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On exact and approximate exchange-energy densities
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and Department of Chemistry, Technical University of Denmark, DK-2800 Lyngby, Denmark

Jens Peder Dahl®
Department of Chemistry, Technical University of Denmark, DK-2800 Lyngby, Denmark

(Received 21 December 1998; accepted 16 February)1999

Based on correspondence rules between quantum-mechanical operators and classical functions in
phase space we construct exchange-energy densities in position space. Whereas these are not unique
but depend on the chosen correspondence rule, the exchange potential is unique. We calculate this
exchange-energy density for 15 closed-shell atoms, and compare it with Kkinetic- and
Coulomb-energy densities. It is found that it has a dominating local-density character, but
electron-shell effects are recognizable. The approximate exchange-energy functionals that have
been proposed so far are found to account only poorly for the observed behaviors. Instead we use
our results in proposing an alternative functional that depends on both first- and second-order
derivatives of the electron density. ®9399 American Institute of Physics.

[S0021-960609)31218-9

I. INTRODUCTION Due to convenience, we have changed the sig&,0€om-
Duri he last few decades density-f ional hod pared to common practice.

. l;)rlngt e as'_[ ewtectat eT_ en5|t?/- gncn(l)na; mgt 0dS  gimilar to E.. E, and E, are functionals ofp(r) al-

ave Decome an Imporiant foo1 in Explofing elecTonic anc{hough their precise forms are unknown. In practical calcu-

structural properties of materials whereby all types of mate,tions one applies therefore approximations, which, e.g., for
rials ranging from small molecules to infinite crystals cur- o exchange energy amounts to writing

rently are being treatedsee, e.g., Ref. 1, and references

therein. These methods are based on the theorems of Ho-

henberg and Kotfrwho showed that any ground-state prop- —Exzfsx(f)'p(r)df, 5
erty is a unique functional of the density of the system of

interest. Kohn and Shahshowed that it was useful to refor- with ¢, at the pointr being a function of the electron density
mulate the problem of calculating the total electronic energyand of some of its derivatives at this point,

E. as that of solving a set of single-particle equatidims

Hartree a.u, e =g, p(r),|Vp(r)]|,V?p(r),...]. (6)
_1y2 (=€ o . . N .
[=2Vo+ Ver(D 4 (1) = €idi(r). @) There exists a number of different approximations of this
V. is an effective potential containing three terms, type and below we shall discuss some of those. For the
present purpose it suffices to notice tlafr) - p(r) of Eq.
Veii(1) =Vn(r) +Ve(r) +Vy(r), (2)  (5) plays the role of an exchange-energy density in position
where the first term is the Coulomb potential due to theSPace€:

nuclei, the second term is that of the electrons, and the last A common approach for obtaining approximate func-

term on the right-hand side is the so-called eXch(,;mge'gionals is to consider the total exchange energy,(Bx.for a

correlation potential. set of systems and from this set of data try to derive the

V,(r) is defined as the functional derivative of the functional of Eq.(6). It should be obvious that this procedure
exchange-correlation energy is not unique, and that many different functionals may lead
to similar results for the chosen set of systems. Alternatively,

Y = 3 more detailed information is obtained by focusing on the
xe(1) = Sp(r)’ 3) exchange potential,(r), but despite the relatiof8), it is in
, . . ) eneral not possible to extract the energy density of(Bq.
with E,. in turn being defined as a sum of the exchange anéjniquely from this information.
correlation energy For closed-shell systems the Hartree—Fock approxima-
E= — E +E. (4) tion provides a useful alternative to the density-functional

methods. In that case the exchange energy is defined as

N/2

aE|ectronic mail: mes@chclu.chemie.uni-konstanz.de *(r *(r (r (r

PPermanent address. E,=2 E J J ¢ (1) 67 (r2) ¢i(ra) $i(ra) dridr,,  (7)
9Electronic mail: jpd@kemi.dtu.dk ij=1 [ri—ro
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where we have assumed that the number of electhis 1 )
even and that we hawe/2 doubly degenerate, filled orbitals A(r,p)= 23 f f a(s;t)e'"stPUdsdt C)
that pairwise only differ in the spin component.
Unfortunately, Eq(7) does not directly lead to a unique with
definition of an exchange-energy density in position space.

i 1 A
Any transformation of the form a(st)= (277)3f fA(r,p)e_'(r‘erp‘t)drdp. (10)
r ry
r' =u- ry (8) The quantum-mechanical operator correspondingAto

