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Extracting dynamics from threshold-crossing interspike intervals: Possibilities and limitations
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In this paper we estimate dynamical characteristics of chaotic attractors from sequences of threshold-
crossing interspike intervals, and study how the choice of the threshold level~which sets the equation of a
secant plane! influences the results of the numerical computations. Under quite general conditions we show
that the largest Lyapunov exponent can be estimated from a series of return times to the secant plane, even in
the case when some of the loops of the phase space trajectory fail to cross this plane.

PACS number~s!: 05.45.2a

I. INTRODUCTION

The continuous-time evolution of many systems is ac-
companied by striking changes in the physical variables that
are repeated more or less regularly. This situation typically
arises in the biological sciences, and is encountered in neu-
robiology ~neuron firings corresponding to voltage spikes
@1#!, cardiology (R peaks of electrocardiograms@2#!, mem-
brane biology~bursting oscillations of the cell membrane
potential @3#!, etc. Systems with this type of dynamics are
often analyzed by processing time intervals between the rel-
evant events@for example, interspike intervals~ISI’s! @4##.

Different models of spike generation are known. Within
the framework ofintegrate-and-fire~IF! models@5–8#, a sig-
nal S(t), being a function of the variables of a low-
dimensional dynamical system~DS! is integrated from some
momentT0. The timesTi when spikes occur can then be
defined by the equation

E
Ti

Ti 11
S~ t !dt5u, I i5Ti 112Ti , i 51,2,3, . . . , ~1!

whereu is a firing threshold, andI i are the interspike inter-
vals ~IF ISI’s!. When the specified thresholdu is reached, a
sharp pulse is generated@Fig. 1~a!#, and the value of the
integral is reset to zero.

Threshold-crossingmodels~TC! @6#, on the other hand,
assume the existence of a threshold levelQ, which defines
the equation of a secant planeS5Q @S(t) is now a variable
of a DS#, and measure time intervals between successive
crossings of the given level by the signalS(t) in one direc-
tion, e.g., from below and up~TC ISI’s! @Fig. 1~b!#. From the
viewpoint of dynamical system theory, TC ISI’s are the
times when the phase trajectory returns to the secant plane.

The problem of ISI analysis is important when, for what-
ever reason, the full signalS(t) cannot be recorded, and only
a sequence of firing times is available in the course of the
experiment. A sensory neuron that transforms a time-varying
input signalS(t) into the resulting output spike trains may
serve as a classical example. This transformation was previ-
ously investigated within the framework of information
theory @9#.

A sensory neuron represents a threshold device with an
input and an output: at the input a signal of complex struc-
ture is received, and at the output a series of pulses is mea-

sured. Since the output pulses are identical and their shape
does not depend on an external force, the information about
the properties of the input signal can be encoded only in time
intervals between neuron firings. A question arises: How can
a characterization of the input signal be provided when pro-
cessing a spike train only? During the last years, new insight
into the analysis of spike-train data has appeared. An ISI
may be considered as a new state variable allowing us to
characterize the low-dimensional dynamics at the input of a
neuron from the observed spike train@5–8,10–12#. Follow-
ing Sauer@5#, the attractor of a chaotic system can be recon-
structed@13# using a sequence of time intervals only, and
deterministically driven IF ISI sequences can be distin-
guished from stochastically driven series on the basis of a
calculation of the prediction error. Sauer@5,7# also proved an
embedding theorem for IF ISI’s. Following Hegger and
Kantz @10#, this theorem is valid for return times as well. A
detailed study of how the different properties of a chaotic
forcing are reflected in an output IF ISI series was performed
by Racicot and Longtin@8#. Ding and Yang@12# demon-
strated the results of chaos control based on TC ISI process-

FIG. 1. Models of spike generation:~a! integrate and fire, and
~b! threshold crossing. Black points indicate the time moments
when a threshold level is reached. A sequence of spikes represent-
ing the output signal is given at the bottom of each figure.
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ing. In our previous contribution@14#, an interpretation of
return times based on an analytical signal approach and the
notion of an instantaneous frequency for chaotic oscillations
was suggested, and metrical and dynamical characteristics of
some attractors were computed from TC ISI’s.

In the present work we study how the choice of a firing
threshold and the structure of return times influence the re-
sults of a reconstruction. Our investigations will be carried
out through the estimation of the largest Lyapunov charac-
teristic exponent~LCE! l1, which is perhaps the most infor-
mative invariant of a complicated dynamical process@15#.
We shall discuss the conditions under which the value ofl1
can be estimated from a sequence of TC ISI’s using standard
algorithms without modifications.

Our paper is organized as follows. Section II briefly dis-
cusses the methods for LCE computation. Features of the
reconstruction of dynamical characteristics from spike-train
data are the subject of Sec. III. In Sec. IV we focus on the
influence of the firing threshold and on a qualitative expla-
nation of the obtained results.

