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A Class of Sudan-Decodable Codes

R. Refslund Nielsen, Student Member, IEEE

Abstract—In this correspondence, Sudan’s algorithm is modified into an
efficient method to list-decode a class of codes which can be seen as a gener-
alization of Reed–Solomon codes. The algorithm is specialized into a very
efficient method for unique decoding. The code construction can be gener-
alized based on algebraic-geometry codes and the decoding algorithms are
generalized accordingly. Comparisons with Reed–Solomon and Hermitian
codes are made.

Index Terms—Algebraic-geometry codes, decoding, Reed–Solomon
codes, Sudan’s algorithm.

I. INTRODUCTION

Reed–Solomon codes are often used in practice due to the fact
that they can be decoded efficiently and have the optimal minimum
distance for the lengths and dimensions where a Reed–Solomon code
exists. During the last decades much effort has been put into the
construction of codes with lengths and dimensions not obtainable
for Reed–Solomon codes while maintaining a good minimum dis-
tance. The study of algebraic-geometry (AG) codes has lead to very
promising results.

However, the minimum distance is not the only measure of the us-
ability of a code. For practical purposes it is important that there exists
an efficient decoding method to make use of the error-correcting capa-
bility, and it is important that error patterns which are likely to occur in
the actual application are usually corrected by the decoder.

For example, consider an(n; k) Reed–Solomon code over2 .
2 can be seen as a vector space of dimensionm over 2, so the

code can be seen as an(mn;mk) code over 2. The minimum distance
of the Reed–Solomon code is optimal over2 , but the minimum dis-
tance of the binary code could be considerably less than for other codes.
This means that the Reed–Solomon codes might not correct as many
random binary errors as for example a Bose–Chaudhuri–Hocquenghem
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(BCH) code. A reason why Reed–Solomon codes are still widely used
even though the underlying communication channel is binary is that er-
rors are often likely to happen in bursts, so a bit has higher probability
of being erroneous if the previous bit was erroneous as well, and a code
over a larger alphabet handles this situation better than a binary code.

In [1] a series of new distance functions on vectors over finite sets
is introduced and some codes which are good with respect to this dis-
tance are constructed. However, decoding methods are not discussed.
This correspondence provides efficient methods for unique decoding
and for list decoding of the codes presented in [1] which are based on
Reed–Solomon and algebraic-geometry codes.

This correspondence is organized as follows: Section II describes
the construction based on Reed–Solomon codes and Section III in-
troduces the so-calledr-distance. In Section IV a list decoding algo-
rithm based on Sudan’s algorithm is presented and specialized into a
simple algorithm for unique decoding. In Section V comparisons to
Reed–Solomon codes are discussed and in Section VI it is shown how
the codes can be encoded systematically. Section VII defines some no-
tation on algebraic function fields and generalizes the code construction
using this notation. In Section VIII the decoding algorithms are gener-
alized and Section IX is the conclusion.

II. CONSTRUCTION

Let q denote a finite field withq elements and suppose that

P := fP1; � � � ; Pn g � q; with jP j = n
0

: (1)

Consider a polynomialf 2 q[x] with f = deg(f)
j=0 fjx

j . Given
somePi 2 P we can write

f =

deg(f)

j=0

fj;i(x� Pi)
j

and it is seen by direct calculation that

fj;i =

deg(f)

j =j

fj P
j �j
i

j0

j
: (2)

It is useful to observe that

(x� Pi)
j j f , 8j0 < j(fj ;i = 0): (3)

Definition 1: Let r be a positive integer and let0 < k � rn0. Then
define the following error-correcting code:

C(P; r; k) = ff(P; r) j deg (f) < kg

with P being as in (1) and

f(P; r)

:= (f0;1; � � � ; fr�1;1; f0;2; � � � ; fr�1;2; � � � ; f0;n ; � � � ; fr�1;n ):

Notice that forr = 1 a Reed–Solomon code is obtained.
Furthermore, it is useful to notice that iff(P; r) = (c0; � � � ; cn�1)

then for anyi andj with 1 � i � n0 and0 � j < r we have

fj;i = c(i�1)r+j :

Theorem 2 ([1], Theorem 6) :C(P; r; k) is an q-linear code with
lengthn := rn0 and dimensionk.

Proof: The block length isn by construction and that the code
is linear follows from the fact that(f + �g)j;i = fj;i + �gj;i for
f; g 2 q[x] and� 2 q. To prove that the dimension isk consider
a polynomialf 2 q[x]nf0g with deg (f) < k. Suppose thatf(P; r)
is the zero vector. This implies thatn

i=1(x� Pi)
r dividesf , but this
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is a polynomial of degreern0, which contradicts the assumption thatf

is nonzero and of degree less thank � rn0.

Notice that the polynomial1 gives a word of weightn0 so the min-
imum distance is at mostn0 for all k. So fork < (r�1)n0,C(P; r; k)
is not a good error-correcting code in the traditional sense, however,
as will be seen later, that does not prevent it from performing well in
certain situations.

Example 3: Let! be a primitive element of 4 with !2+!+1 = 0
and letP := f0; 1; !; !2g. ThenC(P; 2; 4) is an(8; 4) code over 4.
Suppose that

f = 1 + !x+ !x
2 + x

3

= !
2(x� 1) + !

2(x� 1)2 + (x� 1)3

= ! + (x� !) + (x� !)3

= ! + (x� !
2)2 + (x� !

2)3

then

f(P; 2) = (1; !; 0; !2;!; 1;!; 0):

III. r-DISTANCE

As mentioned in Section II, the minimum distance of the code
C(P; r; k) is normally bad with respect to the usual Hamming
distance. In this section, a distance which will be calledr-distance is
introduced and the properties ofC(P; r; k) with respect tor-distance
are analyzed. Ther-distance was first mentioned in [1].

In C(P; r; k) codewords consist ofn0 chunks ofr field elements
where each chunk corresponds to an element inP . This structure is
reflected in the following definition ofr-distance.