) ) ) (characterizing it by a carets then defined through
and subsequently integration ovef leads to a possible

exchange-energy density. In E(), U is any real matrix - 1 st
whose determinant equaisl. Studies forU being the unit A= Wf j a(st)e'"*"Pig(s,pdsdt, (11)
matrix were recently presented by Filippi, Gonze, and
Umrigar? by Gritsenko, van Leeuwen, and Baerefdmd  where different correspondence rules correspond to different
by Hoodet al® choices ofg(s,t) (see, e.g., Refs. 14-1G(s,t) is, in prin-
It is the purpose of the present work to show how theciple, general but is chosen to fulfill
concepts of correspondence rules and phase-space functions
can be used in obtaining exchange-energy densities in posi- 9(0:)=9(s0)=1. (12)

tion space. This will be the subject of Sec. II. In Sec. lll W€t shall be stressed that there is no restrictive criterion that

shall show tha}t independent of thg ghose_n corresponden%q!'ows a unique specification gfs,t). The Weyl correspon-
rule, the resulting exchange potential is unique, although dence, which is the one we shall purdsee the discussion
the exchange-energy density is not. The Weyl corres:ponronowi’ng Eq. (21)], hasg(s,t)=1

denc_e rule and the_therewith connected Wigner_phase-space Combining Eqgs(9) and(11) leads to
function have certain conceptual advantagiesbe discussed
below) and therefore we shall in Sec. IV use those in speci-.
fying one particular exchange-energy density. Section V @:J JA(r,p)
devoted to results for 15 closed-shell atofidg, Be, Ne, Mg,
Ar, Ca, Zn, Kr, Sr, Cd, Xe, Ba, Yb, Hg, and Rrand in Sec.
VI we shall use the information thereby obtained in explor-
ing the quality of a number of proposed approximate forms (13)
for the exchange-energy density. It is found that the approxi-
mate forms do not describe our results as accurately as might This gives the prescription for constructing the quantum-
be desirable. Therefore, in Sec. VII we shall use our resultsnechanical operator from a given classical function. In order
in proposing another approximate form, and, finally, in Secto obtain the reverse transformation we proceed as follows.
VIII we offer a conclusion. We consider any two eigenstates of the position opergtor,

To our knowledge there exist only two previous studiesand|r”) and construct the matrix element for those with the
where the exchange energy was studied from a phase-spasperator of Eq(13),
point of view. In the first of thosésome of the formulas that L
we shall discuss here were presented, and exchange-energy , ., xj.m _ “i(r-stp-t)
densities for some few closed-shell atoms were presented. (r|Alr >_f fA(r’p)[(Zw)Gf f €

x[—(zi)ﬁf f e I(rstP0gi(stP-Ug s t)dsdt |drdp.

But the attempts for constructing improved approximate den-
sity functionals were very limited. A somewhat different ap- ><<r’|ei(F‘S*‘3't)|r”)g(s,t)dsdt}drdp. (14)
proach was taken by Ghosh and Basho also used their
results in proposing an approximate exchange-energy funcs : L 17
tional. They used, however, approximate phase-space fun(ic?’-y applying the following identities!
tions whereby some uncontrolled approximations may have ei(?-s+f)-t):ei(1/2)5‘teif-5eil5't,
been introduced. We finally add that Burke, Perdew, and
co-worker§ 3 also have studied the total exchange energy &Py =" —t),
by analyzing the energy density in position space. They used, (15)
however, a very different approach than ours, and also their  gif-sjpr )= gi(" =57 ),
emphasis is different from ours.
(r'fr"=t)y=8(r"—r"+1t),

and setting
Il. CORRESPONDENCE RULES AND PHASE-SPACE

FUNCTIONS r'=R— 1y,

For the sake of simplicity we consider a single-particle (v _r 1, (16

system. According to classical mechanics any quawtity a
function in phase space. We may Fourier transform it, we obtain after some straightforward manipulations
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1 | 1 1 leads to operators that are invariant under certain canonical
R=ZulAlR+Zu f f A(r,p transformations, and the fact that the exchange hole as de-
fined with the Weyl correspondence can be considered)local
) f the Wi f : ,19,20
x [ eilsR=n-pulg(s u)dsdrdp. and of the Wigner unctlp]r? maI_<e us propose to base
the discussion on the Wigner function and the Weyl corre-
17) spondence rule.

