(z(t — 2)), we can also estimate(t) using( — 2);
iterative feature selection techniques used in traditional stafWever, 2 is a secondary (not a primary) delay.
tics [3]. It builds on the specificities of temporal processing Seéveral methods have been proposed to estimate the embed-
to provide an original way of selecting potential inputs. Theing dimension and the embedding space of a time series. Pi

relevance of a candidate delay is assessed directly by its effe@fl Peterson [S] have introduced tietest” in the neural net-
works literature. He and Asada [6] proposed the use of “Lips-

chitz quotients” to identify the order of nonlinear input—output
Manuscript received August 5, 1998; revised November 23, 1999. This waglystems. An independent but essentially similar method was ap-

was supported by a Research Fellowship from the Technical University of be’h’ed to time series in the signal processing literature [7] These
mark and by the Human Brain Project P20 MH57180. The associate editor coor-

dinating the review of this paper and approving it for publication was Dr. shubhdethods all rely on the assumption that the underlying map-

I. OVERVIEW

Physical Approach
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The author is with the Department of Mathematical Modeling, Technical Uni-

versity of Denmark, Lyngby, Denmark (e-mail: cg@imm.dtu.dk). INote that we do not address the problem of obtaining the best sampling fre-
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continuous mapping betweetit) andy(¢) means that close in- alternatives perform an iterative search by regularly increasing
putsz(u) andxz(v) are mapped to close output&:) andy(v). or decreasing the number of selected features [3].
On the other hand, for insufficient input spaces (i.e., missing Forward Selection; Starting from an empty set (no vari-
delays), close inputs can correspond to arbitrarily distant oatbles), add variables according to the evaluation criterion until
puts (see Section IV for a practical example). Quantifying thtke stop condition is reached.
closeness is done either by estimating the probability that twoBackward Elimination: Starting with a full set (all possible
outputs are close given close inpuigést) or by calculating the variables), delete one variable at a time according to the evalu-
ratio between output and input distances (Lipschitz quotientgl}ion criterion until the stop condition is reached.
An important side effect is that all input—output pairs have to be Stepwise Regressiorlternate between both methods, by,
considered, requiring extensive calculation. e.g., performing a backward elimination after each inclusion or

Note that the techniques mentioned above are nonparametlgosing between adding or deleting variables according to the
rely on the data alone, and need not specify a given modelolution of the evaluation criterion.
This can turn out to be disadvantageous since for a given datdNote that the focus in neural networks research, for example,
set, only one set of relevant delays is selected, regardlesssofilmost entirely on backward elimination through various
the ability of the model to actually implement the underlyingruning schemes [10]. All these suboptimal methods rely
mapping using them. Flexible models such as neural netwolksavily on the evaluation criterion. Typical choices include, for
should overcome this limitation by their uniform approximatioexample, the" statistic [3], extensions to nonlinear models, or
capabilities [8]. However, we will see that in practice, a givemutual information [11]. We will now present an alternative to
model often benefits from the inclusionsgcondaryelays (cf. these choices.
Section V).

C. Generalization Approach

B. Statistical Approach In the context of nonparametric modeling, our goal is to ob-
From a statistical point of view, the extraction of the reletain the best prediction. We will thus use a measure of the pre-

vant delays is a special case of feature selection, which is itséigtive abilities as our evaluation criterion. For a mogdehap-

a part of the more general problem of analyzing the structupég an input vectox(t) = [y(t — d1) - - - y(t — dy,)] to output

in the data [3]. The statistical approach relies on specifyingvét), the riské(y, f(x)) measures the cost associated with es-

(parametric or nonparametric) modglwith which we try to timating the outpuy observed inz with the modelf(z). As-

estimate the input—output mappin¢t) = f(z(t)). In conven- suming Gaussian noise on the output usually leads to the choice

tional feature selection, an important assumption is the ave@fthe quadratic riski(y, f(x)) = (y— f(z))?. Thegeneraliza-

ability of all necessary variables. Provided that our data are saleh error (or expected risk) associated with mogfek defined

pled correctly, this assumption is usually satisfied in the cagé the expectation of the risk over the unknown, but fixed, joint

of time serieg. In the following, delaysare positive integers input—output distribution

d; > 0,1 < 5 < m, variablesor featuresare past values of the

time serieg/(t — d;), andinputsare the vectors(¢) containing QN = / (y — f()° plx, y) dy d. (2)

these past values. Finding the relevant delays is then equivalent

to finding the input that gives optimal predictive performancerhis is also known as the prediction error or the integrated

