View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Online Research Database In Technology

Technical University of Denmark DTU
>

A class of Sudan-decodable codes

Nielsen, Rasmus Refslund

Published in:
| E E E Transactions on Information Theory

Link to article, DOI:
10.1109/18.850696

Publication date:
2000

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Nielsen, R. R. (2000). A class of Sudan-decodable codes. | E E E Transactions on Information Theory, 46(4),
1564-1572. DOI: 10.1109/18.850696

DTU Library
Technical Information Center of Denmark

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.


https://core.ac.uk/display/13726519?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/18.850696
http://orbit.dtu.dk/en/publications/a-class-of-sudandecodable-codes(ee29ab19-b504-405f-b8ba-9a647a3c0883).html

1564 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 4, JULY 2000

[3] J. D. Watson, N. H. Hopkins, J. W. Roberts, J. A. Seitz, and A. M(BCH) code. A reason why Reed—Solomon codes are still widely used
We'_”?g'\"o'e‘?“'ar ?‘g’é‘;gy °|f tlhe Gendthed. Menlo Park, NJ: Ben- even though the underlying communication channel is binary is that er-
Jamin/Cummings, , VOI. |. . . . . .

[4] K.J.Breslauer, R. Frank, H. Blocker, and L. A. Marky, “Predicting DNArors "?“e often "kely.to happen in bu.rSts’ s0 a bit has higher probability
duplex stability from the base sequencBroc. Nat. Acad. Sci., USA of being erroneous if the previous bit was erroneous as well, and a code

vol. 83, pp. 37463750, 1986. over a larger alphabet handles this situation better than a binary code.

[5] M. S. Waterman, “Combinatorics in molecular biology,” itandbook In [1] a series of new distance functions on vectors over finite sets
iggg“}gg‘gm”cs Amsterdam, The Netherlands: Elsevier, 1995, ppis jntroduced and some codes which are good with respect to this dis-

[6] W. Rychlik, Oligo: Primer Analysis Software, Version 6.4Cascade, tance are constructed. However, C_iG_COdlng methods are not d|scus.sed,
CO, 1998, Molecular Biology Insights, Inc.. This correspondence provides efficient methods for unique decoding

[7] R. G. Gallager, Information Theory and Reliable Communica-and for list decoding of the codes presented in [1] which are based on
tion. New York: Wiley, 1968. _ ~ Reed-Solomon and algebraic-geometry codes.

[8] Tables of the maximal Hamming distances for linear codes. [Online] This correspondence is organized as follows: Section Il describes
Available: http://www.cw.nl/htbin/aeb/lincodbd/; http://www.win.tue. . . .
ni\~aeb/voorlincod.html the construction based on Reed-Solomon codes and Section Ill in-

troduces the so-calleddistance. In Section IV a list decoding algo-
rithm based on Sudan’s algorithm is presented and specialized into a
simple algorithm for unique decoding. In Section V comparisons to
Reed-Solomon codes are discussed and in Section VI it is shown how

the codes can be encoded systematically. Section VIl defines some no-
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R. Refslund NielsenStudent Member, IEEE alized and Section IX is the conclusion.

. N e II. CONSTRUCTION
Abstract—n this correspondence, Sudan’s algorithm is modified into an

efficient method to list-decode a class of codes which can be seen as agener- LetF, denote a finite field withy elements and suppose that
alization of Reed—Solomon codes. The algorithm is specialized into a very ) ,

efficient method for unique decoding. The code construction can be gener- P:={P,-- Py} CF,, with |P| = n'. €h)
alized based on algebraic-geometry codes and the decoding algorithms are . . . dea(f) Fa.
generalized accordingly. Comparisons with Reed—Solomon and Hermitian Consider a polynomiaf € F,[z] with f = Z]‘:O fia’. Given

codes are made. someP; € P we can write

Index Terms—Algebraic-geometry codes, decoding, Reed-Solomon dez(f)
codes, Sudan’s algorithm. f= Z fiilx — P’

=0
| INTRODUCTION and it is seen by direct calculation that
. . deg(f .

Reed-Solomon codes are often used in practice due to the fact Fie gz) fv,ij/_j ' @)
that they can be decoded efficiently and have the optimal minimum I L i/
distance for the lengths and dimensions where a Reed-Solomon code e
exists. During the last decades much effort has been put into #hés useful to observe that
construction of codes with lengths and dimensions not obtainable (x—PY|feVj < J(fir:=0). ©)

for Reed—Solomon codes while maintaining a good minimum dis-
tance. The study of algebraic-geometry (AG) codes has lead to vengyofinition 1: Letr be a positive integer and 16t< k < rn’. Then

promising results._ ) ) . define the following error-correcting code:
However, the minimum distance is not the only measure of the us-

ability of a code. For practical purposes it is important that there exists C(P,r, k) ={f(P,r)|deg(f) < k}
an efficient decoding method to make use of the error-correcting capan p being as in (1) and
bility, and it is important that error patterns which are likely to occur in
the actual application are usually corrected by the decoder. F(P,r)

For example, consider afn, k) Reed—SpIomo_n code ovérsn. i= (fortseors Frotni foeee s footaie et fomrar ot Frotms)-
F.~ can be seen as a vector space of dimensioaver F,, so the
code can be seen asann, mk) code ovefF . The minimum distance ~ Notice that forr = 1 a Reed—Solomon code is obtained.
of the Reed—Solomon code is optimal ofer- , but the minimum dis- ~ Furthermore, it is useful to notice thatf{ P, r) = (co, . cn—1)
tance of the binary code could be considerably less than for other codgn for anyi and;j with 1 < i < »’ and0 < j < r we have
This means that the Reed—Solomon codes might not correct as many

S Z = ¢ L— T 7.
random binary errors as for example a Bose—Chaudhuri-Hocquenghem i (=

Theorem 2 ([1], Theorem 6) C'(P,r, k) is anF,-linear code with
Manuscript received August 16, 1999; revised February 28, 2000. The mad@gthn := rn' and dimensiork.
rial in this correspondence will be presented at the IEEE International Sympo- Proof: The block length is: by construction and that the code