' Independent of the correspondence rule, (26) may be
We multiply by e '9'R and integrate oveR which gives rewritten as

J {m-zp

A

1 . ~
R+§u>elq'RdR <'/’i|A|'r//j>:f fA(r,p)fij(f,p)dp}drEjaij(r)df, (22
1 ' where a;j(r) is a position-space density for the quantum-
:WJ JA(r,p)g(q,u)e_'(q'r+p'”)drdp, (18 mechanical operator and for the transition#() or state
(i=j) of interest.
or, by inverting this Fourier transform,

1 Ill. EXCHANGE-ENERGY DENSITIES AND
“uAR+ = POTENTIALS
AR (2#)3”fg(qu>< ~GuAR 2“> | | |
Equation(7) can be written as a sum of expectation val-
x (@t P WemidRdRdgdu. (19 ues for the single-particle orbitals,
Equation(19) is the one we shall use in defining a func- N/2 .
tion in phase space corresponding to the quantum- E,= 2_2 (oilKj| i), (23

mechanical exchange operator. It is seen that this function
will depend on the chosen correspondence rule through th@here the exchange operalor for thejth orbital is defined
function g(qg,u) but the resulting exchange potential is nev- gs
ertheless independent of the correspondence rule.

However, before discussing the exchange energies we K=K, ):f ¢1 (r' )Plzd)l(r )
shall define position-space densities in the general case. To Ir—r’|
this end we return to Eq(13). Then, any matrix element
(i|Alg;) can be expressed as

(24)

Here, P4, is a permutation operator that interchanges the
arguments of the following two functions.

- 1 _ Equation(19) makes it possible to define a function in
<'/’i|A|'/’j>:f fA(r,p)[(z?f f CRRL phase space according to the operator of @4). To this
end we need

><<¢i|ei<f's+f"”|¢j>g<s,t)dsdt}drdp 1] 1\ #F(R-Bu)gy(R+u)
R-uKjR+zu)= 0] )
Ef fA(r,p)fij(r,p)drdp. (20 giving
Here, f;;(r,p) is a function in phase space that is indepen- Ki(r,p)= 1 sf f f gid (=R
dent of the operator and only depends on the two states J (2m) g(q,u)
and ¢; as well as on the chosen correspondence rule, char- 1
acterized through the functiay(s,t). gip-u ¢} (R—3U) ¢ (R+3u)

e o dRdgdu. (26)
Fori=j, the phase-space functidy is that of a state, u

otherwise it is that of a transition. For=j it shares many This is the “
properties with a probability distribution in phase space. For
example, besides EqR0) we also have

classical” function in phase space correspond-
ing to the exchange operatb(r of Eq. (24).
Equation (26) leads to the following exchange-energy

density in position space:
ffii(f,p)dp=|¢i(f)|2, N2
@ em=23 K @7

| turmar=luol,

[notice, €, of Eq. (27) is not the same as, of Eq. (5)], and
which follows from Eq.(12). On the other hand;;(r,p) is  the total exchange energy is obtained by integratig(r)
in general not real or non-negative, and only for the Weylover the complete space,
correspondencgin which caseg(st)=1 and f becomes
Wigner's phase-space functitfhis the phase-space function ffx(r)df
in the general case real but may be negative. This property
together with some other useful properties of the Weyl cor-  Also Ghosh and Pdtrcalculated an exchange-energy
respondencé.e., the fact that no other correspondence ruledensity in position space by considering a phase-space den-

(28)
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sity based on Wigner's phase-space functions. They, how. RESULTS FOR CLOSED-SHELL ATOMS

ever, approximated the latter by a functional of the electron ) -

density and the kinetic-energy density, whereby they ob- We have calculated the various energy densities for the
tained approximate exchange-energy densities. For thi® closed-shell atoms He, Be, Ne, Mg, Ar, Ca, Zn, Kr, Sr,
kinetic-energy density they used actually the form given be£d: X€, Ba, Yb, Hg, and Rn. Due to the closed shells the
low [Eq. (34)] without noticing its relation to Wigner's Hartree—Fock approximation is a good one.