Conventional feature selection relies on three different compgquared error. Ideally, the evaluation criterion for a given

nents: subset should be the generalization error of the model using
1) a selection method searching through possible subsetsto$ subset as input [12]. However, (2) cannot be used directly
variables; because the joint input—output probability is unknown. It
2) an evaluation criterion assessing the quality of eaetill be estimated from the available data(t), y(¢)), with
SUbset; teD= {ﬂnina R 71ma.x}-
3) a stop condition, which decides whether a satisfactory The split-samplgSS) estimator is obtained by replacing the
subset was obtained. joint distributionp(zx, y) by its empirical estimator on the vali-

To our knowledge, the only general optimal method for sélation sef C D
lecting the best features amoikgis to perform an exhaustive . 1 5
search through ai¥’ — 1 possible subsets of variables. This op- Gss = v > (u®) - F V(=) 3)
timal approach becomes unfeasible for moderate valuds. of tey

Furthermore, in temporal modeling, the maximum delay and . oo v :
thus, the total numbef’ of variables, is not known beforehandWherelvl Is the cardinality o, andf " is the model estimated

b H H P 3
but we would typically accept to probe quite far into the past. For _the training se?’ = D\V.* Note that7 andV must be

) o _disjoint in order forGiss to be an unbiased estimate@ff V).
monotonous evaluation criteria, the branch and bound algorith ) o Ss . ")
. . . . he cross-validation (CV) estimator [13], [14] resamples
[9] provides an efficient alternative. Unfortunately, the predmt— o - . :
) S N .~ _the validation and training sets from the available data in order
tive ability is not a monotonous criterion. Common suboptimal
SWhere7 = D\V meansT = {t € D, t ¢ V}.
2]t breaks down when a long-term delay is needed, ranging further in the*The split-sample method is sometimes referred to as “cross-validation” in

past than the data itself. However, the relevance of such long-term delayshis neural networks literature. This is inconsistent with the definition of [13],
questionable, as there would be no data to identify the associated parametea(s).we will here reserve the term exclusively for the averaging method (4).
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to increase the reliability of the resulting estimator.Z}¥fold The ERD method takes all delays in their natural order and
CV, D is split into L disjoint subset$S;);—1, ... . of roughly adds a candidate variable if and only if it yieldsignificant
equivalent sizéerf: . S; = D. The split-sample estimators (3)decrease in generalization error. The algorithm can be described
calculated using eac$); in turn as a validation set are averageds follows.

over the subsets 1) Initialize:d = 0; no input selected@ i, = o2 (time series
| variance).
G = = £ — =Si(g(t))> 2) Model:d=d + 1; add delagd to selected inputs; Estimate
VTN ; gs:] (y( )= e ))) generalization erro for resulting model.
1 ) 3) Test: IfG issignificantlysmaller thar,,,;,,, then keep delay
—t P .
= (y(t) = [ (=(1))) 4) t — d and cutGp, = G; else, discard delag/— d.

teD 4) lterate: Go to step 2 until stop condition is reached.

where for notational convenience, we introdyte, which is
the model estimated excluding the subSgtontainingt. This
means thaV j, V (u, v) € (S;)?, f~* = f~". Note that (3)  Inthe ideal case of a complete model (i.e., contains the target
does not estimate the generalization error (2), but it does esfiapping) and sufficient amount of noise-free data (i.e., fairly
mate its average over all possible datasets of the same size dafger than the number of parameters), the above method is op-
pled fromp(x, v). timal. To see this, consider the maximum primary delgy x.
Finally, a number of analytical asymptotic estimators of thelearly, all models obtained faf < dyax have strictly posi-
average generalization error have been proposed in the litdi¢ée generalization erroi§ > 0. Due to the completeness of the
ture, e.g., final prediction error (FPE) [15], generalized predigrodel class, there is a model using delays ughiax, which
tion error (GPE) [16], final prediction error for regularized probyields G = 0, and due to the noise-free assumption, this model
lems (FPER) [17], or network information criterion (NIC) [18].can be estimated. As models usidg> dyax cannot yield
Without loss of generalitywe will settle for a GPE-like expres- any decrease in generalization error, no further delay will be