S“”E on '”rf]orn_“a“‘??]'r;‘eoryy So”e”tov]!ta'y’dune 2000. il University 3 fin€ar follows from the fact thatf + ag)ji = fii + g, for
The author is with the Department of Mathematics, Technical University ’ I p .
Denmark, DK-2800 Lyngby, Denmark (e-mail: R.R.Nielsen@mat.dtu.dk). (}f 9 € Fy[r] anda € F,. To prove that the dimension isconsider

Communicate by R. M. Roth, Associate Editor for Coding Theory. a polynomialf € F,[z]\{0} with deg (f) < k. Suppose thaf (P, r)
Publisher Item Identifier S 0018-9448(00)05017-3. is the zero vector. This implies thpf,_, (x — P;)" dividesf, but this
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is a polynomial of degreen’, which contradicts the assumption tfat ~ Theorem 5: d.. is a distance function oft; .
is nonzero and of degree less thas »n’. O Proof: Letu,v,w € Fj.d.(u,v) >0 and itis straightforward

. L o . tosee thatl, (u,v) =0 < « = v and thatd, (u,v) = d,(v,u).
Notice that the polynomial gives a word of weight." so the min- Furthermore, notice that fare {1,---,n'}, if 8, (u, w,i) = r then

. : . ; y
imum distance is at most fqr all k. Sq fork < (r.—. n',C(P,r. k) d,(u,w,i) = 0,50 in this case it is trivial that

is not a good error-correcting code in the traditional sense, however,

as will be seen later, that does not prevent it from performing well in d-(u,w,i) < d-(u,v,i)+d-(v,w,i).

certain situations. . .
If j:=s.(u,w,i) <r then'u,(,;_w,‘_*_j * Wi 1)yr4s SOVG_1)rtj *

Example 3: Letw be a primitive element df, withw? +w+1 =0  U@_1)r1; OT Ui—1)rt; # We—1)r4; and, therefores, (u,v,i) < j
and letP := {0,1,w,w?}. ThenC(P,2,4) is an(8,4) code ovelF,. ors.(v,w,i) < j. This implies that

Suppose that d, (w,0.4) > d, (0, w, 1)

f=14we+ we? + 2° or
=@ -+ (-1 + (-1 d.(v,w,1) > d.-(u,w,7)
=wt(r—w) + (@ -w? for all 7, so
:uJ—l—(m—wQ)Q—l—(:c—uJQ)g
de(u,w) < dr(u,v) + dr(v,w) O
then
F(P,2) = (1,w: 0w w, 1;w,0). The following theorem (a special case of [1, Theorem 6]) gives the

minimumyr-distance ofC' (P, r, k).

Theorem 6:If w,v € C(P,r, k) with v # v thend,(u,v) >
1. r-DISTANCE n—k+1andd, (w,0) =n — k+ 1forsomew € C(P,r, k).

As mentioned in Section II, the minimum distance of the code Proof: Let f.g € F,[z] be polynomials with degrees less than
C(P,r, k) is normally bad with respect to the usual Hamming SO thatu = f(P.r) andv = g(P.r). Notice that for each €
distance. In this section, a distance which will be caledistance is 11.---.»'} andj = 0,---,r — 1
introduced and the properties 6f P, r, k) with respect to'-distance
are analyzed. The-distance was first mentioned in [1].

In C(P,r k) codewords consist of’ chunks ofr field elements SO(f — ¢);: = 0if j < s.(u,v,i) and, therefore, (3) gives
where each chunk corresponds to an elemerf.iThis structure is (x — P{)&r(u,v,i) 1(f = g) 5)
reflected in the following definition of-distance. '

(f = 9)ji = Fii = 955i = Wim1yrtj — V(i-1)rtj

_ ] L " which means that a polynomial of degreéu, v) dividesf — g. Sup-
Definition 4: Let r be a positive integer and let v € F; with pose thatl, (u,v) < n — k. Thens, (u,v) > k implying thatf = g

—_— > / i ! y .. / ] > - H ._ . . .
n = rn’ for some integen’. Fori € {1,---,n'} define ther-simi- 5,4 consequently = v which is false by assumption sb (u, v) >
larity, 8-(u, v, ), and the--distanced, (u, v, ), between: andv with n—k+ 1.

respect to théth chunk as follows: Leth € F,[+]\{0} be an arbitrary nonzero polynomial of degree at

mostk — 1. Foranyi € {1,---,n'} andj = 0,---,» — 1 the equation
h;: = 0is a homogeneous linear equation in theoefficients ofh

by (2). SO ifj1, -+, jnr € {0,---.7} with =" ji = k — 1 then
do(u,v,i) =1 — 8 (u,v,79). h can be constructed so thay, , = 0 foralli € {1,---,n'} and

Furthermore, define the-similarity, s, (u.v), and ther-distance, J: < Ji- BY Definition 4,d.(h,0) < n —k 4 1 and by the above

d,(u,v), betweeru andv d(h,0) =n—Fk+1. U

sr(u,v,7) ;= max{j € {0, -, 7} | wi—1)rtj7 = VG—1)r+4j’s
forall j' with0 < j' < j}

W It can be shown (see [1]) that the minimutdistance in the above

8. (u,v) = Zsr(u,m ) theorem is the greatest possible given the code length and number of
=1 codewords.

d-(u,v) = Zdr(u,'v,i) IV. DECODING
=1

In[2], V. Guruswamiand M. Sudan presented an algorithm to decode
Reed-Solomon codes beyond half the minimum distance by allowing

Let f € F,[z] andu € F'. The following short notations will then : )
! ql] u 1 9 the output to be a (small) list of codewords closest to the received word.

be used:
In this section, the method in [2] will be generalized to a list decoding
s (fou, i) := 8- (f(P,7),u,i) method forC'( P, r, k). However, first some notation is needed.
s.(fou) = 8,(f(Pr).u) Let
do(fu.0) o= A (F(P.r) u i) M i= {2%y € Fyle.y] | (o 9) € N?)
d(f.u) :=dr(f(P.7), u). 4) _ . o
be the set of monomials iR, [z, y]. A monomial orderings a binary
For example, for alf € F,[«] we haved.(f, f(P,r)) = 0 and relation, <., on M, which satisfies the following:
d.(f,f(P,r)+(0,1,0,---,0)) =r — 1, if > 1. « <, is a total ordering o/,
Furthermored, (f,w) = n—8,(f,w). Forr = 1 the usual Hamming *Vfigh € M(f <m g = fh <m gh),
distance is obtained, sh = d. ¢ <,, is a well-ordering.
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One monomial ordering is th&exicographic order The lexico- The following definition turns out to be useful:

graphic order withy < = is defined by Definition 8: Letw = (wo, -+, wn—1) € Fy withn = rn’. Then

