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Abstract

In the pickup and delivery problem with time windows (PDPTW), vehicle routes must
be designed to satisfy a set of transportation requests, each involving a pickup and
a delivery location, under capacity, time window, and precedence constraints. This
paper introduces a new branch-and-cut-and-price algorithm in which lower bounds are
computed by solving through column generation the linear programming relaxation of
a set partitioning formulation. Two pricing subproblems are considered in the column
generation algorithm: an elementary and a non-elementary shortest path problem.
Valid inequalities are added dynamically to strengthen the relaxations. Some of the
previously proposed inequalities for the PDPTW are also shown to be implied by the
set partitioning formulation. Computational experiments indicate that the proposed
algorithm outperforms a recent branch-and-cut algorithm.

Keywords: pickup and delivery, column generation, branch-and-price, branch-and-cut,
valid inequalities.



1 Introduction

In the Capacitated Vehicle Routing Problem (CVRP), a fleet of vehicles based at a common
depot must be routed to visit exactly once a set of customers with known demand. Each
vehicle route must start and finish at the depot and the total demand of the customers
visited by the route must not exceed the vehicle capacity. In the Vehicle Routing Problem
with Time Windows (VRPTW), a time window is associated with each customer and the
vehicle visiting a given customer cannot arrive after the end of the time window. The
Pickup and Delivery Problem with Time Windows (PDPTW) is a further generalization of
the VRPTW in which each customer request is associated with two locations: an origin
location where a certain demand must be picked up and a destination where this demand
must be delivered. Each route must also satisfy pairing and precedence constraints: for
each request, the origin must precede the destination, and both locations must be visited by
the same vehicle. The VRPTW can be seen as a special case of the PDPTW in which all
requests have a common origin which corresponds to the depot.

The PDPTW has applications in various contexts such as urban courier services, less-
than-truckload transportation, and door-to-door transportation services for the elderly and
the disabled. In the latter case, narrow time windows are often considered and ride time
constraints are imposed to control the time spent by a passenger in the vehicle. The resulting
problem is called the Dial-a-Ride Problem (DARP).

The CVRP and VRPTW are well known combinatorial optimization problems which
have received a lot of attention (see, e.g., Toth and Vigo, 2002). Since it generalizes the
VRPTW, the PDPTW is clearly NP-hard. Over the last few decades, several heuristics
have been proposed for the PDPTW. However, because of the difficulty of the problem,
work on exact methods has been somewhat limited.

Two main approaches have been used to solve the PDPTW exactly: branch-and-price
and branch-and-cut. Branch-and-price methods (see, e.g., Barnhart et al., 1998; Desaulniers
et al., 1998) use a branch-and-bound scheme in which lower bounds are computed by column
generation. The first branch-and-price algorithm for the PDPTW was proposed by Dumas
et al. (1991) who considered a set partitioning formulation of the problem in which each
column corresponds to a feasible vehicle route and each constraint is associated to a request
that must be satisfied exactly once. The resulting pricing subproblem is a shortest path
problem with time window, capacity, pairing and precedence constraints. This problem is
solvable by dynamic programming and the authors used an algorithm similar to the one
developed by Desrosiers et al. (1986) for the single-vehicle pickup and delivery problem
with time windows. Several label elimination methods were proposed to accelerate the
dynamic programming algorithm, and arc elimination rules were used to reduce the size of
the problem. The authors pointed out that their approach works well when the demand
of each customer is large with respect to vehicle capacity. The largest instance solved with
their approach contains 55 requests.

Another branch-and-price approach for the PDPTW was later described by Savelsbergh
and Sol (1998). Their approach differs from that of Desrosiers et al. in several respects:
construction and improvement heuristics are used to solve the pricing subproblem; a column
management mechanism is used to reduce the size of the column generation master problem;
columns are selected with a bias toward increasing the likelihood of identifying feasible
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integer solutions; branching is performed on additional variables representing the fraction of
a request that is served by a given vehicle; and a primal heuristic is used at each node of
the search tree to compute upper bounds. Column generation was also used recently by Xu
et al. (2003) and Sigurd et al. (2004) to address variants of the PDPTW arising in long-haul
transportation planning and in the transportation of live animals, respectively.

The second family of exact approaches for the PDPTW is branch-and-cut. In branch-
and-cut, valid inequalities (i.e., cuts) are added to the formulation at each node of the
branch-and-bound tree to strengthen the relaxations which are usually solved by the simplex
algorithm. Relying on the previous work of Balas et al. (1995) and Ruland and Rodin (1997)
on the Precedence-Constrained Traveling Salesman Problem (PCTSP) and the TSP with
Pickup and Delivery (TSPPD), Cordeau (2006) developed a branch-and-cut algorithm for the
DARP based on a three-index formulation of the problem. This algorithm was able to solve
instances with four vehicles and 32 requests. It was later improved by Ropke et al. (2007) who
compared different formulations of the DARP and PDPTW, and introduced two new families
of inequalities for these problems. One is an adaptation of the reachability cuts introduced
by Lysgaard (2006) for the VRPTW, while the other is called fork inequalities. Both families
can also be used in the context of column generation and will be described in Section 4. Using
these inequalities, Ropke et al. were able to solve DARP instances with eight vehicles and 96
requests. Another branch-and-cut approach, based on a two-index formulation, was proposed
by Lu and Dessouky (2004). This formulation contains a polynomial number of constraints,
but relies on extra variables to impose pairing and precedence constraints. Instances with
up to five vehicles and 25 requests were solved optimally with this approach.

For reviews on pickup and delivery problems, the reader is referred to the works of
Savelsbergh and Sol (1995), Desaulniers et al. (2002) and Cordeau et al. (2007). A polyhedral
study of the TSPPD was also recently performed by Dumitrescu et al. (2008).

In this paper, we introduce a new branch-and-cut-and-price algorithm for the PDPTW. It
is well known that set partitioning formulations of vehicle routing problems tend to provide
stronger lower bounds than formulations based on arc (flow) variables (see Bramel and
Simchi-Levi, 2002). Another motivation for studying branch-and-cut-and-price algorithms
for the PDPTW is that the most successful exact algorithms for the related CVRP and
VRPTW are of this type. For the CVRP the best results have been obtained by Fukasawa
et al. (2006) and Baldacci et al. (2008), while the best results for the VRPTW have been
presented by Jepsen et al. (2008) and Desaulniers et al. (2008). A branch-and-price approach
for a related problem involving simultaneous pickups and deliveries was also described by
Dell’Amico et al. (2006).

Two different shortest path problems have been considered as pricing subproblems for
the PDPTW in the literature. In the first application of column generation to the PDPTW
(Dumas et al., 1991) a non-elementary shortest path problem was solved, while later ones
(Sol, 1994; Sigurd et al., 2004) have used an elementary shortest path problem. Both of these
problems are NP-hard. Little is known about how the relaxations obtained by solving these
two subproblems differ. The only result we are aware of is by Sol (1994) who has shown an
example where the objective of the relaxation obtained with the non-elementary problem is
half of the objective obtained with the elementary one.

The contributions of this paper are threefold. First, we show that introducing valid
inequalities in the set partitioning formulation, expressed in the variables of the compact
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formulation, ruins an important property of the cost matrix of the pricing problem. We
show how the property can be reestablished by perturbing the cost matrix of the pricing
problem. This allows us to use a fast algorithm for the pricing problem together with
valid inequalities in the set partitioning formulation. Second, we show that some previously
proposed inequalities are implied by the LP relaxation of the set partitioning formulation
and that the elementary relaxation implies more inequalities than the non-elementary one.
Third, we report extensive computational experiments on a large set of instances.

The remainder of the paper is organized as follows. Section 2 defines the PDPTW and
introduces mathematical formulations of the problem. Section 3 discusses the two pricing
subproblems that we use within the branch-and-price algorithm. Section 4 describes valid
inequalities that can be added to the formulation, while Section 5 studies the relationships
between these inequalities and the set partitioning formulation of the problem. The branch-
and-cut-and-price algorithm is then described in Section 6. Finally, computational results
are reported in Section 7, followed by conclusions in the last section.

2 Mathematical Formulation

In this section, we introduce the notation that is used throughout the paper. We then present
a standard three-index model of the problem, followed by a set partitioning formulation.

2.1 Notation

Let n denote the number of requests to satisfy. We define the PDPTW on a directed graph
G = (N,A) with node set N = {0, . . . , 2n+ 1} and arc set A. Nodes 0 and 2n+ 1 represent
the origin and destination depots, while subsets P = {1, . . . , n} and D = {n + 1, . . . , 2n}
represent pickup and delivery nodes, respectively. Thus, each request i is associated with a
pickup node i and a delivery node n + i.

With each node i ∈ N are associated a load qi and a non-negative service duration di

satisfying q0 = q2n+1 = 0, qi = −qn+i (i = 1, . . . , n) and d0 = d2n+1 = 0. A time window
[ai, bi] is also associated with every node i ∈ P ∪ D, where ai and bi represent the earliest
and latest time, respectively, at which service may start at node i. The depot nodes may
also have time windows [a0, b0] and [a2n+1, b2n+1] representing the earliest and latest times,
respectively, at which the vehicles may leave from and return to the depot. Let K denote
the set of vehicles. We assume that vehicles are identical and have capacity Q. With each
arc (i, j) ∈ A are associated a routing cost cij and a travel time tij . In the remainder of the
paper, we assume that the travel time tij includes the service time di at node i. We also
assume that the triangle inequality holds both for routing costs and travel times.

2.2 Three-index formulation of the PDPTW

For each arc (i, j) ∈ A and each vehicle k ∈ K, let xk
ij be a binary variable equal to 1 if and

only if vehicle k travels directly from node i to node j. For each node i ∈ N and each vehicle
k ∈ K, let Bk

i be the time at which vehicle k begins service at node i, and Qk
i be the load

of vehicle k upon leaving node i. Using these variables, the PDPTW can be formulated as
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the following non-linear mixed-integer program (see, e.g., Cordeau (2006)):

Min
∑

k∈K

∑

i∈N

∑

j∈N

cijx
k
ij (1)

subject to

∑

k∈K

∑

j∈N

xk
ij = 1 ∀i ∈ P (2)

∑

j∈N

xk
ij −

∑

j∈N

xk
n+i,j = 0 ∀i ∈ P, k ∈ K (3)

∑

j∈N

xk
0j = 1 ∀k ∈ K (4)

∑

j∈N

xk
ji −

∑

j∈N

xk
ij = 0 ∀i ∈ P ∪D, k ∈ K (5)

∑

i∈N

xk
i,2n+1 = 1 ∀k ∈ K (6)

Bk
j ≥ (Bk

i + tij)x
k
ij ∀i ∈ N, j ∈ N, k ∈ K (7)

Qk
j ≥ (Qk

i + qj)x
k
ij ∀i ∈ N, j ∈ N, k ∈ K (8)

Bk
i + ti,n+i ≤ Bk

n+i ∀i ∈ P, k ∈ K (9)

ai ≤ Bk
i ≤ bi ∀i ∈ N, k ∈ K (10)

max{0, qi} ≤ Qk
i ≤ min{Q,Q+ qi} ∀i ∈ N, k ∈ K (11)

xk
ij ∈ {0, 1} ∀i ∈ N, j ∈ N, k ∈ K. (12)

The objective function (1) minimizes the total routing cost. Constraints (2) and (3)
ensure that each request is served exactly once and that the pickup and delivery nodes are
visited by the same vehicle. Constraints (4)-(6) guarantee that the route of each vehicle
k starts at the origin depot and ends at the destination depot. Consistency of the time
and load variables is ensured by constraints (7) and (8). Constraints (9) ensure that for
each request i, the pickup node is visited before the delivery node. Finally, inequalities (10)
and (11) impose time windows and capacity constraints, respectively. The model is non-
linear because of inequalities (7) and (8) but it can easily be linearized by using standard
reformulation techniques.