A. Optimality and Suboptimality

sion, i.e., an FPE with aeffective number of parametefs selected.
For more general situations, we are not aware of any proof
A N+P that the model is optimal. Indeed, the experiments presented
Grep = N_Pp R(f) ) pelow suggestthatitis not, although results appear to be close to

optimum. The correctness and near optimality of the extracted

where R(f) is the training error (or empirical risk) on datase€lelays will depend on several factors, the approximation capa-
D: R(f) = 3 ,cp(y(t) — f(z(t)))?. For unregularized linear bilities of the model and the noise level among them.
models,P = P, which is the number of parameters. For reg- Note that the traditional caveat against sequential selection
ularized and/or nonlinear models, we generally haves P, is its inability to handle variables that are combinations of other
and the exact expression férdepends on the estimator and th&ariables. This arises naturally in temporal modeling as each ob-
regularization method (see, e.g., [17] and [19]). servation is a (possibly nonlinear) mapping of previous values.

Estimators of generalization error, whether they are baseddawever, chronological selection ensures that each variable is
cross-validation or asymptotics, will now be used as evaluatié®sted for inclusion before the variables on which it depends,
criterion in order to derive an original delay extraction schem@uaranteeing a parsimonious selection.

lll. EXTRACTION OF THE RELEVANT DELAYS B. Significant Decrease in Error

The above presentation of statistical feature selection appliesteP 3 Of the above algorithm requires that we assess the sig-
to general regression problems. Time series prediction, and"fficance of an observed decrease in generalization error. This
some extent, system identification, have a number of distif@duirementavoids the inclusion of a delay leading to negligible
characteristics. On the one hand, all potential features are av3fic"é@se in estimated generalization error, which could happen
able, but there is no upper bound on the maximum delay. TH¥ chance alone. We take advantage of the fact that the estima-
makes the extraction of relevant delays a rather bad candidi@§ Presented in (3)—(5) are based on averaging over the data.
for backward elimination schemes. On the other hand, @€ CV and asymptotic estimators can be putin the general ex-
chronological order yields a natural ordering of variables thBf€SS!on

our method uses as a natural selection criterion. The rationale L1
for this scheme is that primary delays will always be tested G= Z e(t) (6)
for inclusion before secondary delays. As a consequence, teD

secondary delays will never be included unless 1) the model » )
is unable to represent the underlying mapping using primaf{fere«(t) = (v(t) - f (‘”(t)Q) for CV ande(#) = ((V +
delays alone, or 2) the secondary delay is also a primary delay)/(V — £))(u(t) — f(«(#)))* for GPE [16]7 For the split-
Sample estimator (33(t) = (y(t) — f(=(t)))?, and the average
5Other estimators lead to similar expressions, and their subsequent usgjas over) instead ofD.

straightforward.
8If y(¢) = g(y(t—1), y(t—2)), 2is aprimary delay but is also a secondary 7Other estimators like FPER or NIC will lead to similar forms with different
delay, through the primary delay 1. expressions for the penalty term Bt
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We wish to test whethe¥,,,, which is the generalization errorsuch as linear models or neural networks, require at least
for the model withr delays (current best in the algorithm), isas many examples as parameters. Statistical rules-of-thumb
significantly different fromG,,,+1, which is the generalization suggest a ratio of at least 10 examples per parameter. For the
error for the model withn + 1 delays (augmented with the can-Hénon map example below (Section IV-A) and a linear model,
didate delay), using the residualg(t) ande,,1(¢) and their the maximum possible delay becomes 500 (data points) minus
average@m and ém+1, which are unbiased estimators@f,, six (parameters in the candidate model), ik&,,. = 494 (and
andG,,, 41, respectively. Assuming that the difference betweet),.. = 440 if one requires 10 data per parameter).
the residuals,,, () ande,,,1(¢) is approximately normally dis- On some problems, and typically when modeling a physical
tributed and using the fact that all residuals are calculated on gystem, it may make sense to introduce stronger constraints to
same data, we assess the significance of an observed decregfert additional knowledge on the phenomenon or require-
in generalization error by using a one-tailed paitgdst [20] ments on the model. In the fMRI experiments presented below
between the residuals. Note that by construction, the candidé®ection V), the resulting filter tentatively models the haemo-
model has an additional delay, meaning that fewer input—outgythamic response to neuronal activation. As the experiment is
pairs(x(t), y(t)) can be formed. In order to apply the pairegherformed as a series of consecutive runs and we are interested
t-test, we will discard the additional data points used by the the response to a typical activation pattern, it is sensible to
smaller model. This waste of a couple of examples is countdimit the delay extraction to one run, i.e., 48 delays in that case.
balanced by the superior power of the paitetést, compared Because the selection criterion is independent of the stop cri-
with the nonpaired version. terion, the influence of the latter is in how conservative the re-