2y <2y s a<a Vie=a A3 <) define
The lexicographic order with < y is defined by exchanging andy ) - i
in the above definition. w(x) = Zw(i—1)r+j(l' =B
j=0

Let
Notice that for anyf € F,[z]

(x = PY )| (f — 0@ (a)). )

Furthermore, if

fa,y) € Fyle, y\{0}

with f = 3, £ 24" . Thenthe(a, b)-weighted degreef f(z, )
is given by
deg,,(Q)

deg " (f) := max {aa + 3| £ # 0} Q= 3 Qe

wherea € N is called the weight of andb € N is called the weight o0

of y. For any choice of andb we may definaleg(®®)(0) := —oc. In  th€NE can be written as follows:
generaldeg®? (f) is called the weight of . deg, (Q) , ) ,

Given a weighted degreges") and a lexicographic ordet;, a Qz.y) = Y QIy—-w@)*, Q" eF,[l
correspondingveighted degree lexicographic ordean be defined on =0
M by

(a.d) /o (a.6) Algorithm 9: As input take the cod€'( P, r, k), a received worab,
J <w g e deg' ™ (f) < deg'(g)V and a parameter > 1.
(deg™® () = deg'™P (9) A f <1 g) Let

forall f.g € M. | Y e -1D(k-1)

The following lemma describes the weight of the monomials. T b + 2

Lemma 7: Consider the polynomial ring, [, y] with the weighted
degreedeg!" =Y for some integek > 1 and let the monomials be )
ordered by a corresponding,, order. Suppose that <bs) o (=) < <bs + 1)

whereb, satisfies

2 k-1 2
DetermineQ(xz, y) € Fq[x, y]\{0} so that
deg" " (Q) < L

mo <w M1 < Mo <y v

is an increasing list of all the monomials [z, y]. Then

k=), _ |4, (b=DF=1)
deg (mj) = h + D) (6)  and, furthermore, foi ¢ {1,---,n'},a € {0,---,5s —1},andj €

fofi (]’...‘u ; — —1
whereb satisfies { (s —a) — 1}

b j b+1 Q> =y, ®)
< . It
() set< ("3
Proof: Group the monomials into the disjoint setd; , Mo, - - -, Next, let
where VSJ
) ) Tsi=n—|—|—1
M.={mjr|(c=1)(k=1) < deg""* "V (m;) < e(k = 1)}. 5

Then|M.| = e(k — 1) so and find all factors of@ of the formy — f with deg (f) < k. If

d.(f,w) < 7, then includef in the output list.
The claim is now that the output list contains all codewofd®, r)
inC(P,r, k),whered,-(f,w) < 5. To prove that the algorithm works,

M|+ | Ma| 4+ -+ |Mo_y| = (;)w ~1).
it must be proven that the polynomi@l exists and that it has the right

Since

factors.
b . b+1 Theorem 10: Q(x, y) satisfying the conditions above exists.
E-1)< -1 . :
<2>( )<< < 2 >( ) Proof: Equation (8) gives
we haver; € M,. The smallest monomial if, has weighted degree n'(rs® —r(04+14-+s—1))=n|" +1
(b — 1)(k — 1) and for eachr with (b — 1)(k— 1) < a < b(k — 1) 2

there are exactly monomials with weighted degreein 14;. If the

} . ) ) - conditions on the polynomid). Each of these conditions is a homoge-
monomials ofM, are listed increasingly with respect ¢0,, thenim;

neous linear equation in the coefficientgpfBy Lemma 7 there are at

. . . by/1. ; .
is monomial numbey — (;)(k — 1) so the weighted degree of; ;4 ( **') + 1 monomials inF, [, y] with weighted degree at most
must be (., so there are:(*}' ) + 1 unknown coefficients. It is a well-known
. b H 1
e j- (k—1) fact from linear algebra that such a system of equations has a nonzero
deg!"* Y (mj) = (b — 1)(k - 1) + {—(Q)b solution. o
i =1)(k=1) o Lemmallilf £ € Fy[] with deg (f) <k then(x - pyyserthwnd)
s e— dividesQ(x. f).
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Proof: Let and, furthermore, for each< i < n" andj < r
bo—1 J
R(x):=Q(r.f)= Y (f —w (@) Q" (). QY + 3 wiemy QY =0, )
a=0 7'=0
By (7) we have that If there exists a codeword

f(P.r) € C(Pr, k)
withd, (f.w) < [(n — k)/2] thenf = —Q©/QWV).

(v — PZ')”T(f’u"i) | (f — uv(i)(w))“.

Fora € {0,---,s — 1} (8) ensures that
(o) | (o) The proof that this method indeed works as promised will be omitted
(x = ) 1@ (). here since it is very similar to the proof of Algorithm 9. However, an
Therefore, example of using the above algorithm is given below.

(2 — Byrlomorasn(Fwd) | (£ _ @) (3))7 Q) () Example 16: This continues Example 3. Suppose that the codeword
. | . | F(P2) = (1,w:0,0% w0, 15,0
This proves the lemma since )

is sent but

r(s— o)+ as-(f,w,i) > 8.(f,w,i)(s — ) + a8 (f,w,i)
— 2. 2L 20
= ss8,(f,w,i). O w= (1,070,075 w05 w,0)

is received. Thed-(f,w) = 2 and since 8 — 4/2| = 2 Algorithm
Theorem 12:1f a codewordf (P, r) € C(P.r, k) hasd-(f,w) < 15 should be able to reconstrytfrom w.

