

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Pathway analysis of IMC

Skrypnyuk, Nataliya; Nielson, Flemming; Pilegaard, Henrik

Published in:
21st Nordic Workshop on Programming Theory

Publication date:
2009

Link back to DTU Orbit

Citation (APA):
Skrypnyuk, N., Nielson, F., & Pilegaard, H. (2009). Pathway analysis of IMC. In 21st Nordic Workshop on
Programming Theory: NWPT 2009 (pp. 7-10). Lyngby.

http://orbit.dtu.dk/en/publications/pathway-analysis-of-imc(6a53679a-0ab8-479d-8263-e17ce4d1df51).html

Pathway Analysis for IMC

Nataliya Skrypnyuk Flemming Nielson
Henrik Pilegaard

DTU Informatics, Technical University of Denmark
{nsk|nielson|hepi}@imm.dtu.dk

Extended abstract

Abstract

We present the ongoing work on the pathway analysis of a stochastic calculus.
Firstly we present a particular stochastic calculus that we have chosen for our modeling
- the Interactive Markov Chains calculus, IMC for short. After that we specify a few
restrictions that we have introduced into the syntax of IMC in order to make our
analysis feasible. Finally we describe the analysis itself together with several theoretical
results that we have proved for it.

The IMC calculus has been introduced by Holger Hermanns in the 90’s as an orthogonal
extension of Continuous Time Markov Chains (CTMC) and a process algebra (see [BH01]).
We have adopted the syntax of IMC with a few minor changes (see Table 1). Small Latin
letters denote actions that IMC processes are able to execute, capital Latin letters indicate
process identifiers and Greek letters correspond to positive real numbers standing for delays
during which IMC processes are stuck, i.e. do nothing. Delay durations are not fixed but
are exponentially distributed with rates equal to the corresponding numbers. If the rate of
some delay is equal to λ, then it’s average duration will be 1/λ and it’s variation - 1/λ2. One
difference with respect to [BH01] is that all summands in the sum construct are ”guarded”
either by actions or delay rates (see rule (2) in the Table 1). This is why we use the name
guarded IMC or IMCG. Another difference is that all actions and delay rates are decorated
with labels from a predefined label set. Labels do not have any semantic meaning but are
useful for our analysis.

P ::= X | (1)∑
i∈I1

a`ii .P +
∑
j∈I2

(λ`jj).P | (2)

hide A in P | (3)
P q A q P | (4)
X := P (5)

Table 1: Syntax of IMCG.

The operational semantics of IMC is defined in terms of a Labeled Transition System
(LTS) in the usual way. The novelty of IMC is that delays are dealt with much in the same
way as actions. This is justified by the memoryless property of exponential distributions.
Namely if two exponentially distributed delays are being executed in parallel and one of
them ”fires” first, this does not influence the residual duration of the second delay: it will
still be exponentially distributed with the same rate. We have enhanced the semantics of
IMC in that transitions in LTS are decorated by the multisets of labels of actions or delays
being executed. We use this for proving the correctness of our analysis.

The choice (+ operator) between two delays is made according to the race condition:
the probability that one of two delays ”fires” before the other one is equal to it’s rate
divided by the joint rate of two delays. The time until the first of two delays has ”fired”

1

is exponentially distributed with the rate equal to the sum of two rates. These facts follow
from the properties of exponential distributions as well.

It is possible to represent each CTMC as an IMC system and similarly any process
algebra expression can be rewritten into an IMC expression. Process algebra part of IMC
is defined in the style of Communicating Sequential Processes (CSP) calculus (see [Hoa85]).
In particular the synchronization model of CSP is being used. This means that the number
of actions being executed synchronously can be any number between 2 and infinity.

The choice between a delay and an internal action (denoted by τ) is made in favor of
internal action. This is justified by the notion of the maximal progress: as actions (in the
approximation) do not take any time to be completed, the choice should also be made in
favor of an action according to the race condition. The choice between two actions and
between a delay and a non-internal action is made non-deterministically. The last case
differs from the case of an internal action because non-internal actions can be blocked by
the environment. We should therefore take into account the possibility that the delay will
”fire” before the non-internal action will become enabled.

In order to give guarantees for our analysis we need to exclude several kinds of IMC
processes with ”inconvenient” behavior. In particular we are excluding processes with not
well-defined next transactions (for example, X := X), with an ability to ”grow” (like the
process X := a`1 .X q {a} q a`2 .X , which doubles the number of synchronizing subprocesses
after each step in the semantics) and processes where there is a choice if some action will
be hidden or not (like in the process X := a`1 .X + hide {a} in a`2 .X). In particular the
exclusion of ”growing” processes guarantees that LTSs of IMCG processes are always finite.