Definition 4: Let r be a positive integer and letu; v 2 n
q with

n = rn0 for some integern0. For i 2 f1; � � � ; n0g define ther-simi-
larity, sssr(u; v; i), and ther-distance,dddr(u; v; i), betweenu andv with
respect to theith chunk as follows:

sssr(u; v; i) := maxfj 2 f0; � � � ; rg ju(i�1)r+j = v(i�1)r+j ;

for all j0 with 0 � j
0

< jg

dddr(u; v; i) := r � sssr(u; v; i):

Furthermore, define ther-similarity, sssr(u; v), and ther-distance,
dddr(u; v), betweenu andv

sssr(u; v) :=

n

i=1

sssr(u; v; i)

dddr(u; v) :=

n

i=1

dddr(u; v; i)

Let f 2 q[x] andu 2 Fn
q . The following short notations will then

be used:

sssr(f; u; i) := sssr(f(P; r); u; i)

sssr(f; u) := sssr(f(P; r); u)

dddr(f; u; i) := dddr(f(P; r); u; i)

dddr(f; u) := dddr(f(P; r); u): (4)

For example, for allf 2 Fq[x] we havedddr(f; f(P; r)) = 0 and

dddr(f; f(P; r) + (0; 1; 0; � � � ; 0)) = r � 1; if r > 1:

Furthermore,dddr(f;w) = n�sssr(f;w). Forr = 1 the usual Hamming
distance is obtained, soddd1 = ddd.

Theorem 5: dddr is a distance function onn
q .

Proof: Let u; v; w 2 n
q . dddr(u; v)� 0 and it is straightforward

to see thatdddr(u; v) = 0 , u = v and thatdddr(u; v) = dddr(v; u).
Furthermore, notice that fori 2 f1; � � � ; n0g, if sssr(u;w; i) = r then
dddr(u;w; i) = 0, so in this case it is trivial that

dddr(u;w; i) � dddr(u; v; i) + dddr(v;w; i):

If j := sssr(u;w; i) < r thenu(i�1)r+j 6= w(i�1)r+j sov(i�1)r+j 6=
u(i�1)r+j or v(i�1)r+j 6= w(i�1)r+j and, therefore,sssr(u; v; i) � j

or sssr(v;w; i) � j. This implies that

dddr(u; v; i) � dddr(u;w; i)

or

dddr(v;w; i) � dddr(u;w; i)

for all i, so

dddr(u;w) � dddr(u; v) + dddr(v;w)

The following theorem (a special case of [1, Theorem 6]) gives the
minimumr-distance ofC(P; r; k).

Theorem 6: If u; v 2 C(P; r; k) with u 6= v thendddr(u; v) �
n� k + 1 anddddr(w;0) = n � k + 1 for somew 2 C(P; r; k).

Proof: Let f; g 2 q[x] be polynomials with degrees less than
k so thatu = f(P; r) andv = g(P; r). Notice that for eachi 2
f1; � � � ; n0g andj = 0; � � � ; r � 1

(f � g)j;i = fj;i � gj;i = u(i�1)r+j � v(i�1)r+j

so(f � g)j;i = 0 if j < sssr(u; v; i) and, therefore, (3) gives

(x� Pi)
sss (u;v;i) j (f � g) (5)

which means that a polynomial of degreesssr(u; v) dividesf � g. Sup-
pose thatdddr(u; v) � n � k. Thensssr(u; v) � k implying thatf = g

and consequentlyu = v which is false by assumption sodddr(u; v) �
n � k + 1.

Let h 2 q[x]nf0g be an arbitrary nonzero polynomial of degree at
mostk�1. For anyi 2 f1; � � � ; n0g andj = 0; � � � ; r�1 the equation
hj;i = 0 is a homogeneous linear equation in thek coefficients ofh
by (2). So if j1; � � � ; jn 2 f0; � � � ; rg with n

i=1 ji = k � 1 then
h can be constructed so thathj ;i = 0 for all i 2 f1; � � � ; n0g and
j0i < ji. By Definition 4,dddr(h; 0) � n � k + 1 and by the above
dddr(h; 0) = n� k + 1.

It can be shown (see [1]) that the minimumr-distance in the above
theorem is the greatest possible given the code length and number of
codewords.

IV. DECODING

In [2], V. Guruswami and M. Sudan presented an algorithm to decode
Reed–Solomon codes beyond half the minimum distance by allowing
the output to be a (small) list of codewords closest to the received word.
In this section, the method in [2] will be generalized to a list decoding
method forC(P; r; k). However, first some notation is needed.

Let

M := fx�y� 2 q[x; y] j (�; �) 2
2g

be the set of monomials inq[x; y]. A monomial orderingis a binary
relation,<m, onM , which satisfies the following:

• <m is a total ordering onM ,

• 8f; g; h 2 M(f <m g ) fh <m gh),

• <m is a well-ordering.
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One monomial ordering is thelexicographic order. The lexico-
graphic order withy < x is defined by

x
�
y
�
<l x

�
y
� , � < �

0 _ (� = �
0 ^ � < �

0):

The lexicographic order withx < y is defined by exchangingx andy
in the above definition.

Let

f(x; y) 2 q[x; y]nf0g

with f =
�;�

f
(�)
� x�y� . Then the(a; b)-weighted degreeof f(x; y)

is given by

deg(a;b)(f) := max �a + �b j f (�)� 6= 0

wherea 2 is called the weight ofx andb 2 is called the weight
of y. For any choice ofa andb we may definedeg(a;b)(0) := �1. In
general,deg(a;b)(f) is called the weight off .

Given a weighted degreedeg(a;b) and a lexicographic order<l, a
correspondingweighted degree lexicographic ordercan be defined on
M by

f <w g , deg(a;b)(f) < deg(a;b)(g)_

(deg(a;b)(f) = deg(a;b)(g) ^ f <l g)

for all f; g 2 M .
The following lemma describes the weight of the monomials.