. then(y — )| Q. Solving the system of linear equations in (9) gives the following
Proof: By Lemma 11, a polynomial of degres,.(f,w) divides polynomialQ:
Q(xz, f), but

Q(r,y) = wr + wal 42t b+ (wr + .772)];

d-(f,w)<n-— V—SJ —1=s(f,w) > \‘%J +1 and
3 )

o A ol 3 "
anddeg (Q(x, f)) < fs < s8.(f,w). S0Q(x, f) = 0 andy — f is, wx +wr” + LQ +
therefore, a factor of). O wr +x
So Algorithm 15 indeed corrects the two errors successfully.

::v3—|—w.1'—|—;uw—|—1:f.

The theorem below gives an idea of the sizeroin Algorithm 9
and corresponds to the result of [2]. The proof, which is omitted here,
is similar to [3, Proof of Theorem 3.31]. V. COMPARING WITH REED-SOLOMON CODES
F,~ can be seen as andimensional vector space oey. So sup-
pose that: = &’ for some integek’ and consider each chunk of
Ts \/T elements in a codeword @f (P, r, k) as an element ifr,~. The fol-
T

7 ~1- lowing theorem gives the main parameters of this code:

Theorem 13:If » ands are sufficiently large then

. AW / :
The following theorem gives an upper bound on the size of the outpuTheorem 17:C(P,r, rk )isa (.:ode ovqu’r of lengthn’, having
list. ¢~ codewords, and minimum d_|stanné— K+ 1. _
Proof: The code length is given by the construction. The number
Theorem 14: The number of codewords returned by Algorithm 9 i®f codewords is equal to the number of codewords in the code seen
less tharb.. as aF, code, namelyg""", however, it should be noticed that the
Proof: By the proof of Lemma 7, the maximal degregjinf Q is  code is not necessarily,--linear. To find the minimum distance con-
b, — 1. Thereforef) can have at most, — 1 factors of the forny — f,  sider two polynomialsf,g € F,[z], both with degree less than
so the number of codewords returned by the algorithmis atbgest. Let (Fi,---,F,/) = f(P,r) with F; € F,- for all ¢ and, simi-
O larly, (G1,---,G, ) = g(P,r). Suppose that; = G;. Thenfq,; =
0,is s fre1,i = Gr—1,i, SO(x — P;)"| f — g. This means that if

The list decoding algorithm can easily be modified into an efficie . — G, for k' values ofi, then a polynomial of degree = rk'

algorithm for unique decoding of the cod&(F,r, k) up to half divides f — g, but this implies thatf = ¢. Therefore, two different

the minimum r-distance. This algorithm, which can be seen as &dewords can be equal on at mbst- 1 positions, which shows that

generalization of the Welch—-Berlekamp algorithm for decodin . . . Y .
Reed-Solomon codes (see, for example, [4] or [5]), is described in g'g minimum distance is at least — A" + 1. Equality holds by the

. Ihgleton bound. O
following.

To modify Algorithm 9 into an algorithm for unique decoding, the The theorem shows thét( P, », &) has the same main parameters
parametes is set tol, and instead of calculatirlg as described in the as a(n’, k') Reed—Solomon code ovEt,~, but what about the error
algorithm, b, is set to the constant valie Furthermore, th&€)-poly- correcting capability of the two codes when using Algorithm 15
nomial is not allowed to hold terms of degree greater thamy. This for unique decoding of”(P,r,rk’) and some decoder to decode
gives the following algorithm. the Reed-Solomon code up to half the minimum distance? In the
Reed-Solomon code, errors will be,--errors, each one corre-
sponding tor F,-errors. However, in the cod€'(P,r, k'), error
correcting starts from the point in the affectég- symbol where
the error actually starts. The effect of this is that some “fractional”

) n—k F,~-errors can be recognized, namely, errors which only affect the last
—‘ — landdeg (@) < {TJ part of aF,,. symbol. For example, on average, random bit-errors will

Algorithm 15: As input take the cod€'( P, r, k) and the received
word, w € F7.
LetQ(x,y) = QW (x) + yQW (x) € Fylu, y]\{0} satisfy that

deg (Q©) < [#

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on February 8, 2010 at 07:56 from IEEE Xplore. Restrictions apply.
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only count as half affi-,~ error where a full error must be correctedthat ther-distance and the Hamming distance between a codeword and
by the Reed-Solomon code. Burst errors of length slightly greareceived word are usually the same. So in this case usiidar, k)

than oneF,--symbol will on average only count as arouijuderrors code corresponds to using a minimum-distance separable (MDS) code
compared t@ errors in the Reed—Solomon code. However, it shoulof lengthr»’ which, however, does not existif = ¢ andr > 1.

be noted that usually’ < ¢”, so the Reed—Solomon code considered
here is very short.

Now compare using afw’, k') Reed—Solomon code ovEt, with
usingC'(P,r, rk"), and suppose thatt’ information symbols are to
be transmittedr RS codewords or on€'( P,»,rk’) codeword will
be needed. Let := |(»n' — k')/2] and suppose that errors occur.
Which code has the highest probability of correcting the errors? Thecr%de'
are( 2"{) error patterns in total, but none of the codes will correct all
of them ifr > 1.

The RS code will require the errors to be located so that exactly When using an error-correcting code in practice, it is often desired
errors occurin each Chunkof elements. The number of error patternshat encoding can be done systematically. That is, if the code has di-
with that property ig ", )" (in each chunk errors can occur i, ) mensionk thenk fixed positions in a codeword contain the information
different patterns). word and the rest of the positions contain check values. In this section,

TheC(P,r, rk") code will require the errors to happen so that onla method to encode systematically for the c6dé, », k) is described.
the last part of each chunk efelements is affected. To see in howThe main partis the following lemma. Notice that the proof is construc-
many ways this can happen, suppose tttatrrors are added one by tive.
one, each time one of thé chunks is selected to receive the error and . . .
the error will have to be located at the last correct position in the chunf:l,;?m,ma 19:Letj, -+ ju € {0, T 1} be chgsen so that
The number of ways to do this is at mest 7" =" ) and equality holds 2-i=1J* = k. Foreachi € 1,---,n" andj € 0,---,ji —1 there
only if t < 1 because if a chunk receivesrrors, it will not be able to