2.3 Set partitioning formulation of the PDPTW

To formulate the problem as a set partitioning problem, let Ω denote the set of all feasible
routes satisfying constraints (3)-(12), dropping index k (as all vehicles are assumed to be
identical). For each route r ∈ Ω, let cr be the cost of the route and let air be a constant
indicating the number of times node i ∈ P is visited by r. Let also yr be a binary variable
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equal to 1 if and only if route r ∈ Ω is used in the solution. The PDPTW can then be
formulated as the following set partitioning problem:

Min
∑

r∈Ω

cryr (13)

subject to

∑

r∈Ω

airyr = 1 ∀i ∈ P (14)

yr ∈ {0, 1} ∀r ∈ Ω. (15)

The objective function (13) minimizes the cost of the chosen routes while constraints (14)
ensure that every request is served once. A lower bound on the optimal value of (13)-(15)
can be obtained by solving the linear programming (LP) relaxation which is obtained by
replacing the integrality requirements (15) with the constraints

yr ≥ 0 ∀r ∈ Ω. (16)

Because of the large size of set Ω, it is usually very difficult to solve or even to represent
model (13)-(15) explicitly. Instead, its LP relaxation is solved using column generation. In a
column generation approach, a restricted master problem is obtained by considering a subset
Ω̄ ⊆ Ω of routes. Additional columns of negative reduced cost are generated by solving a
pricing subproblem. Following Wolsey (1998), we call the problem defined by (13)–(15) the
integer programming master problem (IPM ) and its LP relaxation the linear programming
master problem (LPM ). The pricing problem for the PDPTW is

Min
∑

i,j∈N

dijxij (17)

subject to constraints (3)–(12) (dropping index k), where dij is defined as

dij =

{

cij − πi ∀i ∈ P, j ∈ N
cij ∀i ∈ N \ P, j ∈ N,

(18)

and πi is the dual variable associated with the set partitioning constraint (14) for node i.
We denote this problem as SP1.

The definition of dij in equation (18) ensures that dij + djk ≥ dik if j is a delivery node
as cij satisfies the triangle inequality. We say that a cost matrix that satisfies this property
satisfies the delivery triangle inequality. As will be shown in Section 3 this is computationally
convenient. The problem defined by objective (17) and constraints (3)–(12) is a constrained
shortest path problem called the Elementary Shortest Path Problem with Time Windows,
Capacity, and Pickup and Delivery (ESPPTWCPD). In Section 3 we explain how this and
related problems can be solved using label setting algorithms.

Instead of solving the shortest path problem SP1 one can solve relaxed versions of this
problem. A relaxed shortest path problem implies that a set of routes Ω′ is implicitly
considered, where Ω ⊆ Ω′. If Ω′ satisfies the property that none of the columns from the set
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Ω′ \ Ω can be used in a feasible integer solution to IPM, then the set partitioning problem
solved on Ω′ will have the same set of optimal solutions as the one solved on Ω. Obviously,
the lower bound obtained by solving the LP relaxation on Ω′ may, however, be weaker. An
example of a relaxation of the elementary shortest path problem that satisfies this property
consists of allowing cycles in the path. In this case, some requests may be served more than
once. Paths containing cycles cannot, however, appear in a feasible integer solution because
of constraints (14). This relaxation was used by Dumas et al. (1991) and it is described in
more detail in Section 3.2.

Relaxations inducing sets Ω′ for which one cannot ensure that no column from Ω′ \ Ω
can belong to a feasible integer solution to IPM can also be used. In this case, however,
valid inequalities must be added to the master problem to render such solutions infeasible.
This approach was used by Ropke (2005) to solve the PDPTW using more relaxed pricing
problems.

Valid inequalities expressed in terms of the xk
ij variables from the three-index formulation

(1)-(12) can be added to the master problem following the approach proposed by Kohl et al.
(1999) for the VRPTW. Since all vehicles are identical, we first observe that such inequalities
can be expressed in terms of xij variables and can be written in the form

2n+1
∑

i=0

2n+1
∑

j=0

αijxij ≥ β,

where αij ∈ R is the coefficient of arc (i, j) ∈ A and β ∈ R is a constant. This inequality is
transfered to the master problem as

∑

r∈Ω

φryr ≥ β,

where φr =
∑

(i,j)∈A ψijrαij , and ψijr is the number of times arc (i, j) is used in route r.
The introduction of a valid inequality in the master problem modifies the pricing problem.
Indeed, the arc costs dij are now defined as follows:

dij =

{

cij − πi − αijµ ∀i ∈ P, j ∈ N
cij − αijµ ∀i ∈ N \ P, j ∈ N,

(19)

where µ is the dual variable associated with the added inequality. Any number of inequalities
can be added in this way. Notice that unlike definition (18) this new definition of dij does
not satisfy the delivery triangle inequality.

3 Constrained Shortest Path Problems

Resource constrained shortest path problems arising in column generation approaches for
vehicle routing problems are typically solved using dynamic programming techniques called
labeling algorithms. One seeks a shortest (cheapest) path from a source node s to a sink
node t in the graph G = (N,A). Each arc in the graph has an associated cost and the
cost of a path is simply the sum of the costs of the arcs used in the path. The paths must
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satisfy conditions on resources usage between the source and sink. Time is an example of a
resource that is consumed along the path, and time windows on the individual nodes are an
example of conditions that must be satisfied. An overview of resource constrained shortest
path problems and of appropriate solution techniques was given by Irnich and Desaulniers
(2005).

Labeling algorithms build partial paths in the graph G. Each partial path starts at s
and ends at a node i ∈ N . Existing partial paths are extended along the arcs leaving the
end node of the partial path and the algorithm in principle constructs all feasible paths in
the graph by starting with the partial path containing only node s. In order to speed up
the algorithm, dominated paths are removed during the search. A path p dominates another
path p′ if they both end at the same node i ∈ N , the cost of p is less than or equal to the
cost of p′, and all feasible extensions of p′ by a partial path to the sink node are also feasible
for p. As it can be difficult to check if a path dominates another path using this definition,
one may introduce sufficient (but not necessary) conditions for dominance. Examples of
such conditions are provided in Sections 3.1 and 3.2 below. Partial paths are represented
by so-called labels that record the resource consumption at the end node of the partial path
and dominance criteria are defined in terms of the labels (see, e.g., Irnich and Desaulniers
(2005)).

3.1 ESPPTWCPD - SP1

The ESPPTWCPD, denoted by SP1, is the natural pricing problem for the PDPTW. In the
context of the PDPTW, it was first used by Sol (1994) and later by Sigurd et al. (2004)
for a PDPTW with additional precedence constraints. Sigurd et al. (2004) have described
a general labeling algorithm for the ESPPTWCPD and a more efficient one that takes
advantage of the additional precedence constraints. In this section we introduce a new
labeling algorithm for the ESPPTWCPD that contains a less restrictive, sufficient dominance
condition with respect to the algorithm proposed by Sol (1994) and the general one described
by Sigurd et al. (2004). A less restrictive dominance condition implies that more labels can
be eliminated, resulting in a better performance of the shortest path algorithm. Our label
setting algorithm is described in detail in Ropke and Cordeau (2008), and in this section
we present the main ideas. In what follows we assume that the source and sink nodes are,
respectively, 0 and 2n+ 1.

For each label we store the following data: η – the node of the label, t – the arrival
time at the node, l – the load of the vehicle after visiting node η, c – the accumulated
cost, O ⊆ {1, . . . , n} – the set of requests that have been started but not completed, i.e., the
pickup has been served but not the delivery, U ⊆ {1, . . . , n} – the set of unreachable requests.
A request i is said to be unreachable if its pickup node has already been visited on the partial
path or if going straight from η to pickup node i would violate the time window at node i.
We do not consider the delivery node of request i in the definition of unreachable requests
because of the preprocessing steps mentioned in Section 6. The preprocessing ensures that
bi + ti,n+i ≤ bn+i, ∀i ∈ P . We also store a pointer to the parent label in each label. Our
resources are t, l, c, U and O. The notation t(L) is used to refer to the arrival time in label
L and similar notation is used for the rest of the resources (e.g., η(L), l(L), c(L), U(L) and
O(L)). The requests in O are said to be open
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When extending a label L along an arc (η(L), j), the extension is legal only if t(L) +
tη(L),j ≤ bj and l(L) + qj ≤ Q, ensuring that time window and vehicle capacity are obeyed.
Furthermore, L and j must satisfy one of the following three conditions which ensure that
the extension is compatible with the sets u(L) and O(L):

0 < j ≤ n ∧ j 6∈ u(L) (20)

n < j ≤ 2n ∧ j − n ∈ O(L) (21)

j = 2n + 1 ∧ O(L) = ∅. (22)

The dominance condition used in the label-setting algorithm is the following: a label L1

dominates a label L2 if

η(L1) = η(L2), t(L1) ≤ t(L2), c(L1) ≤ c(L2), U(L1) ⊆ U(L2), O(L1) ⊆ O(L2). (23)

The validity of the dominance condition and its relation to that proposed by Sol (1994)
is discussed in Ropke and Cordeau (2008). The dominance condition is constructed by
combining ideas from Dumas et al. (1991) and Feillet et al. (2004). It is important to point
out that the dominance condition is valid only if the delivery triangle inequality holds. When
this assumption holds we are sure that visiting a delivery node never makes the path cheaper.
Without the delivery triangle inequality the last condition in (23) would be O(L1) = O(L2)
which is more restrictive and therefore not as strong as the condition in (23). The definition
of arc costs dij from equation (19) does not satisfy the delivery triangle inequality, but in
Section 3.3 we show that this is not a major problem as any cost matrix can be transformed
into one that satisfies the delivery triangle inequality while maintaining the cost of every
feasible path.

Another limitation of the dominance criteria is that the removal of arcs from the network
must be performed carefully. An arc (i, j) cannot be removed if the subpath (i, k, j) is valid
for some delivery node k (see Ropke and Cordeau (2008) for details). Arc elimination is useful
within a branch-and-bound scheme that branches on the arcs in the original formulation (1)-
(12). This limitation is one of the reasons for the choice of branching rules in Section 6.3.