The choice of thet-test is typical for assessing the sigsulting model will be. Any criterion that stops the algorithm ear-
nificance of a difference in means when we are willing téer will necessarily yield a model with fewer (or as many) de-
make a normal assumption about the individual differencésys selected, i.e., it will be more conservative. It is, thus, fair to
(em(t) — em41(t)). An efficient nonparametric alternative issay that the maximum delay gives the least conservative model
the Wilcoxon matched-pairs signed-ranks test [21], which hésverything being otherwise equal). Adding stronger (e.g., phys-
an asymptotic relative efficiency (compared with theest) of ical) constraints on the maximum delay will potentially trade a
0.95 in the normal case. This means that the price for relaxingpre conservative model for an increase in interpretability. Note
some of the parametric assumptions intkest is that it needs finally that due to the decreasing degrees of freedom when less
asymptotically only 5% more data to assess a given differengata are available, the last included delay is usually (in the ex-
with the same significance. amples we have processed) much smaller than.

As in standard iterative subset selection, the significance level
« has an influence on the result. When- 0, no delays are se-
lected. However, contrary to the standard case; 1 does not
necessarily select all delays. This is because the estimatoréefH€non Map
generalization take the increase in model complexity into ac-| et us first consider a time series generated by the
count and do not always decrease for larger models (this is ajg€ll-known Hénon map [25]
observed with, e.g., Mallow's’, [22]). Note that it has been
reported that the traditional choice af = 0.05 (the 5% sig-
nificance level) tends to be overly conservative. In agreement

with standard practice in subset selection [23], we will choo%e apply several methods on a dataset containing 500 points.

0.15 < o < 0.25, arange in which experimental results S€eRy independent set of 10 000 elements is sampled from (7) to

to t:ty_e stablet.) F!nalli, 32 atdd't'(iﬂal Ie?/el of gen%rslllzat;n es%’ssess the resulting generalization abilities. The noisy map, with
mation can be invoked to tune the valuecofe.g., in [24]), additive Gaussian noise&z{ = 0.1) is also investigated. We

but the overall process becomes cumbersome and has not bceo%ider two models:
pursued here.

IV. TIME SERIES PREDICTION

y(t) =1 — 1.4(y(t — 1))? + 0.3y(t — 2). 7

* linear model (obviously a bad choice to model the non-
C. Stop Condition linear Hénon map) using FPE [15] as an estimator of gen-

- . . . eralization error;
The stop condition is motivated by practical or by

problem-specific considerations. As mentioned above, models l;\(?rfnel smoothgr [26]’_ [27] using theave-one-ouf.e.,

: : . i : . -fold) CV estimator;
with larger delays in the input will have less input—output pairs .
available; for a sequence df measurements and inputs with2"d four delay selection methods
maximum delayd,,, (1), at most(Z’ — d,,,) training examples 1) theé-test [5], estimating the embedding dimension;
can be formed. This means that with increasing delays, 1)2) the ERD method (Section lll);
the estimation becomes more difficult (less data for more 3) a“divine guidance” or large validation set (LVS) method;
parameters), and 2) the degrees of freedom in the statistical tes#) the traditionalF-inclusion scheme.
decreases, such that the difference in estimated generalizalite “divine guidance” method selects delays on the basis of a
error must be larger in order to become significant. THarge independent dataset providing a reliable estimator of gen-
available data provides a natural upper bound for the maximwaralization. This method is, of course, impractical on real data
possible delay; the selection is stopped when the data becoraed is used in order to check the behavior of the estimators used
insufficient for proper estimation. Most parametric modelsn ERD.
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Output distance for close inputs

(1 delay)