Lemma 7: Consider the polynomial ringq[x; y] with the weighted
degreedeg(1;k�1) for some integerk > 1 and let the monomials be
ordered by a corresponding<w order. Suppose that

m0 <w m1 <w m2 <w � � �

is an increasing list of all the monomials inFq[x; y]. Then

deg(1;k�1)(mj) =
j

b
+

(b� 1)(k� 1)

2
(6)

whereb satisfies

b

2
�

j

k � 1
<

b+ 1

2
:

Proof: Group the monomials into the disjoint sets,M1;M2; � � � ;
where

Mc = fmj j (c� 1)(k� 1) � deg(1;k�1)(mj ) < c(k � 1)g:

ThenjMcj = c(k � 1) so

jM1j + jM2j + � � �+ jMc�1j =
c

2
(k � 1):

Since

b

2
(k � 1) � j <

b+ 1

2
(k � 1)

we havemj 2Mb. The smallest monomial inMb has weighted degree
(b� 1)(k � 1) and for eacha with (b� 1)(k � 1) � a < b(k � 1)
there are exactlyb monomials with weighted degreea in Mb. If the
monomials ofMb are listed increasingly with respect to<w thenmj

is monomial numberj � ( b
2
)(k � 1) so the weighted degree ofmj

must be

deg(1;k�1)(mj) = (b� 1)(k� 1) +
j � b

2
(k � 1)

b

=
j

b
+

(b� 1)(k� 1)

2

The following definition turns out to be useful:

Definition 8: Letw = (w0; � � � ; wn�1) 2
n
q with n = rn0. Then

define

w
(i)(x) :=

r�1

j=0

w(i�1)r+j(x� Pi)
j
:

Notice that for anyf 2 q[x]

(x� Pi)
sss (f;w;i) j (f � w

(i)(x)): (7)

Furthermore, if

Q(x; y) =

deg (Q)

�=0

Q
(�)

y
�

thenQ can be written as follows:

Q(x; y) =

deg (Q)

�=0

Q
(�;i)(y � w

(i)(x))�; Q
(�;i) 2 q[x]:

Algorithm 9: As input take the codeC(P; r; k), a received wordw,
and a parameters � 1.

Let

`s :=
n

s+1
2

bs
+

(bs � 1)(k� 1)

2

wherebs satisfies

bs

2
�

n
s+1
2

k � 1
<

bs + 1

2
:

DetermineQ(x; y) 2 q[x; y]nf0g so that

deg(1;k�1)(Q) � `s

and, furthermore, fori 2 f1; � � � ; n0g; � 2 f0; � � � ; s � 1g, andj 2
f0; � � � ; r(s � �) � 1g

Q
(�;i)
j;i = 0: (8)

Next, let

�s := n�
`s

s
� 1

and find all factors ofQ of the form y � f with deg (f) < k. If
dddr(f;w) � �s then includef in the output list.

The claim is now that the output list contains all codewordsf(P; r)
inC(P; r; k), wheredddr(f;w) � �s. To prove that the algorithm works,
it must be proven that the polynomialQ exists and that it has the right
factors.

Theorem 10:Q(x; y) satisfying the conditions above exists.
Proof: Equation (8) gives

n
0(rs2 � r(0 + 1 + � � �+ s� 1)) = n

s+ 1

2

conditions on the polynomialQ. Each of these conditions is a homoge-
neous linear equation in the coefficients ofQ. By Lemma 7 there are at
leastn( s+12 )+ 1 monomials in q[x; y] with weighted degree at most
`s, so there aren( s+1

2
) + 1 unknown coefficients. It is a well-known

fact from linear algebra that such a system of equations has a nonzero
solution.

Lemma 11: If f 2 q[x] with deg (f) < k then(x�Pi)
ssss (f;w;i)

dividesQ(x; f).
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Proof: Let

R(x) := Q(x; f) =

b �1

�=0

(f � w(i)(x))�Q(�;i)(x):

By (7) we have that

(x� Pi)
�sss (f;w;i) j (f � w(i)(x))�:

For� 2 f0; � � � ; s � 1g (8) ensures that

(x� Pi)
r(s��) jQ(�;i)(x):

Therefore,

(x� Pi)
r(s��)+�sss (f;w;i) j (f � w(i)(x))�Q(�;i)(x):

This proves the lemma since

r(s� �) + �sssr(f;w; i) � sssr(f;w; i)(s� �) + �sssr(f;w; i)

= ssssr(f;w; i):

Theorem 12: If a codewordf(P; r) 2 C(P; r; k) hasdddr(f;w) �
�s then(y � f) jQ.

Proof: By Lemma 11, a polynomial of degreessssr(f;w) divides
Q(x; f), but

dddr(f;w) � n�
`s
s

� 1 ) sssr(f;w) �
`s
s

+ 1

anddeg (Q(x; f)) � `s < ssssr(f;w). SoQ(x; f) = 0 andy � f is,
therefore, a factor ofQ.

The theorem below gives an idea of the size of�s in Algorithm 9
and corresponds to the result of [2]. The proof, which is omitted here,
is similar to [3, Proof of Theorem 3.31].

Theorem 13: If n ands are sufficiently large then

�s
n
� 1�

k

n
:

The following theorem gives an upper bound on the size of the output
list.

Theorem 14: The number of codewords returned by Algorithm 9 is
less thanbs.

Proof: By the proof of Lemma 7, the maximal degree iny ofQ is
bs�1. Therefore,Q can have at mostbs�1 factors of the formy�f ,
so the number of codewords returned by the algorithm is at mostbs�1.

The list decoding algorithm can easily be modified into an efficient
algorithm for unique decoding of the codeC(P; r; k) up to half
the minimum r-distance. This algorithm, which can be seen as a
generalization of the Welch–Berlekamp algorithm for decoding
Reed–Solomon codes (see, for example, [4] or [5]), is described in the
following.

To modify Algorithm 9 into an algorithm for unique decoding, the
parameters is set to1, and instead of calculatingbs as described in the
algorithm,bs is set to the constant value2. Furthermore, theQ-poly-
nomial is not allowed to hold terms of degree greater than1 in y. This
gives the following algorithm.

Algorithm 15: As input take the codeC(P; r; k) and the received
word,w 2 n

q .
LetQ(x; y) = Q(0)(x) + yQ(1)(x) 2 q[x; y]nf0g satisfy that

deg (Q(0)) �
n+ k

2
� 1 and deg (Q(1)) �

n� k

2

and, furthermore, for each1 � i � n0 andj < r

Q
(0)
j;i +

j

j =0

w(i�1)r+j Q
(1)
j�j ;i

= 0: (9)

If there exists a codeword

f(P; r) 2 C(P; r; k)

with dddr(f;w) � b(n � k)=2c thenf = �Q(0)=Q(1).

The proof that this method indeed works as promised will be omitted
here since it is very similar to the proof of Algorithm 9. However, an
example of using the above algorithm is given below.