II. METHODS FOR ESTIMATION OF THE LARGEST
LYAPUNOV EXPONENT

In this section we shall briefly discuss the methods of
LCE computation in order to introduce some algorithmic pa-
rameters of importance for further analysis. It is well known
that an exponential instability of the trajectories is a charac-
teristic of dynamical chaos. A quantitative measure of this
instability is the positive LCE characterizing the sensitivity
of a DS to variations in the initial conditions. The number of
positive exponents in the LCE spectrum is determined by the
number of expanding directions of unstable periodic orbits,
although more complicated situations may also arise@16#.
Within the framework of the present study we shall limit
ourselves to chaotic regimes with a single positive Lyapunov
exponentl1. While computingl1 we shall assume that the
phase trajectory, being the solution of a DS for the chosen
initial conditions, istypical. Otherwise, the value of the ex-
ponent estimated during a finite time spanT can significantly
differ from the value which is obtained theoretically in the
limit T→`. As an example, Gambaudo and Tresser@17#
described a map with very long transient processes~during
up to 1 500 000 iterations it behaves ‘‘chaotically’’ before
falling into the periodic orbit!. From the viewpoint of the
LCE calculation this means that an apparently stable positive
valuel1 would be attained after part of the transient process,
and only after a very long calculation time will the value
decrease to zero. Long transient processes and complex
variations of the Lyapunov spectrum typically occur in the
vicinity of homoclinic trajectories of a saddle cycle under the
destruction of quasiperiodic oscillations@18#. The phenom-
enon of riddled basins of attraction that can be observed, for
instance, in connection with chaotic synchronization@19#,
also depends on the fact that the~transverse! Lyapunov ex-
ponent for specific orbits can differ markedly from the cor-
responding exponent for the typical trajectory@20#. To char-
acterize the behavior of a typical phase trajectory one
sometimes uses the concept of finite-time Lyapunov expo-
nents, which quantify the rate of expansion or contraction
during a finite-time spanT @16#.

If we know the equations of a DS generating a phase
trajectory, e.g., in the form of a set of ordinary differential
equations,

dxW

dt
5 fW~xW ,mW !, xWPRn, mW PRm, ~2!

wherexW is the state vector,fW is the nonlinear vector function,
and mW is the parameter vector, then the maximal Lyapunov
exponent~or the full LCE spectrum! can be estimated using
the algorithm suggested by Benettin et al.@21# and by Shi-
mada and Nagashima@22#. This technique is referred to as
the ‘‘standard’’ algorithm for LCE computing@23#. Detailed
discussions of the various aspects of this technique may be
found in several publications@24,25#.

The problem of estimation of the largest Lyapunov expo-
nent becomes complicated, if Eqs.~2! are unknown. How-
ever, at present a large number of methods for LCE compu-
tation from experimental data have been developed@26–28#.
The various ways in which to obtain dynamical characteris-
tics of chaotic attractors from observed time series are dis-
cussed in Refs.@29#. In the present study we use the method
suggested by Wolfet al. @26#. This algorithm uses the fact
that in many systems the growth of infinitesimal perturba-
tions is exponential,

r ~ t !5r 0el1(t0)(t2t0), ~3!

where r 0 is the distance between the so-called fiducial tra-
jectory and its neighboring orbit at the momentt0, and the
incrementl1(t0) defines the evolution in time of an initial
spatial separation between two state vectors.~The local
growth of perturbations is the function of a point in the phase
space. To show this circumstance, in this section we indicate
the dependencel1(t0), since the value of the time moment
corresponds to some point of the fiducial trajectory.! The
average along a typical phase trajectory value of the incre-
ment l1(t0) may be taken as the estimation of the largest
LCE. In practice, the method of Ref.@26# allows one to
compute the rate of divergence for small, but finite perturba-
tions. This may lead to problems in interpretation of the ob-
tained results from the mathematical viewpoint, although it
was analytically shown that the exponential growth may also
persist for a finite distance between the orbits@25#. Since
dependence~3! is carried out only for small enough values
r (t), renormalizations must be performed while computing
l1. In this procedure, new replacement vectors are chosen in
the direction of the most rapid divergence and with specific
sizes. Dealing with a single trajectory limits the possibility of
the choice of replacement vectors, and we need to search for
a compromise between minimizing its size and reducing the
orientational error. The restrictions of the vector size can be
formulated as follows:

l 1,r ~ t !, l 2 . ~4!

We need to select some minimal valuel 1 such that the effect
of noise in the experimental data is not accentuated by the
numerical calculations. The valuel 2 sets the condition of a
linear approach~or exponential divergence!, and can be in-
troduced usually as some fraction of the size of the attractor
~e.g., 5 – 10 %). In the frames of a ‘‘variable evolution time’’
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algorithm @26#, the replacement is performed when the dis-
tance between the orbits no longer satisfies the condition of
linear approximation (r . l 2). @As an alternative we may use
the ‘‘fixed evolution time’’ algorithm@26#, with the replace-
ment procedures at regular intervals in time, provided that
the distancer (t) does not become too large during the given
time spans.# Since the estimation ofl1 is based on the res-
toration of the attractor, the result will depend on the quality
of this reconstruction@30#. This leads to the appearance of
additional parameters of the numerical computations such as
the embedding dimension, the time delay between the phase
space coordinates of the reconstructed attractor, etc.@13#.

To end our brief description of the techniques for com-
puting the largest LCE, let us emphasize a final important
circumstance. In our study we consider the case when the
signal being processed~an input signal of IF or TC model! is
a one-dimensional projection of a phase trajectory which be-
longs to a chaotic attractor. When dealing with experimental
data the dynamical nature of a time series often cannot be
established. If the signal being analyzed is not deterministic
we cannot speak about Lyapunov exponents. In this case, the
algorithm of Ref.@26# defines only some quantitative char-
acteristics of the sensitivity to the choice of initial conditions
@31#, or a measure of predictability.