Finally, a word about complexity. Suppose that we have an im-
plementation of Sudan’s algorithm which runs in tiff#¢nr?) where

n is the code length. Then decoding(& P, r, k) codeword will

be O(r*n?) while decodingr RS codewords will beD(rn?). So
decoding the” (P, r, k) code is generally slower than the similar RS

VI. SYSTEMATIC ENCODING

exists a polynomiaF (") € F,[x] with deg (F("7)) < k so that for

-/ ! -f .
contain more errors. Experiments indicate that"’/~") is normally alli € L,---,n andj” € 0,---.jir = 1
smaller than( ’;, )" and when that is the case, usindgRS codewords Fla) — { 0, ifi#ivi#j
gives a higher probability of decoding randomly positioned errors i’ 1, ifi=i"nj=j"
than using &' (P, r, rk') codeword. Proof: Define

However, it should be emphasized that the error-correcting profile is o

significantly different for the two codes. Consider an example where H (& — Py)is
n' =4,k = 2,andr = 2 (andq > 4). So fourF, symbols of in- Bl .— =1 v
formation can either be sent as two codewords 6f,.2) RS code or (= D)7

as one codeword d@f'( P, 2,4). Let the two RS codewords be denotedand forj € {0,---,j; — 1} let

bya = (ao,---,as) andb = (bo,---,b3), and theC'(P,2,4) code- ) ()
word be denoted by = (co, - -, ¢r). In the codeword it is possible BYY) = ﬂ

to select four elements, cs, cs, ander) with the property that any BO(F)

pattern of two errors happening among these four symbols can be qQ&w deg (BY")) < k and fori’ # i andj’ < j./, 35J7> = 0. Fur-
rected. It is not possible to select four elements @indb which has thermore B4 = 0 for j' < j andBY:" = 1. Forj = j; — 1,-+-,0
this property, because at least two of the elements will always be fr%ﬁne indu']ct"i;/ely I ' S
the same codeword. On the other handy #&ndb are interleaved so )

that (ao, bo, a1, b1, a2, b2, as, bs) is sent then two consecutive errors FUA . gl _ ’i BU
will always be corrected. It is not possible to arrange the elements of T i’
the worde in such a way that the same property is achieved, because if

an error happens if; with j € {0,2, 4,6} then a second error is only ThenF"") has the properties stated above by construction. O

uaranteed to be corrected if it occurscin.;. Therefore, if an error L, . - . .
9 o ! Letting j1,- -+, Jn’ and F7) pe as in the lemma above, encoding

happens at one of these symbols, then a second error in the previous Or . b . .
. ) o I, can now be done systematically. et € F; denote the information
in the following symbol will give an error pattern which is not guaran- 4

teed to be corrected. word (the message) with

In the above, all error patterns were assumed to occur with a proba- M= (Mo,1, My 1373 Mo sy, nl).
bility only depending on the weight of the error pattern. However, th‘?
may not always be the case. Consider the following example.

l:)F(]',yi)_

=i+

n’ j;—1
Example 18: LetF, = {wo,- -, w,—1} and suppose that a vector f= ZJ
in Fy™ is transmitted as’ integers where a churlw;,, -+, w;, _,)

is transmitted as

mjiFy
i=1 j=0

thendeg (f) < k and f(P,r) holds the information word on the
positions determined by thg’s.

r—1
L . or—1—4
= Jeq .
£=0

What is received is+ ¢ where|e| is a small integer. In this case, errors  Let y be a nonsingular absolutely irreducible curve dvgrand let
are most likely to affect the rightmost element, and in general if ah,, - - -, P,,;, P», beF,-rational points orx. The curve defines an al-
element is erroneous then all the elements to the right of that elemgabraic function field=,( x) with a discrete valuationp, : F,(x) —
in the same chunk are almost always erroneous as well. This me#ns {~c}, corresponding to each poitit=1,---,n', o).

VII. CONSTRUCTIONBASED ONAG CODES
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Recall that a functiory € F,(x) is called regular in the poinP;  of L({Px ) is given (asin (11)). LeB; := ¢ and do the following:
if vp, (f) > 0. The functions which are regular in a point form aring Lete := min{vp (f)|f € B} andA := {f € B|vp,(f) =e}.

Op, which has a unique maximal principal ideal If |A| = 1 then let
Mp, ={f € Fo() [ve (f) > 0} = (&) B:= B\A

wheret; satisfiesvp, (t;) = 1.t; is then called a local parameteri. Bi:=BiUA

Furthermore, the group of units 6Tz, s given by If |4] > 1thenleta:,---, a4 be an enumeration of the elements in
Op\Mp, = {f € Fy(x)|ve,(f) =0} Asuchthawp(a; ") < vp(a; ") for j # 1. Write eacha; as its

standard representation
Any nonzero functionf € F4(x) can be written uniquely up to the

choice of local parameter as follows: aj = tiuy, j=1--,]4

F=tn n, s wherevp, (u;) = 0 andvp, (t;) = 1. Now let
whereu is a unit, that isu; € Op,\Mp,. This will be called the B := (B\A) U{ui(Pi)a; —u;(P)ar|j =2, |A[}
standard representation ¢f(with respect to the local parametg). B, := B; U{a1}.

More details can be found in [6].

A class of algebraic-geometry codes is given by This ensures thatp, (f) > e for all f € B and that the pole orders

are unchanged.
Co(PtPo) = {(f(P1), . f(Pu)) | f € LUUP)}, (<n' The process above is repeated g(¢) + 1 times untilB = 0.
whereP = {P,,---, P/} and After this, B; holds an increasing zero basis©f( .. ) with respect
’ e to P;, sinceB; is constructed so that two elements cannot have the

L((P) same valuation iP;. O
—1 )
={f €F()|vr(f ) Sl Ave(f) 2 0forall@ # P} Notice thatvp. (¢0.;) > 0, so in generabp, (¢,;) > j. Further-
The length of this code is', and ifg denotes the genus gfand2g —  MOre, eacky; ;i isin span{¢o, - - -, dr—g(r)} @nd can be written as
1 < £ < n’ then the dimension of the code#i§= ¢ — g + 1 and the (—g(0)
minimum distance is lower-bounded By = »’ — ¢ since the number b= Z Qi P a0 € Fq. 12)
of zeroes of a nonzero function cannot exceed the number of poles. = o