Example 16: This continues Example 3. Suppose that the codeword

f(P; 2) = (1; !; 0; !2;!; 1;!; 0)

is sent but

w = (1; !2; 0; !2;!; !2;!; 0)

is received. Thenddd2(f;w) = 2 and sinceb8� 4=2c = 2 Algorithm
15 should be able to reconstructf from w.

Solving the system of linear equations in (9) gives the following
polynomialQ:

Q(x; y) = !x+ !x2 + x3 + x5 + (!x+ x2)y

and

!x+ !x2 + x3 + x5

!x+ x2
= x3 + !x+ !x+ 1 = f:

So Algorithm 15 indeed corrects the two errors successfully.

V. COMPARING WITH REED–SOLOMON CODES

q can be seen as anr-dimensional vector space overq. So sup-
pose thatk = rk0 for some integerk0 and consider each chunk ofr
elements in a codeword ofC(P; r; k) as an element in q . The fol-
lowing theorem gives the main parameters of this code:

Theorem 17:C(P; r; rk0) is a code over q of lengthn0, having
qrk codewords, and minimum distancen0 � k0 + 1.

Proof: The code length is given by the construction. The number
of codewords is equal to the number of codewords in the code seen
as a q code, namely,qrk , however, it should be noticed that the
code is not necessarilyq -linear. To find the minimum distance con-
sider two polynomialsf; g 2 q[x], both with degree less thank.
Let (F1; � � � ; Fn ) = f(P; r) with Fi 2 q for all i and, simi-
larly, (G1; � � � ; Gn ) = g(P; r). Suppose thatFi = Gi. Thenf0;i =
g0;i; � � � ; fr�1;i = gr�1;i, so (x � Pi)

r j f � g. This means that if
Fi = Gi for k0 values ofi, then a polynomial of degreek = rk0

dividesf � g, but this implies thatf = g. Therefore, two different
codewords can be equal on at mostk0 � 1 positions, which shows that
the minimum distance is at leastn0 � k0 + 1. Equality holds by the
Singleton bound.

The theorem shows thatC(P; r; rk0) has the same main parameters
as a(n0; k0) Reed–Solomon code overq , but what about the error
correcting capability of the two codes when using Algorithm 15
for unique decoding ofC(P; r; rk0) and some decoder to decode
the Reed–Solomon code up to half the minimum distance? In the
Reed–Solomon code, errors will beq -errors, each one corre-
sponding tor q-errors. However, in the codeC(P; r; rk0), error
correcting starts from the point in the affectedq symbol where
the error actually starts. The effect of this is that some “fractional”
q -errors can be recognized, namely, errors which only affect the last

part of a q symbol. For example, on average, random bit-errors will
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only count as half an q error where a full error must be corrected
by the Reed–Solomon code. Burst errors of length slightly greater
than one q -symbol will on average only count as around3

2
errors

compared to2 errors in the Reed–Solomon code. However, it should
be noted that usuallyn0 � qr , so the Reed–Solomon code considered
here is very short.

Now compare using an(n0; k0) Reed–Solomon code overq with
usingC(P; r; rk0), and suppose thatrk0 information symbols are to
be transmitted.r RS codewords or oneC(P; r; rk0) codeword will
be needed. Lett := b(n0 � k0)=2c and suppose thatrt errors occur.
Which code has the highest probability of correcting the errors? There
are( rn

rt
) error patterns in total, but none of the codes will correct all

of them if r > 1.
The RS code will require the errors to be located so that exactlyt

errors occur in each chunk ofn0 elements. The number of error patterns
with that property is(n

t
)r (in each chunkt errors can occur in(n

t
)

different patterns).
TheC(P; r; rk0) code will require the errors to happen so that only

the last part of each chunk ofr elements is affected. To see in how
many ways this can happen, suppose thatrt errors are added one by
one, each time one of then0 chunks is selected to receive the error and
the error will have to be located at the last correct position in the chunk.
The number of ways to do this is at most(n +rt�1

rt
) and equality holds

only if t � 1 because if a chunk receivesr errors, it will not be able to
contain more errors. Experiments indicate that(n +rt�1

rt
) is normally

smaller than(n
t
)r and when that is the case, usingr RS codewords

gives a higher probability of decodingrt randomly positioned errors
than using aC(P; r; rk0) codeword.

However, it should be emphasized that the error-correcting profile is
significantly different for the two codes. Consider an example where
n0 = 4, k0 = 2, andr = 2 (andq � 4). So four q symbols of in-
formation can either be sent as two codewords of a(4; 2) RS code or
as one codeword ofC(P; 2; 4). Let the two RS codewords be denoted
by a = (a0; � � � ; a3) andb = (b0; � � � ; b3), and theC(P; 2; 4) code-
word be denoted byc = (c0; � � � ; c7). In the codewordc it is possible
to select four elements (c1; c3; c5, andc7) with the property that any
pattern of two errors happening among these four symbols can be cor-
rected. It is not possible to select four elements ofa andb which has
this property, because at least two of the elements will always be from
the same codeword. On the other hand, ifa andb are interleaved so
that (a0; b0; a1; b1; a2; b2; a3; b3) is sent then two consecutive errors
will always be corrected. It is not possible to arrange the elements of
the wordc in such a way that the same property is achieved, because if
an error happens incj with j 2 f0; 2; 4; 6g then a second error is only
guaranteed to be corrected if it occurs incj+1. Therefore, if an error
happens at one of these symbols, then a second error in the previous or
in the following symbol will give an error pattern which is not guaran-
teed to be corrected.

In the above, all error patterns were assumed to occur with a proba-
bility only depending on the weight of the error pattern. However, this
may not always be the case. Consider the following example.

Example 18: Let q = f!0; � � � ; !q�1g and suppose that a vector
in rn

q is transmitted asn0 integers where a chunk(!j ; � � � ; !j )
is transmitted as

c :=

r�1

`=0

j`q
r�1�`:

What is received isc+e wherejej is a small integer. In this case, errors
are most likely to affect the rightmost element, and in general if an
element is erroneous then all the elements to the right of that element
in the same chunk are almost always erroneous as well. This means

that ther-distance and the Hamming distance between a codeword and
a received word are usually the same. So in this case using aC(P; r; k)
code corresponds to using a minimum-distance separable (MDS) code
of lengthrn0 which, however, does not exist ifn0 = q andr > 1.