3.2 SPPTWCPD - SP2

We now consider the Shortest Path Problem with Time Windows, Capacity, and Pickup
and Delivery (SPPTWCPD), denoted SP2, which relaxes SP1 by not requiring paths to
be elementary. In this problem we do, however, impose two conditions which help prevent
cycles: i) after performing a pickup, the same pickup cannot be performed again before the
corresponding delivery has been performed, and ii) a delivery cannot be performed before
the corresponding pickup has been performed. These conditions ensure that any cycle in a
path will contain at least four nodes. The shortest cycle is of the form i → n + i → j → i.
One cannot go from n+ i to i as the corresponding arc does not exist in our graph. If time
windows are tight, such cycles are unlikely to arise and the SPPTWCPD should yield good
lower bounds. This shortest path problem was used as a pricing problem by Dumas et al.
(1991).

In the label-setting algorithm for the SPPTWCPD we store η, t, l, c and O together
with a pointer to the parent label, as explained in Section 3.1, but we do not store the set
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U . Determining whether an extension of a label is feasible is done in a similar way as for
SP1 but condition (20) is replaced with

0 < j ≤ n ∧ j 6∈ O(L). (24)

Replacing condition (20) with (24) implies that non elementary paths can be generated.
When the delivery of request i has been performed, i is removed from O and the path may
again visit the pickup node of request i.

The dominance criterion employed, is the following: a label L1 dominates a label L2 if

η(L1) = η(L2), t(L1) ≤ t(L2), c(L1) ≤ c(L2), O(L1) ⊆ O(L2).

Dumas et al. (1991) showed that this dominance criterion is valid. The concerns about the
distance matrix and missing arcs that were discussed in Section 3.1 apply to the dominance
condition for the SPPTWCPD as well.

3.2.1 Label elimination

Dumas et al. (1991) have proposed rules for eliminating labels that cannot be extended to
node 2n + 1. The key observation is that given a label L one can examine the deliveries of
the open requests in O(L). If it is impossible to create a path from η(L) to node 2n + 1
that visits exactly all of the deliveries of O(L) and that satisfies all time windows, then
label L can be discarded because of the triangle inequality on tij . Without the triangle
inequality assumption the argument is invalid because detours may decrease the travel time.
Determining whether such a path exists can be done by solving a Traveling Salesman Problem
with Time Windows (TSPTW), which is NP-hard. Consequently, Dumas et al. (1991) have
proposed to consider only subsets of O(L) of cardinality one and two. We use the same
approach here. In addition, we also test two subsets containing three deliveries. In the first
subset, the first delivery, i1, is the one farthest from η(L), the next delivery, i2, is the one
farthest from η(L) and i1, and the last delivery is the one farthest from η(L), i1 and i2.
In the second subset we choose the deliveries that have the earliest deadline bi. When the
subset has been chosen we solve the resulting TSPTW by simple enumeration. The label
elimination works for both pricing problems considered in this paper.

3.3 Transforming the pricing problem cost matrix

In Sections 3.1 and 3.2 it was shown how effective dominance criteria could be devised for
SP1 and SP2 when the cost matrix for the pricing problem satisfies the delivery triangle
inequality. In Section 2.3 we saw that the pricing problem cost matrix does not satisfy the
property when cuts have been added to the master problem. In this section we explain how it
is possible to transform an arbitrary cost matrix into a cost matrix that satisfies the delivery
triangle inequality while maintaining the optimal solutions of SP1 and SP2.

Lemma 1. For any vector (θ1, . . . , θ|P |) ∈ Q|P |, let the cost matrix (d̃ij) be defined by

d̃ij = dij − θi, d̃n+i,j = dn+i,j + θi ∀i ∈ P, ∀j ∈ N

d̃0j = d0j d̃2n+1,j = d2n+1,j ∀j ∈ N.

Using (d̃ij) instead of (dij) does not change the cost of any feasible path in SP1 or SP2.
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Proof. As any feasible path visiting node i ∈ P also has to visit node n+i ∈ D and vice-versa
the sum of the θi terms sums to zero in any feasible path.

Note that although the definition of d̃2n+1,j is included in Lemma 1 to define the entire
matrix (d̃ij), it is never used in practice as no arc leaves node 2n+ 1. The next proposition
shows how to select the modifiers θi such that d̃ij satisfies the delivery triangle inequality.

Proposition 1. If

θj ≥ dik − (di,n+j + dn+j,k) ∀j ∈ P, ∀i, k ∈ N

then (d̃ij) defined in Lemma 1 satisfies

d̃ij + d̃jk ≥ d̃ik ∀i, k ∈ N, ∀j ∈ D.

Proof. By distinguishing between the four cases i = 0, i ∈ P , i ∈ D, i = 2n + 1 and
substituting the definition of d̃ij into the expression d̃ij + d̃jk we obtain the desired result.
For example for i ∈ P we obtain

d̃ij + d̃jk = dij − θi + djk + θj−n

≥ dij − θi + djk + maxi′,k′∈N{di′k′ − (di′j + djk′)}
≥ dij − θi + djk + (dik − (dij + djk))
= dik − θi

= d̃ik

for all j ∈ D and k ∈ N .

In practice one can use the modifiers θj = maxi,k∈N{dik−(di,n+j + dn+j,k)}, ∀j ∈ P which
can be calculated in O(n3) time. Note that the transformation ensures that d̃ij satisfies the
delivery triangle inequality even if the original cost matrix (cij) does not.

3.4 Possible improvements

Irnich and Villeneuve (2006) have proposed a labeling algorithm that solves non-elementary
shortest path problems while ensuring that cycles of length k or smaller do not occur. Their
approach could be used to strengthen the lower bound of the LPM when using SP2 as
a pricing problem since SP2 allows cycles containing more than two arcs. However, the
computational results presented in Section 7 show that the lower bounds obtained with SP2
are already quite close to the lower bounds obtained with SP1, so it is not clear whether the
extra effort to forbid longer cycles is worthwhile.

On a different note, Righini and Salani (2006) have proposed a bi-directional approach
to shortest path problems with resource constraints. Instead of generating partial paths
only from the source node, they simultaneously extend paths both from the source and
the sink nodes. The two searches eventually meet at a point where the paths from the
source are merged with paths from the sink. This approach has shown great potential for
reducing the running time of the shortest path algorithms used in the branch-and-price
methods for the CVRP and VRPTW. However, this approach does not seem promising
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for the PDPTW: the forward path extension can be performed as described above but the
backward extension would need a more restrictive dominance condition. The point is that for
the strong dominance criterion to work for the backward extension the matrix (dij) should
satisfy dij + djk ≥ dik, ∀j ∈ P, i, k ∈ N and we have not found a way to ensure this while
maintaining the delivery triangle inequality property of (dij). A prototype implementation
of a bidirectional search that used a more restrictive dominance condition criterion for the
backward extension gave disappointing results.

Another interesting approach for improving label setting algorithms used for solving
resource constrained elementary shortest path problems was proposed by Boland et al. (2006)
and by Righini and Salani (2008) and used in the most successful exact algorithm for the
VRPTW to date (Desaulniers et al. (2008)). The basic idea of this approach is to iteratively
solve a series of relaxed shortest paths problems. In the first problem all nodes can be visited
multiple times. The solution to this problem is inspected and a set of nodes S is selected. In
subsequent problems, the nodes in S can be visited at most once. After each iteration the set
S is enlarged until the optimal path for the relaxed problem is elementary. The motivation
for the algorithm is that one does not have to include all nodes in S before reaching an
elementary path and that shortest path computations with a limited set S can be much
faster compared to requiring that all nodes should be visited at most once. This approach
can also be applied to the ESPPTWCPD by limiting the nodes that can be included in
the set U to just a subset of all requests. What is perhaps more interesting is that the
approach also could be applied to the SPPTWCPD by first solving a pure SPPTWC and
gradually enforcing that request pairs should satisfy pairing and precedence constraints. An
advanced algorithm for the ESPPTWCPD would also start out from the pure SPPTWC
and gradually enforce both elementarity, pairing and precedence constraints. We have not
performed experiments with such algorithms.

4 Valid Inequalities

In this section we describe several families of valid inequalities that have been used in the
branch-and-cut algorithms proposed by Cordeau (2006) and by Ropke et al. (2007). For
two of these families, rounded capacity inequalities and precedence inequalities, we provide
strengthened inequalities. We also show how the so-called 2-path cuts for the VRPTW can
be applied to the PDPTW. All of these inequalities are useful in strengthening the LP-
relaxation of two-index and three-index formulations of the PDPTW, but as will be shown
in Section 5 some of them are in fact implied by the LP relaxation of the set-partitioning
formulations considered in this paper.

To describe these inequalities, it is convenient to introduce new notation. For any node
subset S ⊆ N , let δ+(S) = {(i, j) ∈ A|i ∈ S, j 6∈ S}. We also use the notation δ+(i) to
designate the set δ+({i}). Also let π(S) = {i ∈ P |n+ i ∈ S} and σ(S) = {n+ i ∈ D|i ∈ S}
denote the sets of predecessors and successors of S. Finally, let xij =

∑

k∈K xk
ij .

4.1 Infeasible path inequalities

Cordeau (2006) and Ropke et al. (2007) have discussed infeasible path inequalities and
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various strengthenings for the PDPTW. In this paper we use two types of infeasible path
inequalities. Consider an infeasible path R = (k1, . . . , kρ), then the inequality

ρ−1
∑

i=1

xki,ki+1
≤ ρ− 2 (25)

is valid.
If k1 = i and kρ = n+ i for some i ∈ P and the path is infeasible because of time windows

then Cordeau (2006) has observed that the inequality can be strengthened to

ρ−1
∑

i=1

xki,ki+1
≤ ρ− 3. (26)

4.2 Fork inequalities

Let R = (k1, . . . , kρ) be a path in G and S, T1, . . . , Tρ ⊂ (P ∪ D) be subsets such that
kj 6∈ Tj−1 for j = 2, . . . , ρ. If for any integer h ≤ ρ and any node pair i ∈ S, j ∈ Th, the path
(i, k1, . . . , kh, j) is infeasible, then the following inequality is valid for the PDPTW:

∑

i∈S

xi,k1 +

ρ−1
∑

h=1

xkh,kh+1
+

ρ
∑

h=1

∑

j∈Th

xkh,j ≤ ρ. (27)

Similarly, let R = (k1, . . . , kρ) be a path in G and S1, . . . , Sρ, T ⊂ (P ∪D) be subsets such
that kj 6∈ Sj+1 for j = 1, . . . , ρ− 1. If for any integer h ≤ ρ and any node pair i ∈ Sh, j ∈ T ,
the path (i, kh, . . . , kρ, j) is infeasible, then the following inequality is valid for the PDPTW:

ρ
∑

h=1

∑

i∈Sh

xi,kh
+

ρ−1
∑

h=1

xkh,kh+1
+

∑

j∈T

xkρ,j ≤ ρ. (28)

Inequalities (27) and (28) were introduced by Ropke et al. (2007) and are called outfork
and infork inequalities, respectively. We refer to the paper by Ropke et al. (2007) for examples
and figures.