phase-space function. The orbitals can be F:harac;terlzed by the three quantum
Wherease,(r) depends on the correspondence rig, NUMbers (,1,m) (neglecting spii
does not. Furthermore, therefore also the exchange potential b:(1)=bnim(1) =R ()Y 6, &) (35)
= whereR,,(r) is expanded in a series of Gaussians as given
Viu(r)= (29

by Huzinaga and KlobukowsK?
o Ultimately we shall be interested in relating our results
is independent of the correspondence rule. to density-functional calculations, and it may therefore be
questioned whether it is a reasonable approximation to re-
place the orbitals of Eq35) by the Hartree—Fock orbitals of
IV. THE EXCHANGE-ENERGY DENSITY FOR THE Huzinaga and KlobukowsK? However, a comparisotnot
WEYL CORRESPONDENCE showr) between the functions of Huzinaga and Klobukowski
and those of a density-functional calculatiovith the local-
As discussed in Sec. Il, the Weyl correspondence an@ensity approximation of von Barth and Hetfirfor ex-
the thereto related Wigner phase-space function have paghange and correlation effegt®r the isolated atoms shows
ticularly appealing properties that suggest basing the discushat the two sets of functions in fact are very similar except
sion on those. Then, we set for the outermost regions of the atoms, where the density-
functional densities tend to fall off more rapidly than the
g(st)=1, (30 Hartree—Fock densities. This may be considered related to

and after some straightforward manipulation we oBtain the problem that the currently applied local-density approxi-
mations do not have the proper asymptotic behaviors.

op(r)

NP2 F(r=r)@i(r+r) ¢l (r+ry)dj(r—ry) For the closed-shell atoms the exchange-energy density
€(r)=8 E . becomes
Xdry. @) =8> > f Bh 1w (T 1)
nqy,np Iyl my,my

Comparing with Eqs(7) and(8) we see that this corresponds

to one particular choice for the matrix, X oy 1y m (1D S5 1 m (1 +71)
1 X pn, 1, m,(F=r1)dry
U= . (32)
-1 1

1
=8> > > (—1)'1*'2f —R(ra)
We shall compare the exchange-energy density with the NyiNz 1315 my .My 1
Coulomb and the kinetic-energy densities that can be defined X Ry 1 ()R 1, (1) R 1,(Tb)

following a similar procedure. For the former we obtain
v ml( Ba v¢a)YI2,m2( ea v¢a)YI1,ml( Bb v¢b)

M1, XY} m, (0, dp)dr, (36)
(33

N/2

ec(r)=22,

ij=1

fcﬁ. (ri— r)¢(r1 r)¢, (r)¢(r)

where we have introduced
whereas the kinetic-energy density is given thrdifgh

razl’l—l‘,
N/2
1 1 (37)
=22, | = g 8T (NV2hi() = g (Vi (1) M=ratr,
L and used that the parity of the functign, | ,, with respect to
. . . . . . 1
il izl inversion in the origin is ¢ 1)".
|V i(r)] } (34) By using that"

The latter is obtained using a procedure analogous to that f . 1 21+1

the exchange-energy density, i.e., from the classical expresa- Yim(61,61)Yim(02,¢2) = P1(C0SOp) 5— \| —— (38
sion for the kinetic energy in phase spaqge?/R), we calcu-

late the kinetic-energy density in phase space and througihere 6, is the angle between the directions described by

integration over the momentum coordinates we obtain th€6,,¢,) and (0,,¢,), and P, is thelth Legendre polyno-
density in position space. mial, we obtain

Downloaded 24 Jan 2010 to 192.38.67.112. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



9364 J. Chem. Phys., Vol. 110, No. 19, 15 May 1999 M. Springborg and J. P. Dahl
(_ 1)|1+|2
e(nN=22> 2, (21, + )Y 21,+ 1)
nqy,No Il’|2

Xfo fo R, 1, (Fa)Rn, 1,(Fa)Ra, 1, (Te)RY | (Th)

e,

Here, we have used that

r2—r2 r2—r2

1
r

X P, )rl sin6,d6,dr;. (39

! Falp

alb

log,o(f) (a.u.)

2_

2
l r

r

C0Sfy= (40

Falp
due to Eq.(37).