Finally, a word about complexity. Suppose that we have an im-
plementation of Sudan’s algorithm which runs in timeO(n2) where
n is the code length. Then decoding aC(P; r; k) codeword will
be O(r2n2) while decodingr RS codewords will beO(rn2). So
decoding theC(P; r; k) code is generally slower than the similar RS
code.

VI. SYSTEMATIC ENCODING

When using an error-correcting code in practice, it is often desired
that encoding can be done systematically. That is, if the code has di-
mensionk thenk fixed positions in a codeword contain the information
word and the rest of the positions contain check values. In this section,
a method to encode systematically for the codeC(P; r; k) is described.
The main part is the following lemma. Notice that the proof is construc-
tive.

Lemma 19: Let j1; � � � ; jn 2 f0; � � � ; r � 1g be chosen so that
n

i=1 ji = k. For eachi 2 1; � � � ; n0 andj 2 0; � � � ; ji � 1 there
exists a polynomialF (i;j) 2 q[x] with deg (F (i;j)) < k so that for
all i0 2 1; � � � ; n0 andj0 2 0; � � � ; ji � 1

F
(i;j)
i ;j

=
0; if i 6= i0 _ j 6= j0

1; if i = i0 ^ j = j0:

Proof: Define

B(i) :=

n

i =1

(x� Pi )
j

(x� Pi)j

and forj 2 f0; � � � ; ji � 1g let

B(j;i) :=
(x� Pi)

jB(i)

B(i)(Pi)
:

Now deg (B(j;i)) < k and fori0 6= i andj0 < ji , B(j;i)
j ;i

= 0. Fur-

thermore,B(j;i)
j ;i

= 0 for j0 < j andB(j;i)
j;i = 1. Forj = ji � 1; � � � ; 0

define inductively

F (j;i) := B(j;i) �

j �1

j =j+1

B
(j;i)
j ;i

F (j ;i):

ThenF (j;i) has the properties stated above by construction.

Letting j1; � � � ; jn andF (i;j) be as in the lemma above, encoding
can now be done systematically. Letm 2 k

q denote the information
word (the message) with

m = (m0;1; � � � ;mj ;1; � � � ;m0;n ; � � � ;mj ;n ):

If

f =

n

i=1

j �1

j=0

mj;iFj;i

thendeg (f) < k andf(P; r) holds the information word on thek
positions determined by theji’s.

VII. CONSTRUCTIONBASED ON AG CODES

Let � be a nonsingular absolutely irreducible curve overq and let
P1; � � � ; Pn ; P1 be q-rational points on�. The curve defines an al-
gebraic function field q(�) with a discrete valuationvvvP : q(�)!
[ f1g, corresponding to each point(i = 1; � � � ; n0;1).
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Recall that a functionf 2 q(�) is called regular in the pointPi
if vvvP (f) � 0. The functions which are regular in a point form a ring
OP which has a unique maximal principal ideal

MP = ff 2 q(�) j vvvP (f) > 0g = htii

whereti satisfiesvvvP (ti) = 1. ti is then called a local parameter inPi.
Furthermore, the group of units ofOP is given by

OP nMP = ff 2 q(�) j vvvP (f) = 0g:

Any nonzero functionf 2 q(�) can be written uniquely up to the
choice of local parameter as follows:

f = t
vvv (f)

i uf

whereuf is a unit, that is,uf 2 OP nMP . This will be called the
standard representation off (with respect to the local parameterti).
More details can be found in [6].

A class of algebraic-geometry codes is given by

CL(P; `P1) = f(f(P1); � � � ; f(Pn )) j f 2 L(`P1)g; ` < n0

whereP = fP1; � � � ; Pn g and

L(`P1)

= ff 2 q(�) j vvvP (f�1) � ` ^ vvvQ(f) � 0 for all Q 6= P1g

The length of this code isn0, and ifg denotes the genus of� and2g�
1 � ` < n0 then the dimension of the code isk0 = `� g + 1 and the
minimum distance is lower-bounded byd� = n0 � ` since the number
of zeroes of a nonzero function cannot exceed the number of poles.
L(`P1) is a vector space overq and for` � 2g�1 the dimension

is ` � g + 1. Recall that the nonnegative integersare divided into
gaps and nongaps by calling` 2 a gap if and only if

L(`P1)nL((`� 1)P1) = ;:

The number of gaps equals the genusg of the curve defining the func-
tion field. For` 2 , let ggg(`) denote the number of gaps less than or
equal to`. That is,

ggg(`) := `� dim (L(`P1)) + 1: (10)

If ` � 2g � 1 thenggg(`) = `� (`� g + 1) + 1 = g.
It is well known thatL(`P1) has a basis�0; � � � ; �`�ggg(`), where the

pole order atP1 is increasing

vvvP (��10 ) < vvvP (��11 ) < � � � < vvvP ��1`�ggg(`) : (11)

And conversely, any set of̀� ggg(`) + 1 functions having increasing
pole order is a basis ofL(`P1). However, the following theorem (from
[2]) shows the existence of increasing pole bases where also the zero
multiplicity of a given point—different fromP1—is increasing for
some permutation of the basis functions. Furthermore, the proof of the
theorem describes a strategy to find these bases.

Theorem 20: LetPi (i 2 f1; � � � ; n0g) be a point. Then there exist
functions�0;i; � � � ; �`�ggg(`);i with mutually different pole orders atP1
such that

L(`P1) = spanf�0;i; � � � ; �`�ggg(`);ig

and, furthermore,

vvvP (�0;i) < vvvP (�1;i) < � � � < vvvP (�`�ggg(`);i):

In the following, such a basis will be called an increasing zero basis
with respect to the pointPi.

Proof: Suppose that some increasing pole basis

B = f�0; � � � ; �`�ggg(`)g

of L(`P1) is given (as in (11)). LetBi := ; and do the following:
Let e := minfvvvP (f) j f 2 Bg andA := ff 2 B j vvvP (f) = eg.
If jAj = 1 then let

B := BnA

Bi := Bi [A

If jAj > 1 then leta1; � � � ; ajAj be an enumeration of the elements in
A such thatvvvP (a�11 ) < vvvP (a�1j ) for j 6= 1. Write eachaj as its
standard representation

aj = teiuj ; j = 1; � � � ; jAj

wherevvvP (uj) = 0 andvvvP (ti) = 1. Now let

B := (BnA) [ fu1(Pi)aj � uj(Pi)a1 j j = 2; � � � ; jAjg

Bi := Bi [ fa1g:

This ensures thatvP (f) > e for all f 2 B and that the pole orders
are unchanged.