4.3 Rounded capacity inequalities

Rounded capacity inequalities which are often used in the context of the CVRP (see, e.g.,
Naddef and Rinaldi, 2002) can also be used for the PDPTW. For any node subset S ⊆ P ∪D,
let κ(S) be a lower bound on the number of times that vehicles must enter the set. The
following inequality is then clearly valid:

x(δ+(S)) ≥ κ(S). (29)

Cordeau (2006) and Ropke et al. (2007) have proposed to use κ(S) = max
{

1,
⌈

|q(S)|
Q

⌉}

. This

lower bound can be improved to κ(S) = max
{

1,
⌈

q(π(S)\S)
Q

⌉

,
⌈

−q(σ(S)\S)
Q

⌉}

. The bound is
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valid as q(π(S)\S) is a lower bound on the load of the vehicles entering set S and −q(σ(S)\S)
is a lower bound on the load of the vehicles leaving S. This new lower bound is stronger
than the previous one because

|q(S)| = |q(S ∩D) + q(S ∩ P )|
= |q(π(S)) + q(σ(S))|
= |q(π(S) \ S) + q(σ(S) \ S)|
≤ max {q(π(S) \ S),−q(σ(S) \ S)} .

Furthermore, examples can be constructed where the inequality is strict. The second equality
holds because q(S ∩ D) = −q(π(S)) and q(S ∩ P ) = −q(σ(S)), the third equality holds
because q({i, n+i}) = 0, and the inequality holds because q(π(S)\S) ≥ 0 and q(σ(S)\S) ≤ 0.

4.4 2-path inequalities

2-path inequalities are a variation of the rounded capacity inequalities and were proposed
for the VRPTW by Kohl et al. (1999). When the set S ⊆ P ∪ D cannot be served by a
single path, the following inequality is valid:

x(δ+(S)) ≥ 2. (30)

To determine whether the set S can be served by a single path one can go further than
just considering capacities as in Section 4.3. Indeed, for the VRPTW Kohl et al. (1999)
proposed to solve a TSPTW on the set of nodes: if the TSPTW is infeasible then at least
two paths are needed to visit all nodes in S.

For the PDPTW a similar approach can be used. If it is impossible to find a tour serving
all nodes in S while satisfying precedence, capacity and time window constraints then any
feasible solution must use at least two arcs from the set δ+(S). The idea can be taken further
by observing that if a path serves all nodes in S by entering and leaving the set once, then the
nodes π(S)\S must be served by this path before entering S and the nodes σ(S)\S must be
served after leaving S. If such a path cannot be found then S defines a valid inequality (30)
even though there exists a tour through S satisfying precedence, capacity and time window
constraints.

4.5 Reachability inequalities

For any node i ∈ N , let A−
i ⊂ A be the minimum arc set such that any feasible path from the

origin depot 0 to node i uses only arcs from A−
i . Let also A+

i be the minimum arc set such
that any feasible path from i to the destination depot 2n+ 1 uses only arcs in A+

i . Consider
a node set T such that each node in T must be visited by a different vehicle. This set is said
to be conflicting. For any conflicting node set T , define the reaching arc set A−

T = ∪i∈TA
−
i

and the reachable arc set A+
T = ∪i∈TA

+
i . For any node set S ⊆ P ∪ D and any conflicting

node set T ⊆ S, the following two valid inequalities were introduced by Lysgaard (2006) for
the VRPTW:

x(δ−(S) ∩A−
T ) ≥ |T | (31)

x(δ+(S) ∩A+
T ) ≥ |T |. (32)
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These inequalities are obviously also valid for the PDPTW. In this problem, however,
nodes can be conflicting not only because of time windows but also because of the interactions
with the precedence relationships and the capacity constraints.

4.6 Precedence inequalities

Let S ⊂ N be a subset such that i, 2n + 1 ∈ S and 0, n + i /∈ S for some i ∈ P . Then the
following inequality is valid:

∑

(i,j)∈δ+(S)

xij ≥ 1.

Precedence inequalities were introduced by Ruland and Rodin (1997) in the context of
the TSP with pickup and delivery.

4.7 Strengthened precedence inequalities

Using ideas from the reachability inequalities, precedence inequalities can be strengthened
as follows.

Proposition 2. Let Ai be the set of arcs that can be used in a feasible path from i to n+ i.
Furthermore let S ⊂ N be a subset such that i, 2n+ 1 ∈ S and 0, n+ i /∈ S for some i ∈ P .
Then the following inequality is valid for the PDPTW:

∑

(i,j)∈(δ+(S)∩Ai)

xij ≥ 1. (33)

Proof. Assume that inequality (33) is violated in a feasible integer solution. This implies
that there exists a request i ∈ P and a set S ⊂ N such that i, 2n + 1 ∈ S, 0, n + i /∈ S and
∑

(i,j)∈(δ+(S)∩Ai)
xij = 0. Let p be the path in the solution that visits node i. To be part of a

feasible solution, path p must visit node n+ i after visiting node i. Let p′ be the subpath of
p that starts in i and ends in n + i. It is clear that p′ must use at least one arc from δ+(S)
because i ∈ S and n+ i /∈ S. From the definition of Ai it is also clear that the arcs in p′ all
belong to the set Ai. Consequently,

∑

(i,j)∈(δ+(S)∩Ai)
xij ≥ 1.

5 Relationship Between Set Partitioning Formulations

and Valid Inequalities

This section explores the relationship between the set partitioning formulations using SP1
and SP2 as pricing problems and the valid inequalities presented in Section 4. It turns
out that several families of valid inequalities are implied by the set partitioning formulation
with the SP1 subproblem. No such analysis was previously performed for the PDPTW, but
some results were obtained by Letchford and Salazar González (2006) for set partitioning
relaxations of the CVRP and VRPTW. Such a study is not only interesting from a theoretical
point of view, but it is also useful from a practical perspective as it implies that we do not
need to consider separation procedures for certain classes of valid inequalities.

14



Given a solution y∗ to the LP relaxation of the set partitioning formulation given by
(13), (14) and (16) one can obtain the corresponding two-index solution x∗ given by x∗ij =
∑

r∈Ω y
∗
rψijr, ∀i, j ∈ N , where ψijr is a constant indicating the number of times arc (i, j) is

used in route r. Let Ω∗
i be the set of columns serving request i in the current solution, i.e.,

Ω∗
i = {r ∈ Ω : y∗r > 0, air ≥ 1}.

We first show that the fork inequalities are implied by SP1.

Lemma 2. Let p be a path generated by SP1 that visits q ≤ ρ nodes from the path
R = (k1, . . . , kρ). Path p can use at most q of the arcs in any valid outfork inequality defined
on path R.

The lemma is illustrated in Figure 1. In this example the outfork inequality is defined
for the path R = (k1, k2, k3, k4) and the sets S, T1, . . . , T4. The path p = (v1, k2, k3, v2, v3)
(where v2 ∈ T3) visits two nodes from R and it uses the arcs (k2, k3) and (k3, v2) from the
outfork inequality.

S T1 T2 T3 T4

k1 k2 k3 k4

v1

v3

v2

Figure 1: Outfork inequality for R = (k1, k2, k3, k4) and the path p = (v1, k2, k3, v2, v3). Arcs
in the outfork inequality are dashed while arcs in path p are solid. The arcs (k2, k3) and
(k3, v2) are used in both the outfork inequality and in path p

Proof. We break path p into subpaths p1, . . . , pj by traversing p from its start and creating a
new subpath pw once a node from R is visited. We then continue to add nodes to pw as long
as p visits nodes from R. When p visits a node outside R, subpath pw is ended and we start
a new subpath pw+1 the next time p visits a node from R. Let |pw| be the number of nodes
in subpath pw (|pw| = 1 is possible). To illustrate the concept of subpaths, consider Figure
2. In this example paths p and R induce the subpaths p1 = (k3, k4, k6) and p2 = (k1, k2).

It is clear that only the arcs used in the subpaths p1, . . . , pj along with the arcs that path
p uses before entering or after leaving path pw, w ∈ {1, . . . , j} can be present in the outfork
inequality. Consider a subpath pw that starts in node ki, i 6= 1. The arc in p that is used
to enter path pw cannot be part of the outfork inequality (because the arcs entering ki in
the outfork inequality originate from a node in R). Hence, pw along with the arcs used to
enter and leave pw can contribute at most |pw| arcs from the outfork inequality as the path
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k1 k2 k3 k4 k5 k6 k7 k8

v1

v2

v3

v4

Figure 2: The paths p = (v1, k3, k4, k6, v2, v3, k1, k2, v4) (solid arcs) and R = (k1, . . . , k8)
(dashed arcs).

contains |pw|−1 arcs and the arc used to leave the last node in pw can be part of the outfork
inequality. If a subpath pw starts in node k1 then the arc in p that is used to enter path
pw can be part of the outfork inequality. In that event we have to consider two cases: if
pw =

(

k1, . . . , k|pw|

)

then the arc used to leave pw cannot be part of the outfork inequality
as this would make pw infeasible. If pw skips some of the first |pw| nodes from R then the
arc used to leave pw can be part of the outfork inequality but the first arc in pw used to skip
a node in R cannot be part of the outfork inequality as p is a feasible path. Consider for
example pw = (k1, k2, k5, k6). This subpath skips node k3 and k4. If the arc used to enter pw

originates in S then (k2, k5) cannot be part of the outfork inequality as the original path p
is feasible.

We see that pw along with the arcs used to enter and leave pw contributes at most |pw|
arcs, for all w ∈ {1, . . . , j}. Finally, we may conclude that a path that visits q nodes from
path R can use at most q arcs from the outfork inequality defined on R.

Proposition 3. If a vector y∗ satisfies the inequalities (14) and (16) where Ω is defined by
SP1 then the implied two-index solution x∗ satisfies the outfork inequalities (27) defined in
Section 4.2.

Proof. Consider a vector y∗ that satisfies the conditions in Proposition 3 and assume it
violates an outfork inequality defined by a path R = (k1, . . . , kρ) and sets S, T1, . . . , Tρ. Let
Φ∗

k be the set of paths from the solution y∗ that visit exactly k nodes from the path R. From
(2) and (3) we have that

∑

i∈R x
∗(δ+(i)) = ρ. Expressing this equality in the y-variables,

using the transformation defined in Section 2.3, we get that
∑

r∈Φ∗

1

y∗r +
∑

r∈Φ∗

2

2y∗r + . . .+
∑

r∈Φ∗

ρ

ρy∗r = ρ. (34)

From Lemma 2 we know that a path p ∈ Φ∗
k can use at most k arcs from the outfork

inequality. Thus a path pk ∈ Φ∗
k contributes at most ky∗pk

to the left-hand-side of equation
(27). The total contribution from all paths visiting nodes in R is at most

∑

r∈Φ∗

1

y∗r +
∑

r∈Φ∗

2

2y∗r + . . .+
∑

r∈Φ∗

ρ

ρy∗r ,

which is equal to ρ according to (34). Consequently, the fork inequality cannot be violated.
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The set partitioning formulation using SP1 also implies all infork inequalities (28). The
proof is similar to that of Proposition 3 and Lemma 2.