III. COMPUTING THE LARGEST LYAPUNOV
EXPONENT FROM INTERSPIKE INTERVALS

The problem of restoration of the chaotic attractor with
the one-dimensional projection acting as a forcing signal of
an IF model from interspike intervals was studied in a num-
ber of publications@5–8,11#. The quality of the reconstruc-
tion depends on the choice of a firing thresholdu. As shown
by Racicot and Longtin@8#, the mean value theorem in some
approximation allows us to consider an IF ISI at high firing
rates as a nonlinear transformation of an input signalS(t):

I i'u/Si , Si5S~Ti !. ~5!

Since the largest LCE is invariant under nonlinear transfor-
mations, the value ofl1 calculated from IF ISI’s should
coincide with the Lyapunov exponent estimated fromS(t).
However, the problem is to find a sufficiently good tech-
nique.

On the one hand, we can consider ISI’s only as a discrete
sequenceI 1 ,I 2 , . . . ,I N , restore the attractor using the delay
method (I i ,I i 11 , . . . ,I i 1m21! @13#, and estimate a measure
of chaoticity as the average rate of loss of information about
the initial conditions per ‘‘iteration.’’ The duration of an it-
eration can be taken approximately as the average value of
the interspike intervalsĪ 5(1/N)( i 51

N I i . We have carried
out such a calculation using the Ro¨ssler system

dx

dt
52~y1z!,

dy

dt
5x1ay,

~6!
dz

dt
5b1z~x2c!, a50.15, b50.2, c510.0

as an example. In analogy with Racicot and Longtin@8# we
have chosenS(t)5x(t)140 as the input signal, and have

fixed the thresholdu535. As a result an underestimated
value of the largest Lyapunov exponent was obtained~with
an error of about 25%).

Another approach to the problem of LCE estimation con-
sists of the following: If the sequence of IF ISI’s is known,
according to Eq.~5!,

1

I i
'

1

u
Si5kS~Ti !; ~7!

i.e., at fixed momentsTi we can determine the values of the
input signal multiplied by some constantk. Knowing the
valueskS(Ti), and aiming to restore the forcing signal as a
continuous-time variation, we suggest interpolating a smooth
function Sint(t) ~e.g., a cubic spline! into the points 1/I i at
the momentsTi . The interpolation will allow us to introduce
a constant step in time, and to restore with some accuracy the
linear transformation of the input signal, i.e.,Sint(t)'kS(t)
@Fig. 2~a!#. HenceSint(t) will maintain the metrical and dy-
namical properties of an attractor corresponding to the cha-
otic forcing. Clearly, the above procedure is carried out
within a certain accuracy, taking into account both the errors
of interpolation and the approximate character of Eq.~5!.
However, as one can see from Fig. 3~a!, the valuel1 com-
puted from the signalSint(t) using the algorithm of Ref.@26#
coincides with the result of an estimation ofl1 directly from
S(t) ~i.e., with the largest Lyapunov exponent of the original
continuous system!. Note that we have obtained a signifi-
cantly smaller error of calculation than in the previous case
~wherel1 was computed from a discrete sequence of ISI’s!.
We explain this result as follows. An increase of the number
of points in the interpolated temporal dependence in com-

FIG. 2. ~a! Solid curve representing the linear transformation of
the forcing signal (1/u)S(t), and a dashed curve corresponding to
the result of an interpolation of the points (1/I i)(Ti). The small shift
in time, which has no significance for the calculation of the LCE,
can be removed if we takeSi5S„(Ti1Ti 11)/2… in Eq. ~5!. ~b!
Black points connected by a dashed line are the points of the aver-
age instantaneous frequency obtained via a Hilbert transformation
at the time moments appropriate to the crossings of a threshold—

v̄H(Ti); white points connected by solid smooth curvev int(t) are
the values of (2p/I i)(Ti) at the same time moments.
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parison with the discrete sequence~i.e., an increase of the
number of points in the restored attractor! may lead to a
decrease of the orientational error of the replacement vector
while computing the LCE using the algorithm of Ref.@26#.
To obtain authentic results we have estimated the LCE for
different algorithmic parameters such as time delays, embed-
ding dimensions, and parametersl 2, specifying the condition
of the linear approximation@Fig. 3~a!#.

The problem of extracting dynamics from a TC ISI series
is more complex. A possible approach suggested in our pre-
vious work @14# consists of the following: First, the transi-
tion from a set of time intervalsI i to the pointsv(Ti)
52p/I i , appropriate to the values of the average instanta-

neous frequency during a return timeI i5Ti 112Ti , is car-
ried out;Ti are the times of crossing of a threshold level~i.e.,
the times when spikes occur!. Second, the pointsv(Ti) are
interpolated by a smooth function~also a cubic spline!
v int(t) for transformation into a signal with constant time
step @Fig. 2~b!#, used for reconstruction of the attractor. It
was shown@14# that the obtained temporal dependence al-
lows us to describe the qualitative behavior of the average
instantaneous frequency@Fig. 2~b!#, and that the recon-
structed attractor maintains the properties of the chaotic os-
cillations S(t) @Fig. 3~c!#.

Although in the present case we may consider other tech-
niques for computing dynamical characteristics~see, for ex-
ample, Refs.@28,32#!, we decided to use the same approach
and to estimatel1 from v int(t) by means of the method of
Wolf et al. @26#. We suppose that the interpolation allows us
to decrease orientational errors in the same way as for IF
ISI’s.