TABLE |
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0.8 ' ' T DELAYS SELECTED ON THEHENON MAP DATASET BY FOUR METHODS LARGE
VALIDATION SET (LVS), EXTRACTION OF THE RELEVANT DELAYS (ERD),
0.7 - £ r=1% F-INCLUSION, AND 6-TEST
i,

0.6r A Hénon map: No noise Additive noise
805t - e Linear | Kernel | Linear Kernel
Q0. *
3 LVS 17 | 12 | 17 1-3
S04
32 ERD 136 1-2 1,34 1-3
5
503 F-inclusion | 1-6 1-2 | 1-6,10 | 1-8,11-13,

0.2 16,17,19,20

é-test 1-2 1-2
0.1
Aemults on the Henon map

2

Hamal (no roks)
¥aemal (noisy)
Lingar (No npss|

0.5+ . NG
Lingar (noigy)

. LYS ERD F=inchussion

Fig. 3. Results on the Hénon map for both models and both noise conditions
with four selection schemes: Large validation set (LVS), extraction of the
relevant delays (ERD) -inclusion, and’-test.

Fig. 1. Output distance versus input when input contains the first dele
Each point represents a pair of data, and only points with the 1% small
input distances have been included. Many close inputs lead to distant outp
indicating an insufficient input space.
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close outputs. Therefore, there is no continuous mapping from
z(t) = y(t—1) toy(t). On the other hand, with the first two de-
lays (Fig. 2), all pairs with close inputs also have close outputs.
Fig. 2. Output distance versus input when input contains the first two delahis suggests that a continuous mapping between the first two
_Each pqint represents a pair _of data, and only the pqints with_the 1% smallgg|ays and the time series value can be implemented. Accord-
input distances have been included. The output distance is always small .
indicating a sufficient input space. ingly, thed-test selects the first two delays from the dataset [5].
For noise-free data and the kernel smoother model, all other se-
lection methods also select these two delays and are able to im-
plement the Hénon map perfectly from the 500 available obser-
R (f) = Rong1 () vations. In the remaining situations, they always select at least
= <NRm+1(f)/(N o — 1)> > Iy one additional delay, depending on the model-noise combina-
tion (see Table ).
whereR,,(f) andR,,+1(f) are the empirical risks, or training  All resulting models are tested on the large noise-free test
errors, for the models with: delays andn + 1 delays (respec- set in order to check their generalization abilities (Fig. 3). Pre-
tively), calculated on the same data, dngis the'-distribution  dictably, the kernel smoother provides much better performance
threshold for arv confidence level 1 andV —m—1) degrees of than the linear model. Note that thetest outperforms a statis-
freedom. A candidate delay is therefore included when it yieltisal method £-inclusion) only once: for the “kernet noisy
a significant improvement inbservederformance. data” combination. This is due to its emphasis on extracting the
Figs. 1 and 2 show a plot proposed by Aleksic [28] to inveprimary delays; as efficient as thieest may be at extracting the
tigate the embedding dimension. All points correspond to a péirue” delays, it suffers from not addressing the relevant goal in
of data(#1, ¢2) with ||z(¢1) — =z(¢2)|| small and give the output our context, namely, prediction of future time series values. The
distancel|y(t1) — y(t2)|| againsty(t; — 1). Clearly, with only relative edge of thé-test for that particular model-noise combi-
one delay in the input (Fig. 1), close inputs do not guaranteation is rather due to the inferior performanceféinclusion.

In F-inclusion, a candidate delay is included iff

(8)
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Fraser river time series TABLE I
' i DELAYS EXTRACTED, FOR EACH MODEL, BY BOTH METHODS THE PROPOSED
7000 EXTRACTION OF THE RELEVANT DELAYS (ERD) AND THE 6-TEST
6000+ Fraser river Linear Kernel | Neural net
é 5000 ERD 1,2,4-7,10,11, | 1,24,7,11,13 | 1,2,4,7,11,23
; 23,26,35,48
34000+
= d-test 1,24,7,8,11
$ 3000,
= H S O e 5 I 1 O S R R
2000+ Resuits on the Fraser river data
0.07 . . . . . : —
1000} o
0 - . l 0.065¢ ]
Jan. 1925  Jan. 1930 Jahrllu. 1 tths Jan. 1940  Jan. 1945 A NN '
n
° 0.06- . @ Linear