It is clear that the infeasible path inequality (25) is dominated by the fork inequalities
and it is therefore implied by the set partitioning formulation using SP1. This infeasible path
inequality is, however, not implied by SP2. As an example consider the path (0, 1, n+1, 2, n+
2, 1, n+1, 2, n+2, 2n+1). This is a feasible SP2 path and it can be used with value 0.5 in a
feasible solution. In such a solution the infeasible path inequality xn+1,2 +x2,n+2 +xn+2,1 ≤ 2
is violated as the left hand side is equal to 2.5. This also shows that the fork inequality is
not implied by SP2.

The strengthened infeasible path inequality (26) is not implied by either formulation
(small counter-examples can be constructed easily) and neither are the rounded capacity
inequalities or the 2-path inequalities. The SP1 formulation does imply the reachability
inequality as shown by the Proposition 4 below. We use the notation

τ(i) =

{

i : i ∈ P
i− n : i ∈ D

to denote the request corresponding to a node i ∈ P ∪D.

Proposition 4. If a vector y∗ satisfies the inequalities (14) and (16) where Ω is defined by
SP1 then the implied two-index solution x∗ satisfies the reachability inequalities defined in
Section 4.5.

Proof. Assume that x∗ violates the reachability inequality (31). This implies that there exists
a set of conflicting nodes T and a set S ⊆ P ∪D, T ⊆ S such that

∑

(j,k)∈(δ−(S)∩A−

T
) x

∗
jk < |T |.

Consider a node i ∈ T and a path p from Ω∗
τ(i). The subpath p′ of p that starts at node

0 and ends at node i uses only arcs from A−
i ⊆ A−

T and it crosses δ−(S) at least once as
0 /∈ S and i ∈ S. Consequently every path corresponding to a column r ∈ Ω∗

τ(i) contributes

at least y∗r to
∑

(j,k)∈(δ−(S)∩A−

T
) x

∗
jk. Because the paths are generated by SP1 we have that

∑

r∈Ω∗

τ(i)
y∗r = 1. This implies that that the paths serving i in solution y∗ contribute at least

1 to
∑

(j,k)∈(δ−(S)∩A−

T
) x

∗
jk. As no path can serve two or more nodes in T we have Ω∗

i ∩Ω∗
q = ∅

for i, q ∈ T, i 6= q and therefore
∑

(j,k)∈(δ−(S)∩A−

T
) x

∗
jk ≥ |T | which is a contradiction. The

proof for inequality (32) is similar.

A solution to the LPM using SP2 can violate reachability inequalities. The example used
when discussing the relationship between SP2 and infeasible path inequalities also shows
that reachability inequalities can be violated.

Proposition 5. If a vector y∗ satisfies the inequalities (14) and (16) where Ω is defined
by SP1 or SP2 then the implied two-index solution x∗ satisfies the precedence inequalities
defined in Section 4.6.

Proof. Assume that x∗ violates a precedence inequality. This implies that there exists a
request i ∈ P and a set S ⊂ N such that i, 2n+ 1 ∈ S, 0, n+ i /∈ S and

∑

(j,k)∈δ+(S) x
∗
jk < 1.

Every path in Ω∗
i uses at least one arc from δ+(S) for every visit to node i as the path
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has to visit node n + i before reaching node 2n + 1 or visiting node i again in case of SP2.
Therefore, every column r ∈ Ω∗

i contributes at least airy
∗
r to

∑

(j,k)∈δ+(S) x
∗
jk. Because of

equation (14) we have that
∑

r∈Ω∗

i
airy

∗
r = 1 and consequently,

∑

(j,k)∈δ+(S) x
∗
jk ≥ 1 which is

a contradiction.

Proposition 6. If a vector y∗ satisfies the inequalities (14) and (16) where Ω is defined
by SP1 or SP2 then the implied two-index solution x∗ satisfies the strengthened precedence
inequalities defined in Section 4.7.

Proof. The proof follows that of proposition 5. One should note that an SP1 or SP2 path
that visits nodes i ∈ P and n + i only uses arcs from the set Ai between nodes i and n + i
and therefore each column r ∈ Ω∗

i contributes at least airy
∗
r to

∑

(j,k)∈(δ+(S)∩Ai)
x∗jk.

6 Branch-and-Cut-and-Price Algorithm

In this section, we first describe heuristics for solving the pricing problem. This is followed by
separation procedures for the identification of violated valid inequalities in Section 6.2 and by
the branching strategy used to explore the enumeration tree in Section 6.3. Implementation
issues related to cut and column pool management, and the choice between generating cuts or
variables are described in Ropke and Cordeau (2008). Time windows are tightened using the
rules described by Dumas et al. (1991) and Cordeau (2006) as well as the window reduction
rules for the VRPTW described in Desrochers et al. (1992).

6.1 Pricing problem heuristics

It is well known that the running time of branch-and-price algorithms can be improved by
using heuristic algorithms for the pricing problem. As long as the heuristic algorithms are
able to find columns with negative reduced cost one can add those columns to the LPM and
solve the problem again. Ideally it should be necessary to call the exact pricing algorithm
only once for each node in the branch-and-bound tree to verify that no negative reduced cost
column exists. In fact, this is not even necessary if the relaxation value associated with a
node is lower than the current upper bound. In this case, the lower bound will not be used
to fathom the node and it is not necessary to find the optimal relaxation value for this node.

We use several pricing heuristics based on construction algorithms, large neighborhood
search (Shaw (1998)) and truncated label setting algorithms. The heuristics and their impact
on the branch-and-cut-and-price algorithm are described in Ropke (2005) and Ropke and
Cordeau (2008).

6.2 Separation heuristics

In our branch-and-cut-and-price algorithm we use the following five families of inequalities:
infeasible path inequalities (26), fork inequalities, reachability inequalities, rounded capacity
inequalities and 2-path inequalities. Precedence and strengthened precedence inequalities
are not used as they were shown to be implied by the set partitioning formulation in Section
5. We refer the reader to Ropke et al. (2007) for a description of the separation procedures
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for the infeasible path, fork and reachability inequalities. Below we describe how the new
form of the rounded capacity inequalities as well as the 2-path inequalities are separated.

6.2.1 Separating rounded capacity inequalities

Rounded capacity inequalities are separated by a constructive heuristic called several times
with different parameter settings in each call. The heuristic starts with a set S containing
only one node (each node is tried as start node several times). Nodes are iteratively added
to the set, performing the addition that most increases the objective f described below. The
construction is stopped either when a violated inequality is detected or if the current set S
is far from violating inequality (29). The objective we seek to maximize with each insertion
is the following:

f(S) = λ1

(

max {q(π(S) \ S),−q(σ(S) \ S)} −Qx(δ+(S))
)

+

λ2Q

(

max

{⌈

q(π(S) \ S)

Q

⌉

,

⌈−q(σ(S) \ S)

Q

⌉}

− x(δ+(S))

)

+

λ3

(

min {q(π(S) \ S),−q(σ(S) \ S)} −Qx(δ+(S))
)

,

where λ1, λ2 and λ3 are parameters that control the importance of the three expressions.
The reasoning behind the three expressions is the following: when the second expression is
larger than 0 then we have discovered a violated inequality; the first expression can be seen
as a weakened form of the second that better reflects changes in the demand of the nodes
in S; the last expression emphasizes the part of the maximum expression that is not active
in the two other expressions (in the hope that further augmentations of S may make this
part active). In each call the parameters λ1, λ2 and λ3 are chosen randomly from a uniform
distribution on the set [1, 5]× [1, 5]× [0, 1], thus giving a higher weight to the two first terms.

6.2.2 Separating 2-path inequalities

The separation heuristic for the 2-path inequalities is a randomized greedy construction
heuristic. Starting from a set S containing only one node the heuristic augments S by
adding the node that minimizes x(δ+(S)). In order to randomize the heuristic a random
number from the interval [0, 0.3] is added to each xij when selecting the node to add. For
every set S for which x(δ+(S)) < 2 we check whether a feasible solution can leave S exactly
once. To this purpose, we determine whether there exists a feasible path that first visits
all the nodes in π(S) \ S, then visits all nodes in S and finally visits all nodes in σ(S) \ S
while satisfying time window, capacity and precedence constraints. This is determined by
a straightforward, exact label-setting algorithm. If such a path does not exists then a valid
2-path inequality has been found. The augmentation of S stops when x(δ+(S)) > 3. All
nodes are considered as start nodes and the heuristic is applied several times for each start
node. Every time the algorithm has checked if a set S induces a 2-path inequality, the result
is stored in a hash-table. This hash-table is examined before checking a set S for feasibility.
Thereby we ensure that the same calculation is never performed twice.
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6.3 Branching strategy

Branching in a column generation algorithm should be done with care as the branching
strategy should preferably be compatible with the algorithm used for solving the pricing
problem, i.e., the same type of pricing problem should be solved in the children nodes as in
the parent node. This implies that branching decisions should be easily transferred to the
subproblem and should not change its structure. In our algorithm we use two branching rules
that add a single cut on the xij variables to the master problem. They are thus compatible
with the pricing problems when applying the transformation of the pricing problem described
in Section 3.3.

The first branching rule branches on the outflow of a set of nodes as proposed for the
CVRP by Naddef and Rinaldi (2002). A set of nodes S is first selected such that x(δ+(S))
is as far as possible from the nearest integer. Two branches are then created: x(δ+(S)) ≤
bx(δ+(S))c and x(δ+(S)) ≥ dx(δ+(S))e. In our implementation, a good candidate for the
set S is found using a simple greedy heuristic, which most often finds a set containing only
two nodes.

The second branching rule calculates x(δ+(0)). If x(δ+(0)) is fractional then the two
branches x(δ+(0)) ≤ bx(δ+(0))c and x(δ+(0)) ≥ dx(δ+(0))e are created. This rule was
proposed by Desrochers et al. (1992) and is often called branching on the number of vehicles.

In our implementation we first try to branch on the number of vehicles. If this is not
possible because x(δ+(0)) is integer then we use the first branching rule instead. This
choice was motivated by computational experiments documented in Ropke (2005). For both
branching rules we always investigate the ≥-branch first.

In our branch-and-cut-and-price algorithm, the enumeration tree is explored in a depth-
first fashion. We prefer depth-first compared to a best-bound strategy as it uses less memory
and each node in the branch-and-bound tree is evaluated slightly faster as we have to perform
less work in order to restore a valid basis and to populate the model with useful rows and
columns when moving to a new node in the branch-and-bound tree. Furthermore, the depth-
first strategy is the easiest to implement. The most significant drawback of the depth-first
strategy is that it may visit more nodes than the best-bound strategy if the initial upper
bound is poor. Our upper bounds are found using the heuristic described in Ropke and
Pisinger (2006) and are usually quite tight (See Section 7 and Table 2).

7 Computational Experiments

This section summarizes the computational experiments performed to assess the performance
of our branch-and-cut-and-price algorithm. The algorithm was implemented in C++ and
run on an AMD Opteron 250 computer (2.4 GHz) running Linux. CPLEX 9.0 was used
as LP solver and the COIN-OR Open Solver Interface (www.coin-or.org) was used as an
interface to the LP solver. In all experiments, a limit of two hours of CPU time was used
unless otherwise indicated.