Some explanations to the method suggested by Janson
et al. @14# may be appropriate. The discussed technique does
not apply to the analysis of periodic oscillations of a period
1. In this casev(Ti)5const, and we have a single point in a
phase space. In the presence of noise we obtain some distri-
bution of return times, but an estimation of the dynamical
properties does not allow us to obtain true results. For com-
plex periodic or chaotic regimes a transition to slower tem-
poral variations occurs@i.e., v int(t) is a slower temporal
function in comparison withS(t)#. However, the metrical
and dynamical characteristics are maintained. This is con-
firmed by a computation of the largest Lyapunov exponent
for the Rössler system, the Anishchenko-Astakhov oscillator,
and a series of other models@14#.

To examine the workability of the technique for LCE es-
timation in the presence of noise, we added normally distrib-
uted random values to the forcing signal~with a variance of
1% of the amplitude! and to the threshold level~1% of the
value u for IF ISI’s, and 1022 for TC ISI’s!. The obtained
results @Figs. 3~b! and 3~d!# testify to the stability of the
algorithm to weak disturbances.

Figures 3~c! and 3~d! correspond to a thresholdQ50,
i.e., to the introduction of a Poincare´ sectionx50 of the DS.
In Sec. IV we shall discuss how the choice of a threshold
level influences the result of LCE computations from TC
ISI’s.

IV. INFLUENCE OF THE THRESHOLD LEVEL

The problem that we consider in the present study may be
reduced to the following: Can the dynamical characteristics
of a chaotic attractor be estimated only from a sequence of
return times to a secant plane. If yes~what, actually, follows
from the results of Hegger and Kantz@10#!, under what con-
ditions? Special interest is connected with the case when the
threshold levelQ is introduced in such a way that not all the
loops of the phase trajectory cross the secant planeS5Q.
Consideration of this case will allow us to formulate limita-
tions to our abilities to estimatel1 from interspike intervals.
To be sure in our conclusions, we shall compare the results
obtained with three different DS’s chosen as the source of
chaotic oscillationsS(t), namely, the Ro¨ssler system, the
nephron model@33#, and theb-cell model@3,36#. We shall

FIG. 3. The largest LCE vs time delayt at various values of the
parameterl 2 computed from a sequence of IF ISI’s without~a! and
with noise~b! and also from a TC ISI series without~c! and with~d!
noise. The embedding dimension was chosen to be equal to 5.
Dashed lines indicate the valuel1 of the original continuous system
estimated from the input signalS(t) by means of the algorithm of
Ref. @26# (l1'0.083). The method of Ref.@21# leads to the result
(l1'0.09).
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compare also the ‘‘variable evolution time’’ and the ‘‘fixed
evolution time’’ algorithms@26# for the largest LCE estima-
tion.

A. Rössler system

Consider Eqs.~6! and introduce, as illustrated in Fig. 1~b!,
a secant planex5Q. Here, S(t)5x(t). The largest
Lyapunov exponent computed from TC ISI’s at the different
values of the threshold level using the ‘‘variable evolution
time’’ algorithm @26# demonstrates a rather complex depen-
dence onQ. This is shown in Fig. 4~a!. As one can see from
this figure there are two regions (0<Q,4 and 10,Q
,13.5), within the limits of which the dynamical properties
of the chaotic attractor can be determined with good accu-
racy ~the error of estimation forl1 does not exceed 10–

15 %, and may be less if the length of time series increases!.
The dependencel1(Q) in Fig. 4~a! was obtained for series
of about 2000 return times.

Outside of the above intervals, the results differ signifi-
cantly from the valuel1 corresponding to the chaotic input
signal. The maximal error of estimation occurs forQ'5.35.
More detailed calculations ofl1 performed for several
thresholds are shown in Figs. 3~c! (Q50), 4~b! (Q511),
4~c!, and 4~d! (Q55.35). The sensitivity of the algorithm to
the choice ofl 2 does not allow us to obtain an authentic
estimation of the degree of chaoticity in the latter case.

Aiming to explain the complex behavior ofl1(Q), we
have analyzed the structure of the return times~Fig. 5!. In the
region 0<Q,4, a crossing of the threshold level occurs
during each oscillation. The sequence of time intervals~TC
ISI’s! is stationary@Fig. 5~a!#, and the size of the attractor
reconstructed from the interpolated temporal dependence
v int(t) using the delay method is defined by the distribution
of I i @Figs. 5~b! and 5~c!#.

An increase ofQ leads to the absence of a threshold
crossing during some oscillations:I i ’s arise with large values
@Fig. 5~d!#. The presence of several temporal scales in a se-
quence of TC ISI’s leads to the appearance of several spatial
scales in the reconstructed attractor@Fig. 5~e!#, and because
of different probabilities for large and smallI i ’s the phase
trajectory will belong to the smaller region of a phase space
('10– 15 % of the size of attractor! for a large part of the
time @Fig. 5~e!#. The condition of linear approximation~pa-
rameterl 2) should now be introduced for each spatial scale
separately; however, even at the essential reduction of the
given parameter the dependencel1( l 2) similar to Fig. 4~d! is
kept.