The process above is repeated` � ggg(`) + 1 times untilB = ;.
After this,Bi holds an increasing zero basis ofL(`P1) with respect
to Pi, sinceBi is constructed so that two elements cannot have the
same valuation inPi.

Notice thatvvvP (�0;i) � 0, so in generalvvvP (�j;i) � j. Further-
more, each�j;i is in spanf�0; � � � ; �`�ggg(`)g and can be written as

�j;i =

`�ggg(`)

j =0

�j;i;j �j ; �j;i;j 2 q: (12)

Furthermore, notice that the requirement that an increasing zero
basis has different pole orders implies that if�0;i; � � � ; �`�ggg(`);i is
an increasing zero basis ofL(`P1), then for anỳ 0 � ` a subset of
this increasing zero basis can be used as an increasing zero basis of
L(`0P1). This subset will be denoted by

�
(` )
0;i ; � � � ; �

(` )
` �ggg(` );i:

Generally, it cannot be assumed that�
(` )
j;i = �j;i for all j � `0 �

ggg(`0), because an increasing zero basis may need to be permuted to
have increasing pole orders (see Example 21).

Let f 2 L(`P1) thenf can be written as

f =

`�ggg(`)

j=0

fj;i�j;i:

Notice thatvvvP (f) � j0 if fj;i = 0 for all j < j0. If f 2 L(`0P1) for
some`0 � ` thenf can be written as

f =

` �ggg(` )

j=0

f
(` )
j;i �

(` )
j;i :

The following gives an example of some of the concepts introduced
above.

Example 21: An example of a function field is the so-called Hermi-
tian function field defined by the Hermitian curve overq

Xq +1 � Y q � Y = 0:

It is well known that this curve indeed is nonsingular and absolutely ir-
reducible. Furthermore, the curve containsq31 affine q -rational points
and has genus(q1(q1 � 1))=2. In this case, the pointP1 corresponds
to the (unique) point at infinity on the homogenization of the Hermitian
curve.

Consider the Hermitian function field over16. Theng = 6 and the
gaps are1; 2; 3; 6; 7; 11: Furthermore,1; x; y; x2; xy; y2 is a basis of
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L(10P1) with pole orders0; 4; 5; 8; 9; 10: An increasing zero basis
of L(10P1) with respect to the point(0; 0) is

1; x; x2; y; xy; y2:

The zero orders of these functions are0; 1; 2; 5; 6; 10. An increasing
zero basis ofL(5P1) is 1; x; y.

Definition 22: Let r be a positive integer and letk satisfyg � k �
rn0 � g. Define the following error-correcting code:

CP (P; r; k) := ff(P; r) j f 2 L(mP1)g

whereP = fP1; � � � ; Pn g; m := k + g � 1, and

f(P; r) := f
(m)
0;1 ; � � � ; f

(m)
r�1;1; f

(m)
0;2 ; � � � ;

f
(m)
r�1;2; � � � ; f

(m)
0;n ; � � � ; f

(m)
r�1;n

Notice that this definition differs slightly from the definition in [1].
As illustrated in Example 21 there can be “holes” in the zero-order
sequence of an increasing zero basis. If there is such a hole among
the first r functions of the increasing zero basis at a pointPi, then
taking theith chunk of the codewords to be the evaluation of ther first
coefficients of the Taylor series with respect a local parameter atPi
gives codewords which are always0 at some position. This is avoided
by the use of increasing zero bases.

Just as the codesCL(P; `P1) can be seen as a generalization of
Reed–Solomon codes, the codesCP (P; r; k) can be seen as a gener-
alization of the codes of Definition 1. This is reflected in the following
where the notation and most of the results onC(P; r; k) codes pre-
sented in the previous sections are generalized toCP (P; r; k) codes.

The following theorems (from [1, Theorem 6]) give the length, di-
mension, and minimumr-distance of the codeCP (P; r; k).

Theorem 23:CP (P; r; k) is an q-linear code with lengthn :=
rn0 and dimensionk.

Proof: The length isn by construction and the linearity is
straightforward. Considerf 2 L((k+ g � 1)P1)nf0g. Suppose that
f(P; r) is the zero vector. Then

n

i=1

vvvP (f) � rn
0
> k + g � 1:

So the total zero order off is greater than the pole order, contradicting
the assumption thatf 6= 0.

Theorem 24: If u; v 2 CP (P; r; k) with u 6= v then

dddr(u; v) � n� k � g + 1:

Proof: Let f; h 2 L((k+ g�1)P1) such thatu = f(P; r) and
v = h(P; r). For eachi 2 f1; � � � ; n0g andj = 0; � � � ; r � 1

(f � h)j;i = fj;i � hj;i = u(i�1)r+j � v(i�1)r+j

so(f � h)j;i = 0 if j < sssr(u; v; i) and, therefore,

vvvP (f � h) � sssr(u; v; i): (13)

Now

sssr(u; v) =

n

i=1

sssr(u; v; i) �

n

i=1

vvvP (f � h):

Sincef � h 2 L((k + g � 1)P1), the sum of zero orders is at most
k + g � 1 sosssr(u; v) � k + g � 1 which implies

dddr(u; v) = n� sssr(u; v) � n� k � g + 1:

Example 25: Let! be a primitive element of 4 with !2+!+1 =
0. Consider the Hermitian function field over4 defined by the curve

X3 + Y 2 + Y = 0. The genus isg = 1 and the curve contains eight
points:

P := f(0; 0); (0; 1); (1; !); (1; !2);

(!;!); (!;!2); (!2
; !); (!2

; !
2)g:

P1 corresponds to the (unique) point at infinity on the homogenization
of the Hermitian curve. An increasing zero basis ofL(14P1) with
respect to the pointPi = (xi; yi) for i 2 f1; � � � ; 8g is given by