Fig.4. Mean monthly flow of the Fraser river recorded in Hope, B.C., Canad

1 Kernel
B Kernel

This suggests thdt-inclusion is ill-suited to flexible nonlinear = 0-05¢ A NN

models. This is because (8) does not penalize overfitting; on t

contrary, whenRZ(f) becomes overly small, thE statistic will 0.045¢

be artificially increased, leading to an exceedingly optimisti }

selection (15 delays, instead of two or three). Notice the clo  0.04r .~ Empty marks: Delta—test

agreement between LVS and ERD, suggesting that the estir = Full marks:  ERD

tors of generalization error (FPE and CV) perform well. ERI : YRR Y TRy Y Y T Y TR YT

tends to be more parsimonious, yielding five and three dela ’ ) " Training error ’ ’

for the linear model, instead of seven and seven, for similar per-

formance. Finally, on noisy data, even with the flexible kern&ig. 5. Result for three different models of both extraction schemes: the
i posed extraction of the relevant delays (ERD, full marks) andttest

sm_oqther, ERD and LVS select an addItIOI.‘lal, Sec‘?”dar}’ del pty marks). The three models are linear, kernel smoother, and nonlinear

This is because we try to learn the underlying relationship frofaural network (NN).

a limited amount of data. This additional delay, although not the-

oretically necessary, yields a 30% improvementin performan%gtest selects six delays, whereas the ERD extracts six to 12 de-

lays, depending on the model (see Table II). Not surprisingly,

) ~_ the more flexible models, i.e., kernel smoother and neural net-
Let us now turn our attention to a real dataset, which is afjprk, use fewer delays, whereas the linear model uses twice as

alyzed in [29] and publicly available. The data records Me3Rany.

monthly measurements of the flow of the Fraser river in Hope, Notice that although thé-test and ERD extract the same

B.C., Canada, from March 1913 to December 1990. It contaiR§mper of delays for two out of three models, these delays do

946 values with a rough periodicity and maxima every 11-1&y coincide. Typically, ERD probes further into the past: across

months (see Fig. 4). The dataset is splitin half: The first 473 oRgq periods for the neural network and even four for the linear

servations are used for model estimation and delay extractigqydel. This is an interesting artifact of thaest method; as the

and the last 473 are used for testing the generalization abilitigse of the input space grows larger, fewer and fewer pairs of

of the resulting model. In the following experiments, the dafg&ts have close inputs. As a result, the variance of the esti-
have been log-transformed and centered. The selection methogeq probabilities increases, and the test is unable to reliably

using the large validation set is, of course, not sensible in thigject additional delays.
context, as no extra data is available. Accordingly, we will con- The generalization abilities of the resulting models are as-
sider only two selection schemes (theest and the proposedgessed using the test set. On Fig. 5, points far above the dotted

® Linear

B. Fraser River

ERD) applied to three models: line indicate probable overfitting. Not surprisingly, the kernel
* linear model; smoother overfits the data quite severely. This model is known to

* kernel smoother; suffer acutely from the curse of dimensionality and has difficul-

+ nonlinear neural network model (multilayer perceptroties handling high-dimensional inputs when only one smoothing
with one hidden layer). parameter is used [30]. Surprisingly, the best overall perfor-

The parameters of the linear and neural network models are estance is achieved by the combination of ERD and linear model.
mated by minimizing the mean squared error on the transform€le flexible neural network model does marginally worse and
data. The estimators of generalization error are the FPE [15] asebms to overfit slightly. Note that with a good training algo-
GPE [16], respectively, for these models and the leave-one-oitthm, the neural network should be able to outperform the linear
estimator, as above, for the kernel smoother. The nonparametniedel using the same inputéiowever, the ERD scheme has
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Fig. 6. Right: Brain map indicating the 21 activated voxels (black) analyzed E Lo
with ERD. The background is an anatomical reference obtained from the g zaa po# B
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predictably extracted different sets of delays for both models.