With further increase ofQ, time intervals occur corre-
sponding to three oscillations@Fig. 5~g!#. However, if the
probabilities of variousI i ’s are of the same order the se-
quence of TC ISI’s@Fig. 5~g!# preserves the dynamical prop-
erties of the forcing signalS(t). In the regionQ.13.5 there
are time intervals amongI i ’s corresponding to five or more
oscillations, with probabilities that are very small, but dis-
tinct from zero@Figs. 5~j! and 5~l!#. In this region it is obvi-
ously impossible to compute the value of the largest LCE.

On the basis of the above investigations, we can formulate
a number of conditions under which one can estimate the
dynamical characteristics of the Ro¨ssler system from TC
ISI’s using the ‘‘variable evolution time’’ algorithm@26#.

~1! The sequence ofI i ’s must be stationary, and the prob-
abilities of various return times in the distribution function
must be approximately of the same magnitude~for ranges of
I i ’s with probabilities distinct from zero!.

~2! The average value of the time interval (Ī ) should not
exceed the characteristic temporal scale of the system under
study ~prediction time or Lyapunov time@8,37#!.

Let us discuss these conditions. The first condition re-
quires an approximate balance of times during which the
phase trajectory belongs to various regions of the recon-
structed chaotic attractor in the presence of several spatial
scales. The second condition arises from the following prob-
lem: The increase of the average time intervalĪ under a shift
of the threshold level and the resulting excess of some char-
acteristic temporal scale of the system~the prediction time!

FIG. 4. ~a! The largest LCE computed from TC ISI’s vs thresh-
old level Q. Dashed lines indicate the ranges of error612%. ~b!
and~c! The positive exponent vst at variousl 2’s for the thresholds
Q511 and 5.35.~d! The maximal LCE vsl 2 at varioust ’s for the
threshold levelQ55.35.
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lead to a loss of information about the dynamics. As a con-
sequence, the maximal valuel1 which can be computed
from the TC ISI series decreases inversely proportional toĪ

@Fig. 6~a!#. However, even if the restrictions onĪ do not
allow us to obtain the largest Lyapunov exponent the tech-
nique for LCE computation can serve as a qualitative esti-
mation of a measure of chaoticity. For example, Fig. 6~b!
shows the dependence ofl1 on the control parameterc of
Eqs. ~6! computed by the method of Refs.@21,22# in com-
parison with results of an estimation of the largest LCE from
TC ISI’s measured by fixation of the fifth crossing of a se-
cant plane. We note the qualitative agreement in the varia-
tion of the two curves.

The above results were obtained within the framework of
the ‘‘variable evolution time’’ algorithm which realizes the
replacement procedures whenever a fixed spatial separation
between nearby phase trajectories is reached~the condition
of linear approach!. As one can see, for the caseQ55.35
this technique may not work for attractors with several spa-

tial scales in phase space. Formally, however, the algorithm
of Ref. @26# has no limitations with respect to how the re-
placement procedures can be carried out.

In particular, it is possible to analyze the average rate of
divergence for a fixed time spanTr ~the ‘‘fixed evolution-
time’’ algorithm of Ref.@26#!. However, in this case we have
an additional parameter of the numerical computations. IfTr
is chosen small, the calculation time increases significantly
~the search for nearest neighbors at each replacement proce-
dure taking a major part of the time!. Replacements that are
performed too often may also lead to an increase of the ori-
entational errors. On the other hand, having chosen a large
Tr we risk obtainning an underestimated valuel1 if the di-
vergence of nearby trajectories leaves the frameworks of the
linear approach during the given time span. To obtain an
authentic estimation of the largest LCE, its dependence from
Tr should be investigated, along with its dependence on the
time delay, embedding dimension, etc.

The ‘‘fixed evolution time’’ algorithm@26# requires more
calculation time. However, it allows us to estimate dynami-

FIG. 5. The sequences of TC ISI’s, phase portraits restored from the interpolated temporal dependencesv int(t) ~for simplicity we have
dropped the designation ‘‘int’’ in the figures! and distribution functions appropriate toQ50 @~a!–~c!#, Q55.35 @~d!–~f!#, Q511 @~g!–~i!#,
andQ515 @~j!–~l!#.
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cal characteristics of chaotic attractors at the presence of sev-
eral clearly expressed temporal scales, when it is not always
obvious how to introduce the condition of linear approach
~parameterl 2 in our designations! ~Fig. 7!. Thus the first of
the two conditions is no longer necessary.

So far, we have mainly discussed the technical aspects of
the method of Ref.@26#. If, aiming to generalize the obtained

results, we neglect for a moment the details of the algorithm,
then we can say that the sequence of return times maintains
the dynamical properties of a chaotic attractor even in the
case when not all the phase trajectories cross the secant
plane. Thus, at the restriction to the average value ofI i ’s
~second condition!, the largest Lyapunov exponent is invari-
ant to the choice of a threshold level.

This conclusion is not trivial. A shifting of the secant
plane clearly results in essential changes of the structure of
the return time map. While at the correct choice of the secant
~when all the phase trajectories cross it! the return time map
is similar to some extent to the Poincare´ map@Figs. 8~a! and
8~b!#, when shifting the threshold level the situation becomes
complicated@Fig. 8~c!#. Before discussing the obtained re-
sults let us consider other sources of chaotic oscillations.