In our calculations we utilize that, due to the spherical
symmetry of the atoms, we need only to calculate the energy
densities as a function of For a discrete set af values for
any of the 15 atoms we evaluate the expression of(89).
numerically. Since this easily becomes computationally in-
volved, one has to limit the number of integration points. ByFIG. 1. The exchange-energy density, the kinetic-energy density, , the
varying this number we estimate that our final results for thecoulomb-energy densityc , [Vp|, and|V?p| for (@) a He atom,(b) a Be

) . s 0f_90, om,(c) a Cd Atom, andd) a Rn atom.e, has been multiplied by £0 e.
exchange-energy density are accurate within 1%-29%, bL@; 10%, €, by 1%, and|V?p| by 10 *. The various functions are presented

the total exchange energy is 1-2 orders of magnitude MOrgs functions of the electron densjiyon a double-logarithmic scale, and the
accurate. labels on the figure correspond to the order of appearance fer=6g

For the sake of comparison we shall also present results
for Coulomb and kinetic-energy densities. For the former we

10910(P)

use Eq.(33) with the functions of Eq(35) in obtaining

€c(N=2 2 2 Vo, 1,(N)pn, 1,(1), (41)

N1z 11,12
wherepanz(r) is the (spherically symmetric electron den-
sity of the (n,,1,) shell,

2l,+1
4

Pnz,lz(r)zpnz,lz(r):|Rn2I2(r)|2 (42

and Vn1,|1(r) is the (also spherically symmetnicCoulomb
potential from the electron densitg’nlh(r), which obeys
Poisson’s equation

—V2V, (N =4mp, (7). (43)

In Fig. 1 we see that all functions are approximately
smooth, monotonous functions pf|Vp| shows some minor
deviations from this behavior which are due to the shell
structure. As a further consequence of th¥&?p| has more
pronounced oscillations.

In particular the Coulomb-energy density is a very
smooth function op which can be explained as being due to
the very nonlocal dependence e on the total electron
density p(r). Also the kinetic-energy density appears as al-
most straight lines in the plots except for the region abso-
lutely closest to the nucldi.e., for the largest values @),
where it raises more steeply, has, however, some extra
features at the positions whefep| has oscillations, i.e., also
the kinetic-energy density is sensitive to the shell structure,
which should not surprise when considering Egl). It may,
on the other hand, be considered more surprising that also

In our calculations we calculate the electron densities of Egy,q exchange-energy density shows clear shell-structure ef-

(42) and solve subsequentiypumerically Poisson’s equa-
tion (43) for the individual electronic shells.

Finally, the kinetic-energy density, E¢34), can in the
present case be written as

21+1 d’R,(r) 2
Ek(r):; zllv — Ry d—rlz—FRm(r)
dR,(r) 21(1+1) dRy(r)\?
Xt R +( dr H 49

fects. Thus, although alsg, is roughly straight lines in Fig.

1, there are additional oscillations at the positions of the
electronic shells. This fact was already recognized in our
earlier work!

The exchange and Coulomb-energy densities of Egs.
(39) and(41) appear as double summations over the interac-
tions between pairs ofn(l) shells. In order to study the
interactions between the different shells separately, we show
in Figs. 2 and 3 the electron densities and the exchange and
Coulomb-energy densities for the different shells for the Ne

where we have used various well-known properties of theatom. From Fig. 3 it is clear that the exchange-energy den-

spherical harmonic¥/,, .

sity for intershell interactionfi.e., the (%,2s), (1s,2p), and

We have calculated these properties together wit{2s,2p) componentsare markedly smaller than the corre-

[Vp(r)| and|V2p(r)| for the 15 closed-shell atoms mentioned
above. As representative examples we show in Fig. 1 th
densities for four of those, He, Be, Cd, and Rn.

Downloaded 24 Jan 2010 to 192.38.67.112. Redistribution subject to AIP
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0 1 2 . + > FIG. 3. Exchange- and Coulomb-energy densities for a Ne atom for the

interactions between different pairs of electronic sheils,(;) and (,,1,).

The full curves show the exchange-energy densities. The dotted curves show
the Coulomb-energy density for the electron density of thgl(;) shell in

the Coulombic field of ther(,,l,) shell, whereas the two shells have been
interchanged for the dashed curves. The pairs of shellgaares,1s), (b)
(1s,29), (¢) (1s,2p), (d) (2s,29), (€) (2s,2p), and(f) (2p,2p).

r

FIG. 2. Orbitals and total electron density for a Ne atdar.and (b) show
rR,,(r) for (a) s functions andb) p functions, andc) shows 47r2p(r).