�0;i=1

�1;i=U

�2;i=U
2

�3;i=x
2
iU+V

�4;i=x
2
iU

2+UV

�5;i=xiU+x
2
iV +U

2
V

�6;i=xiU+V
2

�7;i=x
3
iU+xiV +x

2
iU

2+xiV
2+UV

2

�8;i=xiU+x
2
iV +xiUV +x

2
iV

2+xiUV
2+U

2
V
2

�9;i=x
2
iU+x

3
iV +xiU

2+x
3
iV

2+xiU
2
V +x

2
iUV

2+V
3

�10;i=x
3
iU+xiV +x

2
iU

2
V +x

3
iUV

2+xiV
3+x

2
iU

2
V
2+UV

3

�11;i=xiU+x
2
iV +x

3
iU

2+xiUV +x
3
iU

2
V +xiUV

3+U
2
V
3

�12;i=x
2
iU+x

3
iV +x

2
iUV +x

3
iV

2+x
2
iUV

2+V
4

�13;i=x
2
iU

2+x
3
iUV +x

2
iU

2
V +x

3
iUV

2+x
2
iU

2
V
2+UV

4

whereU := x�xi andV := y�yi. Consider the codeCP (P; 2; 11).
For anyi; L(11P1) = spanf�0;i; � � � ; �10;ig so the function

f = ! + !x+ !y + !
2
xy + xy

2 + !
2
xy

3

is encoded as

f(P; 2) = (!;!; 0; !2
; !; 0; !; 1; 0; !2

; 1; !; !2
; 1; 0; 0):

VIII. AG D ECODING

The list decoding algorithm for Reed–Solomon codes in [2] by V.
Guruswami and M. Sudan is generalized in the same paper to work
for a broad class of algebraic-geometry codes. Here the method of
Section IV will be generalized to a list decoding method for the code
CP (P; r; k).

For f 2 L((k + g � 1)P1) andu 2 Fn
q with n = rn0 short

notations are defined as in (4).
Let R denote the following vector space:

R :=

1

`=0

L(`P1):

Suppose thatR = spanf�` j ` � 1g with the pole orders of the�`’s
being strictly increasing. ThenR[z] = spanf�`z

j j ` � 1 ^ j � 0g
(wherez is transcendental overq(�)). A total ordering on these basis
functions will be defined by associating a nonnegative integer—called
the weight—to each function. The ordering will be parameterized by
the number associated withz. Let this be denoted by�(z). Then the
weight of the basis function�`zj is given by

�(�`z
j) = vvvP (��1` ) + j�(z): (14)

An ordering can now be defined using some lexicographic rule to break
ties, for example,

�`z
j
< �az

b ,

�(�`z
j) < �(�az

b) _ (�(�`z
j) = �(�az

b) ^ j < b): (15)

However, in this context only the weighting is important.
� is extended to any nonzero function inR[z] by the following def-

inition:
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Definition 26: Letf 2 R[z]nf0g. Suppose thatf =
`;j
f`;j�`z

j

and that�(z) is given. Then the weight off is defined as

�(f) = maxf�(�`z
j) j f`;j 6= 0g

with � given by (14).

The following lemma describes the weight of the basis functions:

Lemma 27: Suppose that the basis functions, 0;  1; � � � ; of R[z]
are enumerated increasingly with respect to the ordering induced by
the weighting�(z) � 2g � 1

�( 0) � �( 1) � � � � :

Let j 2 be given and letb andt satisfy

b

2
�(z)� (b� 1)g � j <

b+ 1

2
�(z)� bg

tb� ggg(t) � j �
b

2
�(z)� (b� 1)g < (t+ 1)b� ggg(t+ 1)

whereggg(t) is given by (10).
The weight of j is now given by

�( j) = (b� 1)�(z) + t:

Proof: Group the basis functions into disjoint sets,M1;M2; � � � ;
where

Mc = f ` j (c� 1)�(z) � �( `) < c�(z)g:

Observe that for eacht0 with 0 � t0 < �(z) the number of functions
in Mc with weightt0 + (c � 1)�(z) is exactlyc if t0 is a nongap and
c � 1 if t0 is a gap. So

jMcj = c(�(z)� g) + (c� 1)g = c�(z)� g

and

jM1j + jM2j + � � �+ jMc�1j =
c

2
�(z)� (c� 1)g:

By the definition ofb it is seen that j 2Mb and by the definition oft;
�( j) = (b� 1)�(z) + t.

Definition 8 is generalized as follows.

Definition 28: Let w = (w0; � � � ; wn�1) 2 n
q with n = rn0.

Then define

w
(i) =

r�1

j=0

w(i�1)r+j�
(k+g�1)
j;i :

Notice that for anyf 2 L(`P1)

vvvP (f � w
(i)) � sssr(f;w; i)

Furthermore, if

Q(z) =

deg(Q)

�=0

Q
(�)
z
� 2 R[z]

thenQ can be written as follows:

Q(z) =

deg(Q)

�=0

Q
(�;i)(z � w

(i))�; Q
(�;i) 2 R:

Now the algorithm can be stated.

Algorithm 29: As input take the codeCP (P; r; k), a received
wordw, and a parameters � 1.

Let �(z) := k + g � 1 and

`s := (bs � 1)�(z) + t

wherebs andt satisfy

bs

2
�(z)� (bs � 1)g � n

s+ 1

2
<

bs + 1

2
�(z)� bsg

tbs � ggg(t) � n
s+ 1

2
�

bs

2
�(z)� (bs � 1)g

< (t+ 1)bs � ggg(t+ 1):

DetermineQ(z) 2 R[z]nf0g so that

�(Q) � `s

and, furthermore, fori 2 f1; � � � ; n0g; � 2 f0; � � � ; s � 1g, and
j 2 f0; � � � ; r(s � �) � 1g

Q
(�;i)
j;i = 0: (16)

Next, let

�s := n�
`s

s
� 1

and find all factors ofQ of the formz�f with f 2 L((k+g�1)P1).
If dddr(f;w) � �s then includef in the output list.

To prove that the output list contains all codewordsf(P; r) 2
C(P; r; k) with dddr(f;w) � �s, it must be proven that the polynomial
Q exists and that it has the right factors.

Theorem 30:Q(z) satisfying the conditions above exists.
Proof: Equation (16) states

n
0(rs2 � r(0 + 1 + � � �+ (s� 1))) = n

s+ 1

2

conditions on the polynomialQ. Each of these conditions is a homo-
geneous linear equation in the coefficients ofQ. By Lemma 27 there
are at leastn( s+1

2
)+1 basis functions ofR[z] with weight at most̀ s,

so there aren( s+12 ) + 1 unknown coefficients. Therefore, a nonzero
solution exists.