B. Nephron model

Using the Ro¨ssler system as an example, we have found
that the largest LCE computed by the method of Ref.@26#
does not depend significantly on the details of the replace-
ment procedures if a sequence of TC ISI’s contains only one
temporal scale@Fig. 5~c!#. This is the simplest possible case.
Aiming to test the invariance of dynamical characteristics to
the change of a threshold, we are interested in processing
interspike intervals with several scales~i.e., with larger
ranges ofI i ’s!. One system demonstrating such a behavior,
in addition to the dependence on the choice of a threshold,
level, is the nephron model@33#.

FIG. 6. ~a! Estimation of the maximal LCE whenĪ exceeds the
characteristic temporal scale of a system.~b! The largest exponent
computed using the method of Refs.@21,22# vs a control parameter
of the Rössler system~solid curve! and the valuesl1 estimated
from TC ISI’s measured from every fifth crossing of the secant
plane~dashed curve!.

FIG. 7. ~a! The largest LCE computed from TC ISI’s vs thresh-
old level Q appropriate to the replacement procedures after a fixed
time span~curve 1!, and after a fixed spatial separation~curve 2!.
~b! The values ofl1 vs Tr at varioustP@2;5# for the threshold
Q55.35.

FIG. 8. ~a! Poincare´ map of the Ro¨ssler system.~b! and ~c!
Return time maps appropriate toQ50 and 11, respectively.
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The nephron is the functional unit of the kidney. Its main
structure is described in the publications by Mosekilde and
Barfredet al. @33#. Here a dynamical model of nephron au-
toregulation is presented in terms of the six ordinary differ-
ential equations

dPt

dt
5

1

Ctub
F ~12Ha!S 12

Ca

Ce
D Pa2Pg

Ra
2Freab2

Pt2Pd

RHen
G ,

dr

dt
5v r ,

dv r

dt
5

Pav2Peq

v
2dv r ,

~8!
dX1

dt
5

Pt2Pd

RHen
2

3X1

T
,

dX2

dt
5

3~X12X2!

T
,

dX3

dt
5

3~X22X3!

T
.

An explanation of the variables and parameter values is
given in Appendix A. The description of Eqs.~8! in more
detail can be found in Ref.@33# and references therein. We
may note, however, thatPt represents the fluid pressure in
the proximal tubule immediately after the glomerulus. Mea-
surements of this pressure for anesthetized rats show charac-
teristic self-sustained oscillations with a period of 20–40 sec
@34#, and for rats with elevated blood pressure the oscilla-
tions tend to become chaotic@35#. r denotes the radius of the
afferent arteriole leading blood to the nephron, and the vari-
ables denotedX1 ,X2, andX3 are intermediate variables in a
third order smooth delay. In total, the model represents a
feedback~the tubuloglomerular feedback! with a time delay
T and a relatively high loop gain. This gain is controlled to a
large extent by the relation between the equilibrium pressure
Peq in the active part of the afferent arteriole and the flow of
nephronic liquid into the loop of HenleFHen5(Pt
2Pd)/RHen . The model represents a relatively accurate ac-
count of the basic physiological mechanisms responsible for
the chaotic dynamics, and over the years it has been tested
and examined in many different ways.

Figures 9~a! and 9~b! show the two-dimensional projec-
tion of the chaotic attractor being the solution to the nephron
model and the temporal dependence of the first variable, the
tubular pressurePt . For anyQ @Fig. 9~b!# the sequence of
return times to a secant plane@Fig. 9~c!# is similar to the TC
ISI series of a Ro¨ssler system at large threshold levels. This
means that the same problems arise, namely, attractors with
several spatial scales, sensitivity to the choice of replacement
procedure while computingl1, etc.

The results of an estimation of the largest LCE at different
thresholds are given in Fig. 10~a!. We can see that the ‘‘vari-
able evolution time’’ algorithm@26#, with the replacement
procedures defined in terms of a fixed spatial separation be-
tween phase orbits, again lead to underestimated values
when chaotic regimes with clearly expressed temporal scales
are analyzed@curve 1 in Fig. 10~a!#. An acceptable accuracy
is obtained only under the condition that the probabilities of
variousI i ’s in the distribution function are of the same order
(1.2,Q,1.6). Computingl1 by means of the ‘‘fixed evo-
lution time’’ algorithm @curve 2 in Fig. 10~a!# is more effec-
tive. Thus the invariance of the dynamical characteristics is

confirmed at the restriction toĪ . Similar results can be ob-
tained if we computel1 when changing the control param-
eter of Eqs.~8!. This is illustrated in Fig. 10~b! ~also see
Appendix A!.

C. Pancreatic b-cell model

A very different example of a system with several clearly
expressed temporal scales is a burst oscillator~see Ref.@3#,
and references therein!. Bursting is a slow alternation be-
tween a silent phase and an active phase of fast oscillations.

Consider the equations of theb-cell model proposed by
Sherman@3#:

dV

dt
5@2I Ca2I K2gSS~V2VK!#/t,

~9!
dn

dt
5l~n`2n!/t,

dS

dt
5~S`2S!/tS ,

FIG. 9. ~a! and~b! The solution of Eqs.~8! in a chaotic regime.
~c! and~d! Series of TC ISI’s and a return time map appropriate to
Q51.3.
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I Ca~V!5gCam`~V2VCa!, I K~V,n!5gKn~V2VK!,

x`5
1

11exp@~Vx2V!/ux#
, x5m,n,S.

In accordance with Ref.@36#, V is the voltage across the
cell membrane,n is the fraction of potassium channels that
are open, andS is a slow variable which may be related as
the intracellular calcium concentration. Parameter values for
system~9! are given in Appendix B.