The algorithm was tested on two sets of instances: instances similar to those introduced
by Ropke et al. (2007) (data-set one) and the instances proposed by Li and Lim (2001)
(data-set two). The instances proposed by Li and Lim originate from the Solomon VRPTW
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instances (Solomon, 1987). For these instances we minimize the total traveled distance in
our objective. The Li and Lim instances are divided into two series. Those in the first
series have a short planning horizon while those in the second have a longer horizon allowing
many requests to be served in the same route. We only report computational results for the
first series as only a small subset of the second one could be solved. The pricing problems
occurring in the second series are very difficult and the branch-and-cut-and-price algorithm
often times out before even obtaining a lower bound at the root node. The integrality gap,
on the other hand, was small for the instances that could be solved. See Ropke (2005) for
some results on these instances.

The instances introduced by Ropke et al. were produced with a generator similar to that
initially proposed by Savelsbergh and Sol (1998). As explained by Ropke et al. (2007), the
generator was modified to obtain harder instances by reducing the ratio between the travel
times and the length of the planning horizon. In addition, the new generator considers a
single depot located at the middle of a square instead of a different depot for each vehicle.
In all instances, the coordinates of each pickup and delivery location are chosen randomly
according to a uniform distribution over the [0, 50] × [0, 50] square. The load qi of request
i is selected randomly from the interval [5, Q], where Q is the vehicle capacity. A planning
horizon of length T = 600 is considered and each time window has width W . The time
windows for request i are constructed by first randomly selecting ai in the interval [0, T−ti,n+i]
and then setting bi = ai + W , an+i = ai + ti,n+i and bn+i = an+i + W . In all instances,
the primary objective consists of minimizing the number of vehicles, and a fixed cost of
104 is thus imposed on each outgoing arc from the depot. The instance generator used
by Ropke et al. (2007) contained a bug such that an+i was set to bi + ti,n+i instead of
ai +ti,n+i. This is unfortunate as it implies that cycling cannot occur with the SP2 algorithm
on these instances because the pickup and delivery of each request have non-overlapping time
windows. Consequently, we have generated new instances with a corrected version of the
instance generator. The new instances appear to be more difficult than those considered by
Ropke et al. (2007).

Four groups of instances were generated by considering different values of Q and W . The
characteristics of these groups are summarized in Table 1. As in Ropke et al. (2007) we
considered ten instances with 30 ≤ n ≤ 75 for each group. The name of each instance (e.g.,
AA50) indicates the class to which it belongs and the number of requests it contains. We
repeat the first letter in each instance to distinguish these instances from the ones studied
by Ropke et al. (2007). The maximum travel time between two nodes in these instances is√

502 + 502 ≈ 70.7 and the time windows are therefore relatively wide, especially for the CC
and DD instances.

Table 1: Characteristics of the new PDPTW instances

Class Q W
AA 15 60
BB 20 60
CC 15 120
DD 20 120
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For all experiments we use the same numerical precision as Ropke et al. (2007), i.e.,
travel times and costs are represented using double precision floating point numbers. Upper
bounds are found using the adaptive large neighborhood heuristic proposed by Ropke and
Pisinger (2006). Table 2 shows the solutions found by the heuristic. The table is split into
two major columns. The first major column shows results for data-set one and the second
major column shows results for the second data-set. The first 30 instances in data-set two
contain 100 requests while the last 6 instances contain 500 requests. For each instance we
provide three numbers:

1. A lower bound (LB) on the optimal solution. If the instance has been solved to
optimality we report the optimal solution in bold, otherwise we report the best lower
bound obtained at the root node by the SP1 or SP2 relaxation. If neither the SP1 nor
the SP2 relaxation obtained a lower bound then this entry is left blank. We do not
report the lower bound from the branch-and-cut procedure proposed by Ropke et al.
(2007) because it usually is quite poor for these hard instances.

2. The solution value found by the heuristic (Heur). If the value is known to be optimal,
it is shown in bold. This value, increased by 0.1, is used as an upper bound when
testing the branch-and-cut-and-price algorithm in the following sections. We increase
the value by 0.1 to ensure that the branch-and-cut-and-price algorithm finds a solution
even when the heuristic value was optimal.

3. The time in seconds (Time) the heuristic spent finding the reported solution. The time
spent by the heuristic is not included in the computing times reported in the following
sections.

Notice that there often is a quite large integrality gap for the instances from the first data-set
that have not been solved to optimality (e.g. AA75). We believe that the main reason for
this gap is a poor lower bound rather than a weak upper bound.

Our computational experiments focus on three aspects. First, we wanted to measure the
impact of the valid inequalities described in Section 4. Second, we wished to investigate the
impact of the two subproblems, SP1 and SP2 described in Section 3, on the lower bound
and overall solution time. Third, we wanted to compare the performance of our branch-and-
cut-and-price algorithm to the branch-and-cut algorithm of Ropke et al. (2007).

7.1 Impact of valid inequalities

The purpose of this section is to investigate the impact of the valid inequalities on the two
set partitioning relaxations.

Table 3 reports results obtained by running the algorithm on the first data-set. The
table shows results for the SP1 and SP2 relaxations. The column No cuts indicates the
value of the lower bound as a percentage of the upper bound. It is computed as 100z′/z̄
where z′ is the lower bound without adding any cuts and z̄ is the upper bound (either the
optimal solution or the best known solution if the optimal solution is unknown). The rest
of the columns report the amount of gap closed using the different families of inequalities:
IPC – Infeasible path constraints (26), CC – Rounded capacity constraints, 2PC – 2-path
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constraints, FC – Fork constraints, RC – Reachability constraints, Full – all constraints.
These values are computed as follows: 100(z− z′)/(z̄− z′) where z is the lower bound found
using the corresponding cuts. Some entries are left blank for instance AA45 because the
relaxation without cuts solved the instance to optimality. Note that in some cases the entry
in the column Full is worse than the value in one of the preceding columns (e.g., AA65,
SP1). This can happen when inequalities are separated by heuristics.

The table shows a difference between the SP1 and SP2 relaxations although the difference
is rather small. One also notes that the integrality gap at the root node is quite large for
many instances (e.g., BB30). The large gap occurs because of the fixed cost on each vehicle
and because the LP relaxation is unable to estimate the number of vehicles correctly, i.e.,
x(δ+(0)) is lower in the LP relaxation than in a feasible integer solution. One sees that the
capacity and 2-path constraints are able to improve the lower bound somewhat, but none
of the inequalities are able to improve the lower bound significantly. Future research should
aim at finding valid inequalities that increase x(δ+(0)) in fractional solutions when possible.

Table 4 shows results obtained by applying valid inequalities to the Li and Lim instances
with 100 requests. We only report results for the instances for which the lower bound without
valid inequalities could be computed within 2 hours and which had a non-zero integrality
gap for both relaxations when using a pure column generation approach. When adding
valid inequalities, the computing times sometimes exceeded 2 hours. The blank entries for
instance LR1 2 6 indicate that the SP1 lower bound was optimal without adding cuts. We
see that the valid inequalities are much more useful for this data-set and the 2-path cuts are
especially beneficial.

7.2 Branch-and-cut-and-price experiments

This section compares the two set partitioning relaxations to each other as well as to the
branch-and-cut algorithm proposed by Ropke et al. (2007). We also test the limits of the
algorithms in terms of the instance size that can be solved to optimality. All valid inequalities
presented in Section 4 which are not implied by the relaxations are added dynamically to
the model.

The results for the first data-set are shown in Table 5. The first two columns show the
instance name and the best known upper bound (the optimal solution value in the case of
instances solved to optimality and the heuristic value from Table 2 otherwise). The remaining
columns indicate z – the root node lower bound after adding cuts, Time – the total amount
of CPU time used (in seconds), Nodes – the number of nodes in the branch-and-bound tree,
and Cuts – the number of cuts added. If the problem was not solved within the time limit
the entry in the Time column is left blank. If the lower bound could not be computed within
the time limit the entry in the z column is left blank as well. The tables show results for the
branch-and-cut algorithm (B&C) and the branch-and-cut-and-price algorithms using SP1
and SP2 as pricing problems. The row Solved indicates how many instances were solved to
optimality within the time limit.

Both SP1 and SP2 clearly outperform the branch-and-cut algorithm. The set partitioning
formulation using SP1 and SP2 is much better at approximating the number of vehicles in
the LP relaxation. The difference in performance between SP1 and SP2 is relatively small.

Table 6 shows results for the Li and Lim (2001) instances in the first series and with
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approximately 100 requests. Li and Lim (2001) also proposed instances with 50 requests,
but the first series of these instances do not pose any difficulty for the branch-and-cut-and-
price algorithm as all instances can be solved in less than 10 minutes (see Ropke (2005)).
The instances with 100 requests are harder and for many instances the algorithm fails to
solve the root node because the pricing problem is too difficult.

To test the algorithms on large instances we selected instances with approximately 500
requests from the Li and Lim data-set. We chose the six instances that have the tightest time
windows. The results of this experiment are shown in Table 7. Three of the six instances
could be solved to optimality. To the best of our knowledge, these are the largest PDPTW
instances solved to optimality in the literature.

In summary, the SP1 formulation was able to solve 50 of the 76 instances within the
time limit, while the SP2 formulation solved 47 instances. We also considered a variant of
SP2 without any valid inequalities. This variant, which solved 46 instances, can be seen as a
modern implementation of the algorithm of Dumas et al. (1991), with a much improved LP
solver and more advanced pricing heuristics. For the instances that were solved by all three
configurations, SP1 used on average 375 seconds, SP2 used 723 seconds and SP2 without
cuts used 1019 seconds. The improvement over the classic column generation approach is
thus not dramatic, but SP1 still manages to solve 9% more instances than SP2 without cuts.
These results also indicate that the stronger pricing problem is more important than the
addition of valid inequalities when it comes to solving difficult PDPTW instances. Future
work on valid inequalities for the PDPTW could of course change this conclusion.

7.3 Further experiments

The purpose of this section is to shed light on how time is spent within the branch-and-
cut-and-price algorithm. For this purpose we selected a small set of diverse instances. This
set contains CC45 and DD45 from the first data-set and LR1 2 6, LR1 2 9 and LRC1 2 2
from the second data-set. We solved the root node for each of the five instances with both
relaxations. The experiment is summarized in Table 8. The columns should be interpreted
as follows: PP, pricing problem used; Total time, time spent solving the root node. Time
preproc., time spent on preprocessing, this includes the time spent tightening time windows
and calculating the sets A+

i and A−
i needed for the reachability constraint (see Section 4.5);

Time LP, time spent solving the linear programming relaxation; Time PP heur., time spent
solving the pricing problem by heuristic means; Time PP exact, time spent solving the
pricing problem by the exact method; Time sep., time spent separating valid inequalities;
#Cuts, number of violated inequalities detected; #Cols, number of columns generated; #PP
heur, number of calls to the pricing heuristic (this is equivalent to the number of iterations in
the column generation method); #PP exact, number of calls to the exact pricing procedure;
#Labels, the number of labels processed in the last call to the exact pricing procedure. Every
two lines in the table represent information about a particular instance. The first line is for
the SP1 relaxation while the second line is for the SP2 relaxation. The last two lines provide
averages. All time measurements are in seconds. Notice that the sum of the partial time
consumptions does not add up to the total time consumption reported. This is because time
is spent in other parts of the algorithm (e.g. management of column and cut pools) that is
not reported in the table.
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The reason why the SP2 relaxation spends more time on preprocessing compared to SP1,
is that the reachability cuts are turned off for SP1 as they are implied by this relaxation.
The reachability cut requires the computation of the sets A+

i and A−
i which can be very

time consuming, especially for larger instances like the last three. Running the separation
procedure for the reachability constraints can also be time consuming as it involves many
maximum flow calculations (see Lysgaard (2006)).