We have devised a set of inductive well-formedness rules (see Table 2). The operator fn
returns the set of non-hidden actions and the operator fpi returns the set of non-defined
IMCG process identifiers. We name an IMCG expression well-formed if it can be derived
according to these rules parametrized by the set of non-hidden actions of the expressions in
question. We have proved that well-formedness is preserved under any number of semantic
transitions. We have also shown that all the behavior mentioned above is excluded for
well-formed IMCG.

`S false
`S X

(1)∧
i∈I1

(`S Pi)
∧
j∈I2

(`S Pj)

`S
∑
i∈I1

a`ii .Pi +
∑
j∈I2

(λ`jj).Pj +
∑
i∈J1

a`ii .Xi +
∑
j∈J2

(λ`jj).Xj

(2)

`S P
`S hide A in P

if A ∩ S = ∅ (3)

`S P1 `S P2

`S P1 q A q P2

if (fpi(P1) = ∅) ∧ (fpi(P2) = ∅) (4)

`S∪fn(P) P

`S X := P
(5)

Table 2: Well-formedness rules for IMCG expressions.

We have devised the pathway analysis for IMCG. It is based on the data flow analysis
for CCS calculus (see [NN07]) and the pathway analysis for BioAmbients (see [Pil07]). The
main contribution in the previous work was that transfer functions of data flow analysis
have been applied to the calculi domain. The transfer functions have been computed on
the expressions from a particular calculus. The result of the analysis was the construction
of the DFA, with each state of the automaton corresponding to one or more states of the
underlying LTS semantics.

The reason for doing data flow or similar to it pathway analysis instead of analyzing the
underlying LTS semantics directly is to fight the state space explosion problem and even to

2

be able to deal with the infinite state space. Another potential benefits are more efficient
checks of bisimilarity properties, better control over merging of states of the constructed
DFA and eventually more efficient model checking of some other classes of properties of the
calculi expressions. We can also deal more efficiently with the composition of several systems
because we can conduct composition directly on the analysis results for subsystems.

In our own work we have extended the expose, generate and kill operators, already intro-
duced in the previous work, to the IMCG calculus. These operators are defined inductively
on IMCG expressions and they return multisets of labeled actions and delay rates. The
expose operator E returns labeled actions and delays which may get executed during the
next step. The generate operator G returns labeled actions and delays which may become
exposed (i.e. available for execution) in one step, after the corresponding labeled action or
delay has been executed. The kill operator K returns labeled actions and delays which must
cease to be available for execution after the corresponding labeled action or delay has been
executed. We have added a new operator, the so-called chains operator T, which returns
the set of multisets of labeled actions which have to be executed simultaneously. This has
to do with the fact that in the IMCG calculus the number of synchronizing actions is not
fixed. The chains operator for delays is not necessary because delays do not synchronize in
IMCG.

We have established several results for our analysis. We have proved that the analysis
is safe for well-formed and ”process identifiers closed” IMCG expressions. For such expres-
sions we can compute all executable actions and delays after any number of steps in their
semantics. If moreover the IMCG expression in question is uniquely labeled (all labels are
different), then the pathway analysis is also precise, i.e. all computed executable actions
and delays will in fact be executable in the semantics of the IMCG expression in question.

Theorem 1 If E ∗−−→ E′ and E well-formed and process identifier closed IMCG expres-

sion, then from E′
β−−→
C

E′′, β action or delay rate, C multiset of labels, follows EJE′K +∑
`∈C

[G{}JEK]`−
∑
`∈C

[KJEK]` = EJE′′K.

Theorem 2 If E is well-formed, process identifier closed and uniquely labeled IMCG ex-
pression, then in case E

∗−−→ E′ and some transition is predicted for E′ by the pathway
analysis, this transition can also be derived in the semantics.

As future work, in order to reduce the state space further, we plan to incorporate tech-
niques for abstracting delays.

References

[BH01] Ed Brinksma and Holger Hermanns. Process Algebra and Markov Chains. In FMPA
2000: EuroSummerschool on Formal Methods and Performance Analysis, volume
2090 of Lecture Notes in Computer Science, pages 183–231. Springer-Verlag, 2001.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[NN07] H. R. Nielson and F. Nielson. Data Flow Analysis for CCS. In Program Analysis,
Theory Compilation, and Practice, editors, Conference, volume 4444 of Lecture
Notes in Computer Science, pages 311–327. Springer, 2007.

[Pil07] Henrik Pilegaard. Language Based Techniques for Systems Biology. PhD thesis,
Technical University of Denmark, Department of Informatics and Mathematical
Modeling, Language-Based Technology, 2007.

3