In particular, the linear model uses three additional long-terfip. 7. Top: Delays extracted for each voxel (grey) and effective filter delay
delays (26 35 and 48) (solid black). Bottom: Test error for the seven-parameter FIR filter versus the

. . . . D filter. Crosses indicate voxels for which the effective delay is less than 10
Again, these results illustrate the limitations of the physicakconds: circles indicate voxels with longer delays (more than 15 s). One voxel

approach when prediction performance is the target. The statigh very large test error in both cases has been discarded to improve clarity.
tical approach based on model performance gathers more infor-
mation in the past and yields an improvement in performan

ffodels the observed fMRI signalt I ible.
that is, here, most impressive for the linear model. naels e observe signal?) as well as possible. The

extension of the ERD algorithm presented in Section Il is
straightforward. In step 2 of the algorithm, the delays added
to the inputs should be the delays of the stimulus reference
The ERD scheme can be extended to some simple systefn) rather than of the time seriggt). The modeling and
identification problems, such as the identification of linear @@eneralization estimations are independent of the particular
nonlinear finite input response (FIR) filters [31]. The data is achoice of inputs, and the rest of the algorithm is not affected
quired during a functional magnetic resonance imaging (fMRDy this extension.
experiment. While the subject lies in the scanner, he is asked tdBased on the cross-correlation between the time segfigs
either lie motionless (rest) or perform a simple motor task (aand the reference signal(t), we isolate 20 voxels that display
tivation), namely, left-handed finger-to-thumb opposition. Twa significant activation (see Fig. 6) distributed in two groups that
64 x 64 slices of whole brain echo-planar fMRI images are acover the primary motor area and the supplementary motor area.
quired every 2.5 s. The dimension of each voxélisx 3.1 x 8 As expected, the left-handed opposition produces a contralateral
mm. Nine runs of 48 images are acquired in the following sectivation in the right hemisphere. The ERD algorithm is run on
guence: 12 images (30 s) of rest, 24 images (60 s) during aach voxel using five out of the nine runs, corresponding to 240
tivation, and 12 images of rest again. The complete time seridata points, for delay extraction and modeling, whereas the re-
consists of 432 measurements (18 min) in each voxel. In the fakaining four runs (192 points) are used to test the generaliza-
lowing experiments, we focus on thé x 49 area containing the tion abilities of the resulting model. The stop condition is set by
brain and only one slice. limiting the extraction to 48 delays, i.e., one run. In agreement
The fMRI signal measures the haemodynamic responséh standard statistical practice in subset selection [23], the sig-
to focal neuronal activation. It is widely believed that thaificance level of the pairedtest is set to 20%. The selected
response in the brain can be characterized as a convolutiordefays range from 1-45 (see the top of Fig. 7). The “effective
the reference stimulus signal representing the activation wittdalay” of each filter is estimated by computing the average of
linear filter. In our experiment, the reference stimuls) is a the delay indiced;, weighted by the absolute filter coefficients
sguare wave with positive values for the scans acquired whijjg|. As a result, the activated voxels can be roughly divided in
the subject was performing the motor task and negative valle® categories: 14 out of the 20 filters have an average delay
during rest (Fig. 6). Previous approaches tried to charactertzetween 3 and 10 s, which is roughly within the accepted range
the haemodynamic response using several convolution filtee:5-10 s. The remaining voxels have average delays above 15
Poisson [32], Gamma [33], or FIR filter with a fixed lengths, suggesting that the extracted delays do not make sense from a
[34]. We will try to extend the latter to general FIR filters bybiological point of view, although they efficiently model the re-
extracting the delays that yield the best modeling performandationship between the reference sigh@) and the fMRIy(¢).
In other words, we are looking for the set of delaks - - - d,, The performance of the resulting filters is compared with a

V. SYSTEM IDENTIFICATION

such that FIR filter of fixed size. As the average haemodynamic delay has
m been observed between 5-10 s [35], i.e., two to four images, we

it = Z Bih(t — d;) (9) Will use an FIR filter with seven delays as reference. In Fig.
P 7, points above the dotted diagonal mean higher test error, i.e.,
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Viceibla with Sheork-berm dilaye statistical selection methods by focusing on the relevant per-

Averngs MAI ime seres formance criterion, namely, the generalization error. An inter-
; : : esting side effect of the estimators of generalization error is that
they naturally take into account the limited size of the available
dataset. A similar effect is known from the AIC [36] and BIC
[37] information criteria: BIC selects the asymptotically optimal
model size, which AIC tends to overestimate, while effectively
minimizing the average generalization error for finite datasets.