8 Conclusions

This paper has introduced a branch-and-cut-and-price algorithm for the PDPTW. We have
proved that the most useful valid inequalities (fork and reachability inequalities) from a
recently proposed branch-and-cut algorithm (Ropke et al. (2007)) are implied by the set
partitioning relaxation SP1. Those inequalities are not implied by the SP2 relaxation, but
despite this, the SP1 and SP2 relaxations provide similar lower bounds and are roughly
equally hard to compute (for the instances considered in this paper). Even though both
the SP1 and SP2 relaxations have been used in the literature before, this paper is the
first to present a computational comparison between the two relaxations for the PDPTW.
Comparisons between elementary and non-elementary pricing problems for the CVRP and
VRPTW have been conducted, for example, by Salani (2005).

For the instances considered in this paper we recommend using the elementary shortest
path problem as pricing problem. The pricing problem allows stronger lower bounds and
it does not seem to be much harder to solve compared to its non-elementary counterpart.
Furthermore, it seems easier to theoretically analyze a set partitioning relaxation based on
elementary shortest paths.

We have shown how adding valid inequalities from the 2-index formulation to the master
problem interferes with the pricing algorithm. An approach to modify the cost matrix used
in the pricing algorithm was proposed to ensure that a strong dominance criterion could be
used in the pricing algorithms while adding valid inequalities to the master problem. The
experiments concerning valid inequalities showed that the 2-path cut was the most successful
of the valid inequalities tested. More research is needed in order to find new families of valid
inequalities that close even more of the gap between the lower and upper bounds.

We conclude that several large scale instances can be solved with the current approach
but loosely constrained instances remain challenging.
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Name z Cost Time Name z Cost Time
AA30 31119.1 31119.1 75 LR1 2 1 4819.1 4819.1 174
AA35 31299.8 31299.8 93 LR1 2 2 4093.1 4093.1 212
AA40 31515.9 31515.9 62 LR1 2 3 3484.1 3486.8 264
AA45 31759.8 31759.8 124 LR1 2 4 2830.7 411
AA50 41775.0 41775.0 159 LR1 2 5 4221.6 4221.6 182
AA55 41907.8 41907.8 185 LR1 2 6 3763.0 3763.0 238
AA60 42140.7 42140.7 118 LR1 2 7 3112.9 272
AA65 42250.2 42252.7 135 LR1 2 8 2645.4 383
AA70 42452.3 42455.0 187 LR1 2 9 3953.5 3953.5 193
AA75 43206.5 52472.7 308 LR1 2 10 3376.2 3389.2 225
BB30 31086.3 31086.3 76 LC1 2 1 2704.6 2704.6 183
BB35 31281.2 31281.2 92 LC1 2 2 2764.6 2764.6 206
BB40 31493.4 31493.4 63 LC1 2 3 2772.2 2772.2 230
BB45 41555.1 41555.1 127 LC1 2 4 2661.4 341
BB50 41701.0 41703.4 160 LC1 2 5 2702.0 2702.0 203
BB55 41885.7 41885.7 96 LC1 2 6 2701.0 2701.0 204
BB60 62420.1 62420.1 178 LC1 2 7 2701.0 2701.0 221
BB65 62639.1 62639.1 202 LC1 2 8 2689.8 2689.8 221
BB70 62951.0 62952.3 236 LC1 2 9 2724.2 2724.2 230
BB75 62232.6 63130.4 256 LC1 2 10 2734.9 2741.6 260
CC30 31087.7 31087.7 76 LRC1 2 1 3606.1 3606.1 190
CC35 31230.6 31230.6 97 LRC1 2 2 3292.4 3292.4 208
CC40 31358.5 31358.5 132 LRC1 2 3 3079.5 271
CC45 31509.1 31509.1 82 LRC1 2 4 2525.8 431
CC50 41685.3 41689.0 168 LRC1 2 5 3715.8 3715.8 208
CC55 41836.3 41836.3 196 LRC1 2 6 3360.9 3360.9 198
CC60 37839.7 42015.5 127 LRC1 2 7 3298.2 3317.7 212
CC65 39480.3 42172.1 145 LRC1 2 8 3025.8 3086.7 220
CC70 42124.5 52201.9 288 LRC1 2 9 2995.5 3058.5 229
CC75 43565.0 52375.6 325 LRC1 2 10 2837.5 248
DD30 21133.3 21133.3 49 LR1101 56744.9 56791.7 2278
DD35 31210.9 31224.0 99 LR1105 52401.2 52901.3 2403
DD40 31352.2 31352.2 136 LC1101 42488.7 42488.7 1870
DD45 31483.9 31483.9 132 LC1105 42477.4 42477.4 1880
DD50 31600.9 31600.9 105 LRC1101 48198.7 48666.4 2145
DD55 31743.3 31743.3 124 LRC1105 49287.0 2468
DD60 31466.6 41869.4 247
DD65 35313.7 42125.7 209
DD70 36690.6 42220.3 175
DD75 38762.1 42396.8 201

Table 2: Results from PDPTW Heuristic
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SP1 SP2
No cuts IPC CC 2PC Full No cuts IPC CC 2PC FC RC Full

AA30 84.10 0.00 0.00 0.17 0.17 84.10 0.00 0.00 0.17 0.00 0.00 0.17
AA35 84.22 0.00 1.10 1.43 1.42 84.22 0.00 1.02 1.34 0.00 0.00 1.34
AA40 99.97 0.00 100.00 88.32 100.00 99.97 0.00 91.22 80.72 0.00 0.00 93.35
AA45 100.00 100.00
AA50 81.61 0.00 0.05 0.20 0.20 81.58 0.03 0.05 0.18 0.13 0.14 0.32
AA55 88.26 0.00 0.04 0.08 0.08 88.25 0.00 0.03 0.12 0.13 0.14 0.21
AA60 92.28 0.00 0.13 0.14 0.14 92.20 0.00 0.07 0.12 0.88 0.88 0.97
AA65 94.71 0.00 0.16 0.27 0.16 94.14 4.86 0.92 5.39 5.63 6.49 6.70
AA70 97.14 0.00 0.44 1.58 1.87 96.94 0.96 0.51 4.76 5.04 5.04 6.44
AA75 82.26 0.00 0.09 0.43 0.46 81.91 0.68 0.79 1.17 0.92 0.92 1.58

BB30 72.79 0.00 0.00 1.71 1.71 72.58 0.00 0.00 1.76 0.06 0.01 1.77
BB35 86.50 0.00 0.00 0.49 0.49 86.32 0.00 0.00 1.59 0.06 1.28 1.77
BB40 96.22 0.00 0.00 0.03 0.03 96.18 0.00 0.00 0.24 0.26 0.28 0.57
BB45 78.82 0.00 0.00 0.02 0.02 78.55 0.00 0.00 0.30 0.00 0.00 0.30
BB50 86.16 0.00 0.00 0.04 0.04 86.12 0.00 0.00 0.00 0.03 0.23 0.26
BB55 94.98 0.00 0.00 0.00 0.00 94.67 0.00 0.00 0.03 0.07 0.00 0.08
BB60 87.99 0.00 0.00 0.00 0.01 87.99 0.00 0.00 0.00 0.00 0.00 0.00
BB65 89.26 0.00 0.00 0.00 0.01 89.26 0.00 0.00 0.00 0.00 0.00 0.01
BB70 97.75 0.00 0.01 0.32 0.34 97.75 0.00 0.01 0.33 0.00 0.00 0.35
BB75 98.58 0.00 0.00 0.30 0.31 98.58 0.00 0.00 0.30 0.00 0.00 0.30

CC30 73.37 0.00 0.00 0.09 0.09 72.54 0.00 0.00 0.43 0.00 0.00 0.44
CC35 77.64 0.00 0.00 0.14 0.14 77.09 0.00 0.00 0.14 0.06 0.00 0.17
CC40 80.65 0.00 0.00 0.07 0.07 80.41 0.00 0.00 0.13 0.00 0.00 0.18
CC45 91.84 0.00 0.00 0.00 0.00 91.41 0.00 0.00 0.00 0.05 0.62 0.72
CC50 81.70 0.00 0.00 0.00 0.00 81.66 0.00 0.00 0.03 0.00 0.00 0.02
CC55 87.07 0.00 0.08 0.14 0.14 87.03 0.00 0.04 0.05 0.05 0.00 0.10
CC60 90.06 0.00 0.02 0.01 0.02 89.89 0.00 0.00 0.00 0.00 0.00 0.00
CC65 93.62 0.00 0.00 0.00 0.00 93.38 0.00 0.26 0.29 0.00 0.24 0.40
CC70 80.68 0.00 0.08 0.01 0.08 80.50 0.00 0.04 0.05 0.00 0.03 0.09
CC75 83.17 0.00 0.03 0.03 0.03 82.96 0.00 0.05 0.05 0.00 0.00 0.05

DD30 88.50 0.00 0.03 99.78 100.00 87.92 0.00 0.00 99.57 0.00 0.00 99.85
DD35 68.97 0.00 0.00 0.98 0.98 68.43 0.00 0.00 1.28 0.17 0.07 1.38
DD40 73.80 0.00 0.00 0.18 0.18 73.40 0.00 0.00 0.06 0.06 0.06 0.18
DD45 79.00 0.00 0.13 0.10 0.13 78.75 0.00 0.05 0.13 0.15 0.15 0.29
DD50 84.13 0.00 0.09 0.11 0.13 83.83 0.00 0.48 0.03 0.00 0.00 0.29
DD55 90.83 0.00 0.07 0.10 0.18 90.66 0.00 0.11 0.15 0.00 0.00 0.17
DD60 75.13 0.00 0.03 0.08 0.08 74.94 0.00 0.11 0.11 0.01 0.00 0.12
DD65 83.83 0.00 0.01 0.01 0.01 83.50 0.00 0.00 0.02 0.23 0.22 0.23
DD70 86.90 0.00 0.00 0.00 0.00 86.58 0.35 0.00 0.75 1.15 1.30 1.34
DD75 91.42 0.00 0.00 0.07 0.07 91.04 0.00 0.01 0.11 0.66 0.86 1.00

Avg. 86.40 0.00 2.63 5.06 5.38 86.18 0.18 2.46 5.18 0.41 0.49 5.73

Table 3: Impact of valid inequalities on the first data-set.