Lemma 31: If f 2L((k+g�1)P1) thenvvvP (Q(f))�ssssr(f;w; i).
Proof:

Q(f) =

b �1

�=0

(f � w
(i))�Q(�;i)

:

SincevvvP (f � w(i)) � sssr(f;w; i) we have that

vvvP ((f � w
(i))�) � �sssr(f;w; i):

For� 2 f0; � � � ; s � 1g (16) ensures that

vvvP (Q(�;i)) � r(s� �):

Therefore,

vvvP ((f � w
(i))�Q(�;i)) � r(s� �) + �sssr(f;w; i)

� sssr(f;w; i)(s� �) + �sssr(f;w; i)

= ssssr(f;w; i)

Theorem 32: If a codeword f(P; r) 2 CP (P; r; k) has
dddr(f;w) � �s then(z � f) jQ.

Proof: By Lemma 31, n

i=1 vvvP (Q(f)) � ssssr(f;w), but

dddr(f;w) � n�
`s

s
� 1) sssr(f;w) �

`s

s
+ 1

andvvvP (Q(f)�1) � `s < ssssr(f;w). SoQ(f) = 0 andz � f is,
therefore, a factor ofQ.

An upper bound on the size of the output list is given by the following
theorem:
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Theorem 33: The number of codewords returned by Algorithm 29
is less thanbs.

Proof: By the proof of Lemma 27 the degree ofQ is at mostbs�1.
Therefore,Q can have at mostbs�1 factors of the formz�f so the
number of codewords returned by the algorithm is at mostbs�1:

A simple modification of Algorithm 29 (generalizing Algorithm 15)
gives an efficient and simple algorithm for unique decoding of the code
CP (P; r; k). However, this algorithm which is described in the fol-
lowing, is only guaranteed to correct up tor-distanceb(n�k�g)=2c�
g, which isg less than half the minimumr-distance. To be guaranteed
to correct up to (and beyond)r-distanceb(n� k � g)=2c, Algorithm
29 must be used for a sufficiently large value of the parameters.

Let �+� � `. For anya 2 f0; � � � ; ��ggg(�)g; andb 2 f0; � � � ;

��ggg(�)g; �
(�)
a;i �

(�)
b;i 2 L(`P1). Definec(a; b; j) by

�
(�)
a;i �

(�)
b;i =

`�ggg(`)

j=a+b

c(a; b; j)�j;i:

This makes sense sincevvvP (�
(�)
a;i �

(�)
b;i ) � a + b. Notice thatc(a; b; j)

depends oǹ, �, and� as well, however, in the following, these num-
bers will be given by the context.

Algorithm 34: LetQ = Q(0) + zQ(1) 2 q(�)[z]nf0g wherez is
transcendental overq(�), and with

Q(0) 2 L
n+ k + g

2
+ g � 1 P1 and

Q(1) 2 L
n� k � g + 2

2
+ g � 1 P1

and, furthermore, for1 � i � n0 andj < r

Q
(0)
j;i +

j

a=0

j�a

b=0

c(a; b; j)w(i�1)r+aQ
(1)
b;i = 0: (17)

If there exists a codewordf(P; r) 2 CP (P; r; k) with dddr(f;w) �
b(n � k � g)=2c � g thenf = �Q(0)=Q(1).

Notice that for an(n0; k0) AG code it is normally possible to correct
up to b(n0 � k0 � g)=2c errors using a relatively sophisticated algo-
rithm, see, for example, [7]. If a Welch–Berlekamp type algorithm is
used (the above method forr = 1) only b(n0 � k0 � g)=2� gc errors
are guaranteed to be corrected.

For example, consider using a Hermitian code over16 with length
64 and dimension48, and compare this to usingCP (P; 4; 192) based
on the same curve. Four codewords in the Hermitian code will be able to
correct some error patterns of weight up to4b(64� 48� 6)=2c = 20;
however, a codeword ofCP (P; 4; 192) will be able to correct some
error patterns with weight up tob(256� 192� 6)=2c � 6 = 23.

The following example shows the use of Algorithm 34.

Example 35: This is a continuation of Example 25. Suppose that
f(P; 2) is sent, but the following word is received:

w = (!; !; 0; !2; !; 1; !; 1; 0; !2; 1; !; !2; 1; 0; !)

which means that two errors happened, on positions5 and15, respec-
tively, with the leftmost position being number0. Sow has2-distance
2 to f(P; 2).
CP (P; 2; 11) is a (16; 11) code with minimumr-distance5. In

this case, the method in the beginning of this section should be able to
correct errors only up to2-distanceb(16� 11� 1)=2c � 1 = 1. But
proceeding as described, the polynomialQ is determined as

Q = (1 + !x+ !2x2 + y2 + x2y + xy2 + !x2y2

+xy3 + x2y3 + !xy4) + (!2 + !x+ !2y)z

and it can be verified that indeed

(!2 + !x+ !2y)f = 1 + !x+ !2x2 + y2 + x2y + xy2

+!x2y2 + xy3 + x2y3 + !xy4

So the method corrects the two errors in this case.
Experiments indicate that the algorithm often corrects up tor-dis-

tanceb(n� k � g)=2c.
Notice that if aCP (P; r; k) code is used in the situation of Example

18 the effect will be close to that of using a very long MDS code. For
example, the(256;192) codeCP (P; 4; 192) mentioned above will
in practice usually correct up to 29 errors.

IX. CONCLUSION

In this correspondence, efficient list-decoding methods have been
presented for the codes introduced in [1]. The codes are generaliza-
tions of Reed–Solomon and one point algebraic-geometry codes. The
decoding algorithms are generalizations of decodings algorithms pre-
sented in [2] for Reed–Solomon and algebraic-geometry codes, and
results analogous to the ones obtained in [2] are obtained here with re-
spect to error-correcting capability and upper bounds on the number of
codewords in the output.

When comparing the performance of Reed–Solomon and Hermitian
codes with the performance of theirr-distance counterparts it is clear
that ther-distance codes—which are longer—perform better provided
that the error patterns can be assumed to follow ther-distance. If error
patterns are distributed according to the Hamming distance, the per-
formance seems to be at the same order of magnitude, but with slower
decoding for ther-distance codes. However, a more precise compar-
ison is still to be made.
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