L({P) is avector space ovér, and for( > 2¢ — 1 the dimension

is ¢ — g + 1. Recall that the nonnegative integédsare divided into Furthermore, notice that the requirement that an increasing zero

- : . basis has different pole orders implies thaif ;.- - -, dr_g(s),s iS
gaps and nongaps by calliigs N a gap if and only if an increasing zero basis 6f(P..), then for any(’ < (¢ a subset of
LUP\L((L—1)Ps) = 0. this increasing zero basis can be used as an increasing zero basis of

L({' P~.). This subset will be denoted b
The number of gaps equals the gepusf the curve defining the func- ( ) y

tion field. For¢ € N, let g(¢) denote the number of gaps less than or ngl)’ . ¢Ef29(€,) l
equal tof. That is, m%)
N L Generally, it cannot be assumed thgt,’ = ¢, for all j < -
9(0) := € = dim (L{{Pe)) + 1. (10) g("), because an increasing zero basis may need to be permuted to
If¢>2g—1theng({)=(—(L—g+1)+1=g. have increasing pole orders (see Example 21).
Itis well known thatC (¢ P ) has abasigo, - - - , ¢,—4(¢), Wwherethe  Letf € L({P) thenf can be written as

pole order atP, is increasing e—g(0)

vp (05 ') <wvp (¢7') < <wp, (@__19(@>. (12) f= Z LIRS

And conversely, any set df— g(¢) + 1 functions having increasing Notice thatwp, (f) > j' if ;. = 0 forall j < j'. If f € £(¢'Px) for
pole order is a basis df(¢ P~ ). However, the following theorem (from gome(’ < ¢ then f can be written as

[2]) shows the existence of increasing pole bases where also the zero
multiplicity of a given point—different fromP..—is increasing for ) ()
some permutation of the basis functions. Furthermore, the proof of the Z fii 05
theorem describes a strategy to find these bases.

' —g(e")

. , . ) The following gives an example of some of the concepts introduced
Theorem 20:Let P; (i € {1,---,n'}) be a point. Then there exist

functionseo ;. - - -, dr—gey,s With mutually different pole orders & above.
such that Example 21: An example of a function field is the so-called Hermi-
tian function field defined by the Hermitian curve ovey.
L({Ps) = span{do,i, ", Pe—g(0),i } '

Xatl _ya _y =y,

and, furthermore, . . . . . .
Itis well known that this curve indeed is nonsingular and absolutely ir-

Ve (Go,i) <vp;(d1,i) <0 < Vp(Do—ge)i) reducible. Furthermore, the curve contajiisffineF 2-rational points
and has genugyi (1 — 1))/2. In this case, the pomlP corresponds

In the following, such a basis will be called an increasing zero bas
to the (unique) point at infinity on the homogenization of the Hermitian

with respect to the poink;.

. . . curve.
Proof: Suppose that some increasing pole basis . . L
PP gp Consider the Hermltlan function field ovErlG Theng = 6 and the
B = {0, -+, br—g0)} gapsard, 2, 3, 6, 7, 11. Furthermore], z, y, 2°, xy, y* is a basis of
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L(10Ps,) with pole orders), 4, 5, 8, 9, 10. An increasing zero basis X* +Y? + Y = 0. The genus ig = 1 and the curve contains eight

of £(10 P~ ) with respect to the point0, 0) is
L2y, 2y, 9"

The zero orders of these functions érel, 2, 5, 6, 10. An increasing
zero basis of2(5P) is 1, z, y.

Definition 22: Letr be a positive integer and Igtsatisfyg < k& <
rn’ — g. Define the following error-correcting code:

Cp (Pyr,k):={f(P,r)|f € L{mP)}
whereP = {P,---,P,s}, m :=k+ g —1,and
(m) m m
f(Pa"') = ( L)\,l'*’"':fﬁfi,l; (5,2)'/"'7
SECINTNES RIS st

Notice that this definition differs slightly from the definition in [1].

As illustrated in Example 21 there can be “holes” in the zero-order
sequence of an increasing zero basis. If there is such a hole amon§7

the first» functions of the increasing zero basis at a pdi then
taking theith chunk of the codewords to be the evaluation ofitfiest

points:

P :={(0,0),(0,1),(1,w), (sz)7

(w,9), (w0, %), (w2, w), (7, ")},

P, corresponds to the (unique) point at infinity on the homogenization
of the Hermitian curve. An increasing zero basis({dfl4 P, ) with
respect to the poink; = (z,,y,) for: €

{1,---,8} is given by

¢o,i=1
01,i=U

b2, =U"

b3 =, U+V

Gai=2 U +UV

U422V UV

o6, i =a; U+ V2

=2}U4a;V+aiUl 40,V +UV?
dsi=aiU+aiV4a,UV4+2iVi4a, UV UV

boi=a; U4}V 4z, U +2} Vi 42, UV 42, UV VP

©
ot
Il

cpefﬂ(:lents of the Tr?\ylor series with respect a_l_local pgrgmet@ at br0: =2 U+ 2.V 22U V42 UV 42 V4 2202V LUV
gives codewords which are alwayst some position. This is avoided ' o . : 5 e o
by the use of increasing zero bases. o1 =2 U+aiV4aiUn 4o, UV 42UV 42, UV LUV

Just as the codeS, (P, (P..) can be seen as a generalization of ¢o,=a;U+2; V42UV +2] V42 UV +V*
R_eed_—SoIomon codes, the co«iés>o (P, s k.) can be seenasagener- o .. _,272 4 AUV 420V 42 UV 42202V 4 UV
alization of the codes of Definition 1. This is reflected in the following : _ ) .
where the notation and most of the results@P, r, k) codes pre- WherelU := z—z; andV := y—y,. Consider the cod€r_ (F.2.11).
sented in the previous sections are generalizedtg (P, r, k) codes. FOranyi; L(11Pe) = span{do,i,- -, ¢10.i} S0 the function

The following theorems (from [1, Theorem 6]) give the length, di- f=w+we+wy+ o oy +ay? + oy’
mension, and minimum-distance of the cod€'r__ (P, 7, k). .

is encoded as

Theorem 23: Cp_ (P, r, k) is anF4-linear code with length := F(P,2) = (w,0,0,0%, w,0,0,1,0,0%, 1,0, %, 1,0,0).

rn’ and dimensiork.