31



SP1 SP2
No cuts IPC CC 2PC Full No cuts IPC CC 2PC FC RC Full

LR1 2 5 99.98 100.00 0.00 0.00 100.00 99.98 100.00 0.00 0.00 0.00 0.00 100.00
LR1 2 6 100.00 99.98 68.85 0.00 100.00 100.00 0.00 100.00
LR1 2 9 99.34 2.45 0.00 72.65 72.81 99.34 2.45 0.00 68.97 0.00 0.00 71.81

LR1 2 10 99.61 0.00 0.00 2.80 2.80 99.43 0.00 0.00 8.83 2.50 2.50 10.35
LC1 2 9 99.63 0.00 0.00 14.15 14.03 99.54 0.00 0.00 2.92 0.00 0.00 2.92

LC1 2 10 99.73 0.00 0.00 10.10 10.10 99.61 0.00 11.07 37.41 3.76 19.03 38.41
LRC1 2 1 99.92 13.27 0.00 100.00 100.00 99.92 13.27 0.00 100.00 0.00 0.00 100.00
LRC1 2 2 99.14 0.00 0.00 80.03 80.03 99.14 0.00 0.00 80.03 0.00 0.00 80.03
LRC1 2 5 99.84 14.04 0.00 16.36 16.36 99.61 12.81 0.00 49.76 3.18 6.15 56.66
LRC1 2 7 99.31 0.00 0.00 14.22 14.57 98.88 0.00 6.32 8.66 7.38 15.05 22.30
LRC1 2 8 97.98 0.00 0.00 15.16 14.94 97.65 0.00 0.00 15.85 0.12 0.04 15.90
LRC1 2 9 97.51 0.00 0.00 17.03 17.03 96.97 0.36 0.48 15.28 0.72 0.97 16.05

Avg. 99.33 10.81 0.00 28.54 36.89 99.17 16.48 1.49 40.64 9.80 3.64 51.20

Table 4: Impact of valid inequalities on the second data-set (instances proposed by Li and
Lim (2001)).
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B&C SP1 SP2
Name z̄ z Time z Time Nodes Cuts z Time Nodes Cuts

AA30 31119.1 24513.3 6.0 26179.4 6.5 3 7 26179.4 11.2 3 25
AA35 31299.8 26337.5 9.1 26431.6 15.9 5 16 26427.5 34.4 5 25
AA40 31515.9 31501.5 19.3 31515.9 13.4 1 9 31515.2 47.1 5 28
AA45 31759.8 31701.0 1484.4 31759.8 15.9 1 0 31759.8 25.5 1 0
AA50 41775.0 31843.4 832.1 34108.5 72.0 7 11 34105.5 139.6 5 38
AA55 41907.8 33064.2 65.7 36992.7 65.6 3 11 36992.3 125.8 3 23
AA60 42140.7 33351.2 234.2 38892.1 235.7 5 6 38887.5 256.5 5 30
AA65 42250.2 32547.2 519.7 40020.9 349.5 9 5 39940.9 599.7 13 36
AA70 42452.3 32587.7 41262.0 2477.5 75 34 41237.5 160 78
AA75 52472.7 32599.4 43206.5 188 47 43131.4 97 85

BB30 31086.3 21129.0 63.4 22772.9 6.0 3 5 22712.0 9.0 3 8
BB35 31281.2 23659.7 13.9 27078.4 18.0 5 9 27076.2 33.2 7 16
BB40 31493.4 23782.1 32.6 30304.1 18.9 3 6 30298.5 35.8 3 17
BB45 41555.1 23891.8 32754.8 46.3 9 4 32669.7 58.2 7 9
BB50 41701.0 29072.1 482.6 35930.7 192.6 25 14 35929.6 159.9 11 16
BB55 41885.7 27863.2 39781.5 55.8 3 0 39656.8 85.5 3 3
BB60 62420.1 42605.8 54925.9 181.7 27 7 54925.5 276.7 35 6
BB65 62639.1 42901.3 55910.9 294.8 25 4 55910.9 486.2 33 6
BB70 62951.0 44114.8 61537.7 1839.4 139 15 61537.8 2182.8 117 33
BB75 63127.5 44491.3 62232.6 265 34 62232.5 200 45

CC30 31087.7 11134.5 22817.1 11.3 5 1 22588.7 19.2 5 8
CC35 31230.6 11277.9 24257.8 59.1 17 13 24087.3 80.9 11 18
CC40 31358.5 11373.3 25293.8 254.8 29 15 25224.8 658.7 39 74
CC45 31509.1 11514.1 28939.1 175.9 11 5 28822.2 843.8 27 58
CC50 41685.3 11690.2 34058.3 1962.3 137 16 34041.7 4005.2 145 98
CC55 41836.3 11812.0 36432.5 2729.2 117 15 36414.1 180 75
CC60 42015.5 11976.2 37839.7 162 22 37767.7 113 51
CC65 42172.1 12094.7 39480.3 85 21 39391.5 59 33
CC70 52201.9 12198.3 42124.5 44 12 42029.2 36 37
CC75 52375.6 12340.2 43565.0 47 7 43456.6 26 34

DD30 21133.3 11117.6 21133.3 25.2 1 25 21129.5 75.5 5 25
DD35 31210.9 11212.6 21620.2 765.1 143 38 21494.5 2266.8 261 128
DD40 31352.2 11324.1 23152.6 160.8 15 11 23028.4 687.5 37 47
DD45 31483.9 11433.9 24880.6 525.6 31 29 24811.6 1313.3 41 64
DD50 31600.9 11525.2 26593.7 1976.0 77 47 26506.4 4238.8 115 84
DD55 31743.3 11600.6 28836.5 1178.5 25 10 28782.0 3951.6 63 39
DD60 41869.4 11724.0 31466.6 88 10 31389.2 66 44
DD65 42125.7 12018.9 35313.7 59 22 35191.3 42 60
DD70 42220.3 12094.3 36690.6 55 10 36630.7 31 61
DD75 42396.8 12245.1 38762.1 42 13 38635.8 24 65

#Solved 12 30 28

Table 5: Branch-and-cut-and-price results on the first data-set.
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B&C SP1 SP2
Name z̄ z Time z Time Nodes Cuts z Time Nodes Cuts

LR1 2 1 4819.1 4819.1 287.5 4819.1 5.1 1 0 4819.1 112.4 1 0
LR1 2 2 4093.1 4067.4 4093.1 84.0 1 0 4093.1 214.1 1 0
LR1 2 3 3486.9 3312.0 3484.1 2 1
LR1 2 4 2830.7 2452.8
LR1 2 5 4221.6 4215.0 1075.5 4221.6 11.7 1 1 4221.6 130.6 1 1
LR1 2 6 3763.0 3482.1 3763.0 1041.6 1 0 3763.0 2198.9 1 2
LR1 2 7 3112.9 2773.2
LR1 2 8 2645.5 2149.3
LR1 2 9 3953.5 3815.1 3946.4 418.5 25 29 3946.1 2503.9 93 153

LR1 2 10 3389.2 2879.5 3376.2 4 3

LC1 2 1 2704.6 2704.6 180.3 2704.6 4.9 1 0 2704.6 116.5 1 0
LC1 2 2 2764.6 2753.8 4979.5 2764.6 27.6 1 0 2764.6 140.2 1 0
LC1 2 3 2772.2 2561.2 2772.2 250.1 1 0 2772.2 240.6 1 0
LC1 2 4 2661.4 1944.6
LC1 2 5 2702.0 2702.0 223.9 2702.0 6.3 1 0 2702.0 89.5 1 0
LC1 2 6 2701.0 2701.0 580.9 2701.0 9.8 1 0 2701.0 96.1 1 0
LC1 2 7 2701.0 2701.0 423.0 2701.0 10.9 1 0 2701.0 100.1 1 0
LC1 2 8 2689.8 2316.8 2689.8 31.5 1 0 2689.8 118.6 1 0
LC1 2 9 2724.2 1966.8 2715.6 6628.6 91 11 2712.1 73 18

LC1 2 10 2741.6 1493.7 2734.9 9 5 2734.9 9 52

LRC1 2 1 3606.1 3569.1 2485.5 3606.1 12.6 1 3 3606.1 154.1 1 3
LRC1 2 2 3292.4 3026.6 3286.8 1440.4 3 23 3286.8 1053.3 3 21
LRC1 2 3 3079.5 2529.8
LRC1 2 4 2525.8 2103.1
LRC1 2 5 3715.8 3333.6 3710.9 517.8 17 7 3709.6 1419.8 27 99
LRC1 2 6 3360.9 3072.7 3360.9 27.7 1 0 3360.9 142.4 1 2
LRC1 2 7 3317.7 2720.4 3298.2 81 25 3289.0 40 629
LRC1 2 8 3086.7 2441.6 3025.8 2 277
LRC1 2 9 3058.6 2261.3 2995.5 2 21 2980.7 2 50

LRC1 2 10 2837.5 2074.2

Avg. 1279.5 619.3 552.0
Solved 8 17 16

Table 6: Branch-and-cut-and-price results on the second data-set (instances proposed by Li
and Lim (2001)). 100 requests.
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SP1 SP2
name UB z time nodes Cuts z time nodes Cuts

LR1101 56744.9 56740.9 1682.3 3 0 56740.9 2514.8 3 0
LR1105 52901.3 52401.2 8 34 52399.9 8 49
LC1101 42488.7 42488.7 778.9 1 0 42488.7 704.8 1 0
LC1105 42477.4 42477.4 762.7 1 0 42477.4 940.9 1 0

LRC1101 48666.5 48198.7 9 59 48192.7 7 89
LRC1105 49287.1

solved 3 3

Table 7: Branch-and-cut-and-price results on the second data-set (instances proposed by Li
and Lim (2001)). Instances with 500 requests and tight time windows.

Name PP Time Time Time Time Time Time #Cuts #Cols #PP #PP #Labels
total preproc. LP PP heur. PP exact sep. heur exact

CC45
SP1 33.9 0.1 0.9 30.6 0.8 1.0 0 2306 140 4 90061
SP2 96.8 6.4 1.3 85.9 0.4 1.9 13 2763 197 5 55492

DD45
SP1 41.8 0.1 1.0 37.3 1.3 1.4 4 2084 183 6 100036
SP2 88.9 6.2 1.0 78.7 0.7 1.4 11 2192 199 5 84536

LR1 2 6
SP1 1085.0 0.3 0.5 75.4 996.6 5.4 0 1650 127 3 2905131
SP2 2226.8 90.2 0.4 80.9 2021.9 26.8 2 1679 119 3 4595936

LR1 2 9
SP1 77.4 0.3 0.4 50.0 3.4 15.9 17 1553 142 1 199984
SP2 367.1 55.3 0.4 66.7 5.6 231.2 21 1431 150 2 214272

LRC1 2 2
SP1 169.1 0.2 0.3 97.7 45.9 17.5 23 1591 152 2 729012
SP2 681.1 77.1 0.4 151.4 64.8 377.6 21 1620 197 2 922721

Avg.
SP1 281.4 0.2 0.6 58.2 209.6 8.2 8.8 1837 149 3.2 804845
SP2 692.1 47.0 0.7 92.7 418.7 127.8 13.6 1937 172 3.4 1174591

Table 8: Detailed results for the root node on a subset of instances.
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