5= 5 B

Hvad Be MeanOnGn
=

]

0 o am ann o Similarly, ERD selects additional delays that help prediction. In
= image number (ma| the Hénon map example, the selectiondof& 3 yields better
Womeks with long-term delays performance according to both the large validation set method
———T and the independent test set. It should also be noted that it is the
' ' —| minimumgeneralization, rather than its value, that matters, such
?'I'l that the method could very well accommodate an estimator with

a consistent bias.

The ERD method is essentially a forward selection method
(see Section 1I-B). It is straightforward to extend it to backward
elimination or stepwise regression using the same evaluation

— - — criterion. As we argued in Section Ill, backward elimination is
] 100 200 300 400 . : : ) .
image number (hme) ill suited to temporal modeling. However, stepwise regression
can be applied by alternating forward and backward steps.
Fig. 8. Voxels with short-term delays (top) between 3-10 s and voxeWith many models, this can be addressed during the model
with long-term delays (bottom), of more than 15 seconds with no biologicalstimation, e.g., using an adaptive metric approach for kernel

explanation. The brain maps on the left show the location of the analyz ; ; ;
voxels (black dots); the right plot shows the average fMRI signal in the§§100thlng_ [30]’ C_;aUSSIan processes [38]’ or pruning and
voxels (th|ck) and the reference S|gna| (thm) regu|al’|2at|0n fOI’ |Ineal’ mOde|S or neural netWOrkS [19], [39],

[40]. These methods automatically discard irrelevant variables

worse modeling, for the fixed-length filter. Most voxels benefi! the i”p‘%t vector. An a_ldditional interesting prospect for future
from using extracted delays, whereas a few display a small &S€arch is the extension of the ERD scheme to more general
crease in performance. Overall, the ERD filters yield better §¥Stem identification architecture, e.g., auto-regressive filter
comparable performance while using far fewer parameters (/Bh €xogenous input (ARX). Note that, in that case, the filter
on average). Finally, Fig. 8 displays the location and averaljut consists of the system outpy(tt) and the control signal
fMRI activation signal of both groups of voxels. The voxels witH’ £), an_d the precise ordering of the candidate inputs has to be
short-term delays (top) and long-term delays (bottom) seemdgtermined. i L
have slightly different patterns of activation, especially in the AS @ conclusion, we have presented a generalization-based
last four runs. However, the small sample sizes (14 and 6, faéthod for the extraction of the relevant delays in temporal
spectively) makes a strict comparison difficult. _modgl_mg_wnh a_focus on _tlme series pred_lptlon and system
identification. This method is related to traditional forward se-
lection methods and is therefore well founded. It is easy to im-
plement and requires little time in addition to model estimation.

The physical approach adopted by tiest investigates the Furthermore, it accommodates efficiently the tradeoff between
“true” delays with a physical meaning, i.e., the primary delayaumber of selected delays (model size) and model flexibility
As a consequence, the method displays the following saligapproximation error). The method provides interesting results
features. on a number of experiments performed in different contexts.

1) Itis data intensive.

2) It extracts one set of delays independently of the model.

3) The selected delays have a natural physical interpretation.
On the other hand, the statistical approach of the ERP-an- The Fraser river dataset (Section IV-B) is publicly available
clusion focuses on model performance. It selects the delays ¢ov statlib: http://lib.stat.cmu.edu/datasets/. The fMRI dataset
which the model yields the best estimated generalization er(&ection V) was acquired by R. Savoy at Massachusetts General
by directly optimizing a relevant performance criterion. The rédospital, Boston. The author would like to thank P. Gallinari,
sulting delays might not, however, be easily interpreted. This Larsen, and the learning group at IMM, DTU, for valuable
is exemplified by the fMRI example (see Section V), where discussions on previous versions of this work.
quarter of the resulting filters have no apparent biological justi-
fication. A second difference is that the variables selected by the
statistical methods are model dependent. Note, however, that the
overhead is usually limited, as the computational requirementg!! E-J'_Eb‘ii‘é’;‘;’:{“ggeti;‘:eig”t{g'G'irocesses3AG“idEd TouPrinceton,
depend on the model estimation; for example, the use of ERD[2] C. .M. Bishop, Neljral Ne’tworks. for Pattern RecognitionOxford,
on linear models is extremely fast. ERD improves on traditional =~ U.K.: Clarendon, 1995.
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