Proof: The length isn by construction and the linearity is
straightforward. Considef € L((k + g — 1) P )\{0}. Suppose that
F(P,r) is the zero vector. Then

VIIl. AG D ECODING

The list decoding algorithm for Reed—Solomon codes in [2] by V.
Guruswami and M. Sudan is generalized in the same paper to work
for a broad class of algebraic-geometry codes. Here the method of
Section IV will be generalized to a list decoding method for the code

So the total zero order gf is greater than the pole order, contradicting”' ro. (I 7. k).
the assumption that # 0. O Forf € L((k+ g — 1)Px) andu € F; with n = rn’ short

) notations are defined as in (4).
Theorem 24:1f u.v € Cp (P, k) with u # v then Let R denote the following vector space:
d-(u,v) >n—k—g+1.

vai(f) >rn' >k+g-1.
i=1

R:= | L(tP).

Proof: Letf,h € L((k+¢g—1)P)suchthat = f(P,r)and =0
v=h(P,r).Foreach € {1,---,n'}andj =0,---,r — 1 Suppose thaR = span{¢,|( > 1} with the pole orders of the,’s
being strictly increasing. TheR[:] = span{é,z7 |£ > 1 A j > 0}
(wherez is transcendental ovér, (x)). A total ordering on these basis
functions will be defined by associating a nonnegative integer—called
the weight—to each function. The ordering will be parameterized by
the number associated with Let this be denoted by(z). Then the
weight of the basis function, =’ is given by

p(de’) = vp (67 ")+ ip(2). (14)

An ordering can now be defined using some lexicographic rule to break
ties, for example,

Sincef — h € L{(k + g — 1)P..), the sum of zero orders is at most
k+g—1s0s,.(u,v) < k+ g—1which implies

(f=h)js=fii—hji = ui_1yr4; = Vimt)ity
so(f —h);: =0if j < 8.(u,v,4) and, therefore,
vp (f —h) > 8-(u,v,9). (13)

Now
se(u,0) =) se(uv.i) <Y wp (f = D).
i=1 =1

mzj < (baZh =
p(0ez’) < p(6az”) V (p(d02”) = p(daz’) N j < b).
However, in this context only the weighting is important.

Example 25: Letw be a primitive element df, with w? + w41 = p is extended to any nonzero functionitjz] by the following def-
0. Consider the Hermitian function field over, defined by the curve inition:

(15)
d-(u,v)=n—8-(u,v) >n—k—g+1. O
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Definition 26: Letf € R[z]\{0}. Supposethat = 3", . fe 0z’ whereb, andt satisfy

and thatp(z) is given. Then the weight of is defined as b. s+ 1 b+ 1
| ( ’)p<z> b~y <n ( ) < ( ’ )pu)—mg
p(f) = max{p(dez’) | fe.; # 0} 2 ‘ 2 2 ‘
with p given by (14). thy — g(t) <n <5‘2* 1) - <<Z’2) p(2) = (be — l)g)
The following lemma describes the weight of the basis functions: < (t+1)b, — g(t +1).

Lemma 27: Suppose that the basis functions,, ¢, - - -, of R[z] DetermineQ(z) € R[z]\{0} so that
are enumerated increasingly with respect to the ordering induced by
the weightingp(z) > 29 — 1 p(Q) < 4
i - 0. 5 —
p(0) < p(1) < . and, furthermore, foi € {1,---,n'}, « € {0,---,s — 1}, and

je{0,---,r(s—a)—1}
Letj € N be given and let and¢ satisfy
b . b+1
<2)ﬂ(2)—(b—1)gﬁj < < 5 )p(:)—bg Next, let

tb—g(t) <Jj- <<g>ﬂ(3)_ (b— 1)9) < (t+ 1)b—9(t+ 1) Ts i= 1 — V—SJ -1

s

QL =o. (16)

whereg(¢) is given by (10).

The weight ofy, is now given by and find all factors of) of the formz — f with f € L((k+g—1)P~).

If d-(f,w) < 75 then includef in the output list.
p(;) = (b—1)p(z) +t. To prove that the output list contains all codeworfisP,») &
C(P,r, k) withd,(f,w) < 7, it must be proven that the polynomial

Proof: Group the basis functions into disjoint setg; , Mo, - - -, O exists and that it has the right factors.

where
Theorem 30: ((z) satisfying the conditions above exists.
M. = {v¢|(c—1)p(z) < p(¢e) < ep(z)}. Proof: Equation (16) states
Observe that for eact with 0 < #' < p(z) the number of functions i ) _ [s+1
in M. with weightt' + (¢ — 1)p(z) is exactlyc if ¢’ is a nongap and w(rs” —r(0+ 14+ (s=1)))=nl ",

- —1if #'i .S . . . .
¢ v 1sagap. 0 conditions on the polynomia). Each of these conditions is a homo-

| M| = c(p(z) —g) +(c=1Dg=cp(z) — g geneous linear equation in the coefficientshfBy Lemma 27 there
and are atleast(“}') + 1 basis functions of?[] with weight at most.,
. so there arez(sf) + 1 unknown coefficients. Therefore, a nonzero
| M|+ | M|+ -+ | Me—y| = <2> p(z) — (c—1)g. solution exists. O
By the definition ofb it is seen that); € M, and by the definition of, LeFrI::Jnoafgl: If f € L{(ktg—1) Poc) thenv: (Q(f)) 2 s8,(f, w, 1).
p(j) = (b= 1)p(z) + 1. O '
bs—1
Definition 8 is generalized as follows. : < e (e
g Q=Y (f —w)Q7.
Definition 28: Letw = (wq,"+,wn—1) € Fy withn = rn’. a=0
Then define Sinceve, (f — w'”) > s,(f, w,i) we have that
r—1 . ) )
'LlV(i) = Z w(ifl)r+j¢§'f€i+gil)- Up; ((f - w(t))u) > a/s"(fv w, ).
J=0 Fora € {0,---,s — 1} (16) ensures that
Notice that for anyf € £({Px,) ve, (QM) > r(s — ).
v, (f —w'?) > 8. (fw.d) Therefore,
Furthermore, if ve, ((f — w')*Q™ ) > r(s — a) + as, (f.w.i)
deg(Q) > s (fiw,i)(s — a) + as-(f,w,i)
N (0)‘/0 _ sl » & ’ ”
Qx) = ZO Q2" € R[] = s8.(f,w,i) O
thend) can be written as follows: Theorem 32:If a codeword f(P,r) € Cp.(P,r.k) has
des(@) (i) (i)a (i) d.(f,w) < 7, then(z — f)| Q.
Q(z) = ZD QI (z—w)r, Q" eR, Proof: By Lemma 313" vr, (Q(f)) > ss.(f,w), but