The solution to Eqs.~9! is shown in Fig. 11~a!. Shifting of
a threshold level over wide ranges does not significantly
change the probability distribution of TC ISI’s@Fig. 11~b!#
or the return time map@Fig. 11~c!#. Hence the largest
Lyapunov exponent does not depend on the choice of the
threshold, and can be estimated with good accuracy@Fig.
11~d!#. This again confirms the possibility of extracting dy-
namical properties of a chaotic attractor from a discrete se-
quence of time intervals in the presence of several temporal
scales.

Within the scope of the present study we cannot suggest a
more general proof of the invariance of the dynamical char-
acteristics to the choice of a secant plane~assuming, of
course, that the second condition is satisfied!. A possible
qualitative explanation consists of the following.

Consider, for simplicity, values of the average instanta-
neous frequencyv(t i)52p/I i at the momentst i5 i Ī , i.e.,
with a uniform step in time. Let us choose two pieces of the
signalS(t), each containing five oscillations as shown in Fig.
12~a!. For each of these pieces a small shift of the threshold
level leads to the situation when, during the third oscillation,
the trajectory does not cross the threshold any longer@Fig.

12~a!#. At the transition to interpolated temporal depen-
dences, for the levelQ1 we shall obtain two smooth curves
v1(t) and v2(t) passing through the pointsv1

15v int(t i)
52p/I i , . . . ,v4

15v int(t i 13)52p/I i 13 and v1
25v int(t j )

52p/I j , . . . ,v4
25v int(t j 13)52p/I j 13 at the moments

t i , . . . ,t i 13 and t j , . . . ,t j 13 @Fig. 12~b!#. We indicate each
of two chosen pieces of the signalS(t) by indexesi and j.
The t i ’s and t j ’s refer to the times when the given pieces
cross the thresholdQ1. If the valueD05uv1

12v1
2u is small

enough, the condition of linear approach is also satisfied for
the distance between the curves during the computation time
~three interspike intervals!; then the one-dimensional ana-
logue of the local Lyapunov exponent can be determined as
follows @Fig. 12~b!#:

FIG. 10. ~a! The largest LCE computed from TC ISI’s vs thresh-
old level Q appropriate to the replacement procedures after a fixed
spatial separation~curve 1!, and after a fixed time span~curve 2!.
The dashed line indicates the value ofl1 estimated fromPt(t)
using the method of Ref.@26#. ~b! The dependence ofl1 on the
control parameter of Eqs.~8! ~see Appendix A! computed from
Pt(t) using the algorithm of Ref.@26# ~black points! and from TC
ISI’s ~white points!.

FIG. 11. ~a! The potential of the cell membrane.~b! The prob-
ability distribution of return times.~c! Return time map.~d! The
largest LCE vs the control parameter computed fromV(t) by means
of the method of Refs.@21,22# ~black points!, and directly from
return times~white points!.
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l1~ t0!5
1

3 Ī
ln

D1

D0
, D15uv4

12v4
2u. ~10!

The insignificant shift of the threshold~the levelQ2) re-
sults in a change of the sequencesvk

m . For each of them the
pointsv1

m andv4
m remain practically unchanged, and instead

of v2
m andv3

m there will be one pointv2
m̄, but with a value

half as large as in the previous case@Fig. 12~c!#. This, in
turn, results in changes of the rate of divergence of the tra-
jectories at the local regions of the attractor. However, the
average characteristics of the degree of chaoticity will re-
main the same as determined by Eq.~10! @Fig. 12~c!#. A
similar discussion can be carried out for a nonuniform step in
time. Clearly, these arguments do not serve as a strict math-
ematical proof, and should be interpreted only as a qualita-
tive explanation.

Note that there are no theoretical results showing how an
attractor’s characteristics depend on the threshold level. In
theory, the correct Lyapunov exponent can be found for any
Q. For example, Sauer’s theorem@7# has no limitations on
the value of a threshold. But, in the work@6# ~as well as in

other papers, see e.g., Ref.@8#! it was mentioned that in
practice~when processing finite amount of data!, the quality
of reconstruction depends onQ. Following Ref.@6#, at some
levels, ‘‘for a fixed embedding dimension the length of dy-
namical time spanned by a reconstructed ISI vector becomes
comparable with the decorrelation time of the chaotic sys-
tem, which has the effect of attractor degrading.’’

The aim of our paper is a numerical testing of the possi-
bilities to estimate perhaps the most informative invariant of
a complicated dynamical process~the largest LCE! from
time intervals. Using several models we compute the LCE
with good enough accuracy even in the case when TC ISI
series contain large intervals provided that the mean return
time does not exceed some temporal scale~which corre-
sponds approximately to the Lyapunov time, i.e., to the in-
verse Lyapunov exponent!. Moreover, if some loops of
phase space trajectory fail to cross the threshold, the value of
the LCE can be extracted almost with the same accuracy as
in the case when the crossing of a threshold takes place dur-
ing each oscillation. These results differ from the previous
computing of correlation dimension@6#, that was signifi-
cantly more sensitive to the choice ofQ. Similar results were
obtained for other models@38#.