{s {
Now the algorithm can be stated. - (fiw) <n— {?J — 1= s (fw) 2 {?J +1
Algorithm 29: As input take the code€'»__(P,r, k), a received andvp, (Q(f)™") < € < ss-(f,w). SOQ(f) = 0 andz — f is,
word w, and a parameter > 1. therefore, a factor of). O

Letp(z) :=k+g - land An upper bound on the size of the output list is given by the following

Lo = (bs — L)p(z) + ¢ theorem:
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Theorem 33: The number of codewords returned by Algorithm 2%nd it can be verified that indeed
is less tharb,. 2 2 2 2 2 2 2
¢ wrtwy)f=14+wet+we x
Proof: By the proof of Lemma 27 the degree®@fis at mosb,—1. (W +wrtoTy)f tortwr +2y 2+ v 3/3—1— 11’2 4 4
Therefore,() can have at mogt, — 1 factors of the form: — f so the twrty” oy 2Tyt +way
number Of COdeWOrdS returned by the algorithm iS at ﬂlosﬂ D SO ’[he method corrects ’[he two errors in th|s case.

A simple modification of Algorithm 29 (generalizing Algorithm 15)  EXPeriments indicate that the algorithm often corrects up-tis-

gives an efficient and simple algorithm for unique decoding of the co&%nce_u” —k i 9)/2]. . . L
Cp...(P,r. k). However, this algorithm which is described in the fol- Notice thatifaC’s (P, r, k) code isused in the situation of Example

lowing, is only guaranteed to correct uptalistance| (n — k—g) /2] — 18 the effect will be close to that of using a very long MDS code. For
95 ¢ 4 1 I
g, which isg less than half the minimunr-distance. To be guaranteed®*@mPple, the256,192) codeC'p. (P, 4,192) mentioned above will

to correct up to (and beyond)distance| (n — k — ¢)/2], Algorithm N Practice usually correct up to 29 errors.
29 must be used for a sufficiently large value of the parameter

Letaw+ /3 < (. For anya € {0,---,a—g(a)}, andb € {0, -,
[ (o) (B)

IX. CONCLUSION

B—g(B)}, 6,9y € L({Px). Definec(a, b, j) by In this correspondence, efficient list-decoding methods have been
—g(0) presented for the codes introduced in [1]. The codes are generaliza-

@fi)@(z;"i) _ Z e(a,b,j)b;.i. tions qf Reed—solomon and one.p0|.nt algebralc-g.eometry qodes. The

’ Plaprt decoding algorithms are generalizations of decodings algorithms pre-

sented in [2] for Reed—Solomon and algebraic-geometry codes, and

This makes sense sinee, (@Eﬂ’q&ﬁ) > a + b. Notice thate(a, b, j)

results analogous to the ones obtained in [2] are obtained here with re-

depends orf, , and3 as well, however, in the following, these num-spect to error-correcting capability and upper bounds on the number of

bers will be given by the context.

Algorithm 34: LetQ = Q@ + 2Q™ e F,(x)[z]\{0} wherez is
transcendental ovét, (), and with

QW er <QWJ +g- 1) Poo> and
oW e <<{”_k+y+2—‘ +g- 1) pOC)

and, furthermore, fot < i < »’ andj < r

j J—a
Q(;(,Jz) + Z Z C(CL, b'/.j)w(ifl)rﬁ»anjz =0.
a=0 b=0
If there exists a codeworfi(P,r) € Cp__ (P, r, k) with d,.(f,w) <
L(n =k —g)/2] — g thenf = —Q©/Q™.

Notice that for ar(»’, ') AG code it is normally possible to correct B3l
up to [(n' — k' — g)/2] errors using a relatively sophisticated algo- [4]
rithm, see, for example, [7]. If a Welch—Berlekamp type algorithm is
used (the above method for= 1) only [(n' — k' — ¢)/2 — g] errors
are guaranteed to be corrected. ]

For example, consider using a Hermitian code dvgrwith length 6
64 and dimensiod8, and compare this to usin@r__ (P, 4, 192) based
on the same curve. Four codewords in the Hermitian code will be able to[7]
correct some error patterns of weight upl{@64 — 48 — 6)/2] = 20;
however, a codeword af'r__ ( P, 4,192) will be able to correct some
error patterns with weight up 256 — 192 — 6)/2] — 6 = 23.

The following example shows the use of Algorithm 34.

Example 35: This is a continuation of Example 25. Suppose that
F(P,2) is sent, but the following word is received:

w=(w,w,0,0",w Lwl00’ lww’ 1,0 w)

which means that two errors happened, on positioasd15, respec-
tively, with the leftmost position being numberSow has2-distance
2to f(P,2).

Cp.(P,2,11) is a(16,11) code with minimumr-distances. In
this case, the method in the beginning of this section should be able to
correct errors only up t@-distance[ (16 — 11 — 1)/2| — 1 = 1. But
proceeding as described, the polynondjais determined as

Q=1+we+’2> +y° + 27y + 2y’ +wa’y’
tay® +2%y" +wry') + (W0 + wr + wiy)z

codewords in the output.

When comparing the performance of Reed—Solomon and Hermitian
codes with the performance of theidistance counterparts it is clear
that ther-distance codes—which are longer—perform better provided
that the error patterns can be assumed to follow-théstance. If error
patterns are distributed according to the Hamming distance, the per-
formance seems to be at the same order of magnitude, but with slower
decoding for the--distance codes. However, a more precise compar-
ison is still to be made.
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