Note also that, in practice~when processing finite amount
of data!, the results of numerical computations do not sig-
nificantly depend on the length of time series if all other
parameters are fixed~see Fig. 13, for example!. The algo-
rithm of Ref. @26# is considerably more sensitive to the
choice of initial separations between two orbits in the phase
space. This dependence is similar to the one in Fig. 4~d! for
large thresholds, and gives no possibility of estimating the
measure of chaoticity. The reason for this is as follows:
When large ISI’s are analyzed, a small~but finite! perturba-
tion leaves the framework of the linear approach during the
time between spikes, and can reach the size of attractor. As a
result, an underestimated value of the LCE is obtained@see
Fig. 4~a! for large thresholds#.

V. CONCLUSIONS

In the present work we have considered two different
models of spike generation~namely, the integrate-and-fire
model and the threshold-crossing model!, and have sug-
gested a procedure for a transition to a continuous-time
variation for IF ISI’s, allowing us to reproduce qualitatively
the linear transformation of an input signal for the given
model. We have analyzed how the choice of threshold level
influences the results of reconstruction of the dynamical

FIG. 12. ~a! A piece of the signalS(t) and two thresholdsQ1

59 andQ2510. ~b! The interpolated temporal dependencesv1(t)
and v2(t) for the two pieces ofS(t) appropriate to the threshold
Q1. Black points indicate the values ofvk

m . ~c! The interpolated
temporal dependencesv1(t) andv2(t) for two pieces ofS(t) ap-
propriate to the thresholdQ2. Dashed curves indicate the depen-
dences shown in Fig. 12~b!.

FIG. 13. The positive exponent estimated from the TC ISI series
of the Rössler system vs the length of time series at various thresh-
olds Q511 ~dependence 1!, Q515 ~dependence 2!, and Q517
~dependence 3!.
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characteristics from a series of return times~TC ISI’s!, and
showed that under quite general conditions the largest
Lyapunov exponent is invariant to the choice of a threshold,
and can be determined from TC ISI’s even in the case when
not all loops of the phase trajectory cross the secant plane. Of
course, when speaking about the invariance of dynamical
properties we understand that the largest LCE can be esti-
mated only with a certain accuracy, taking into account both
the finite amount of data and the dependence of the algo-
rithm @26# on parameters of the numerical computations. Let
us note that, instead of shifting a secant plane, we could fix a
constant value of a threshold (Q.0) and change only the
amplitude of the input signalS(t). That would lead to similar
conclusions.

In our paper the results obtained for a Ro¨ssler system, a
nephron model, and a pancreaticb-cell model are demon-
strated. Actually our study was not limited only to these
systems. Similar conclusions follow from the analysis of
other models of nonlinear dynamics and mathematical biol-
ogy, for which the possibility of extracting dynamics is con-
firmed if the average value of the return times does not ex-
ceed a characteristic temporal scale of the dynamical system.
A number of interesting results have been obtained for cha-
otic attractors with several equilibrium points relative to
which the movement of a phase trajectory takes place~for
example, the Lorenz system!. However, the analysis of such
systems is a rather complex problem, which will constitute a
separate investigation.
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APPENDIX A: NEPHRON MODEL

The relations between variables in Eqs.~8! are as follows:

Ra5Ra,0@b1~12b!r 24#,

Pg5Pt1aCe1bCe
2 ,

Pav50.5S Pa1Pg2b~Pa2Pg!
Ra,0

Ra
D ,

Peq5p1~r 21!1p2 exp10(r 20.8)

1CS p31p4r 1
p5

11exp213(r 20.4)D ,

CS 3X3

T D5Cmax2
Cmax2Cmin

11expaS 3X3

TFHen,0
2SD ,

S512
1

a
lnS Ceq2Cmin

Cmax2Ceq
D

The value ofCe is uniquely defined from an algebraic equa-
tion:

S b1
Re

Ra
bHaDCe

31S a1
Re

Ra
bCa~12Ha!1

Re

Ra
aHaDCe

2

1S Pt2Pv1
Re

Ra
aCa~12Ha!1

Re

Ra
~Pt2Pa!HaDCe

1~Pt2Pa!
Re

Ra
Ca~12Ha!50.

Model variables.

Variable Explanation

Pt Proximal tubular pressure
r Radius of the active part of the afferent

arteriole
X1 ,X2 ,X3 Intermediate variables in the delay chain
Ce Plasma protein concentration in the effer-

ent arteriole
Pg Glomerular pressure
Ra Flow resistance of afferent arteriole
Peq Equilibrium pressure in the variable part of

the afferent arteriole
Pav Average pressure in the variable part of the

afferent arteriole

Model parameters.

Ctub53.0 nL/kPa Cmin50.20
Ha50.5 Cmax50.44
Pa513.3 kPa Ceq50.38
Pv51.3 kPa Ca554 g/L
Pd50.6 kPa a52231023 kPa ~L/g!
Fhen,050.2 nL/s b50.3931023 kPa (L/g)2

Freab50.3 nL/s p151.6 kPa
Rhen55.3 kPa (s/nL) p25631023 kPa
Ra,052.3 kPa (s/nL) p356.3 kPa
Re51.9 kPa (s/nL) p457.2 kPa
v520 kPa s2 p554.7 kPa
d50.04 s21 T53 s
b50.67 a514.5

APPENDIX B: PANCREATIC b-CELL MODEL

Model parameters.

gCa53.6 Vm5220 mV
gK510.0 Vn5216 mV
gS54.0 VS5240 mV
t520 ms um512 mV
tS535 s un55.6 mV
VCa525 mV uS510 mV
VK5275 mV l50.85
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