intra-shell interactions are much larger than the intershell
interactions. By comparing with Fig. 2 we also see that the ~ b
structure of the Coulomb-energy density for the electron e(r)=e(r)=a-[p(r)]", (45
density of shell ,,1;) and the Coulomb potential of shell wheree is eithere, €c, €, or |[Vp|. A least-squares fit for
(n,,l,) is mainly determined by the structure of they (1) all 15 atoms simultaneously resulted in a,b)
shell, manifesting the delocalized nature of the Coulomb po=(12.038, 1.5958)(11.832, 1.207}, (0.3072, 1.455) and
tential. (6.685, 1.210y for the four functions, respectively. We
The total exchange- and Coulomb-energy densities fostress that these fits are introduced only as convenient in
the Ne atom, obtained by adding the various components ainalyzing our results, but not as accurate representations of
Fig. 3, are shown in Fig. 4. A comparison with Fig. 2 showsthose.
clearly the shell structure, first of all for the exchange-energy =~ Subsequently, we studied renormalized densities ob-
density. We add that Filippiet al* also calculated an tained by considering the true densities divided by the ap-
exchange-energy density for the Ne atom but obtained by
carrying only ther, integration in Eq(7) through andlefin-

ing the resulting function of ; as the exchange-energy den- < P
sity. Their results show very similar shell structures like . 1
those of Fig. 4. This suggests that although our results are o P~ ]
obtained for a specific correspondence rule, they are more O e ]
general. Since we use a different sampling iip,(,)-space O? T ‘\\ ]
[cf. Egs.(7), (8), and(32)] this result is far from trivial. o X =
One of the most interesting questions is whether the ¥ L _
various energy densities are simple functionals of the elec- !III
tron density. In order to analyze this further we first use that O 1 2 3 4 5
the different energy densities in Fig. 1 appear roughly as
straight lines, which also is the case for those atoms not r
shown; see Fig. 5. We therefore first seek an approximatiopg_ 4. Exchangefull curve) and Coulomb{dashed curveenergy density
of the form for the Ne atom in a logarithmic scale as a functiorr of
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2
12

12

T them as a function g than as a function of a position-space
1 wep(9) 1 coordinate.

8

4
4

10g,4(€c) (a.u.)
10g,4(€,) (a.u.)
log;q(e,) (a.u.)

o o <
<+ 1 < E <+
! bt ' VI. FACTORIZING €,
i 3 T g T
b Ml = According to the original derivations of Slatérand
RN BN e o e Gaspa?’ th h density for an extended homo
Iogm(p) (a.u.) Iogm(p) (a.u) i0g,4(0) (a.u.) $pa: € exc ange energy ! y X

geneous system can be written as

FIG. 5. The(a) Coulomb,(b) kinetic, and(c) exchange-energy density as a 33|13
function of the electron density for all 15 atoms in double-logarithmic plots. ( ) 4/3

Xa_4

el I (46)

This corresponds toa(b)=(0.7386, 1.3333) in Eq(45),
proximate ones of Eq(45). These functions are shown in which differs somewhat from the values quoted above ob-
Fig. 6. tained through the fit.

From Figs. %a) and Ga) it is seen that the Coulomb- The expression of Eq46) is the exact one for a homog-
energy density is a strongly non-local functional of the elec-enous electron gas, so that deviations from this is due to
tron density. In fact, the 15 curves for the different atoms injnhomogeneities of the electron density. Accordingly, the
Fig. 6(@) are roughly parallel and, for a gives the value fynction F defined as
grows with the total number of electrons of the system of
interest. ex=F- e, (47)

The kinetic-energy density in Fig(#§) is less spread out i equal 1 for the homogenous electron gas. In order to
than the Coulomb-energy density, except for for the largesf, | de some of the effects & on inhomogeneities we will

density for each atom for which the energy density possessgssre assumehat F in any point in position space is a func-
a sharp increase, as well as for the lowest energy density thab, of s andt defined through

depends less strongly on the electron density. Both of these

features are very clearly recognized in Figb)6 Since the _ Vol

kinetic-energy density involves the first- and second-order S= 2(3m2) By

derivatives of the basis functions that—being Gaussians— 5 (48)
may have incorrect behaviors for very small and very latge = Vep

we cannot exclude that these features are of nonphysical ori- Fﬁ'

gin.

Of the three energy densities in Fig. 5, the exchange- There exists a number of different proposals for analyti-

energy density is the one that shows the smallest variation%al expressions for the functidf(s,t) (which in most cases

. N i T actually is a function of onlys). In order to study how well
for a givenp, indicating that this function in fact to a good L .

L : these perform we show in Fig. 7 the ratios between the ap-
approximation is a local function gf. It does, however,

i proximate exchange-energy densities and our exact one of
show some spread for the smallest valuespofi.e., for . : .
log;gp=<—2). Therefore, the renormalized energy density ofFIg' 5(C.)' W'e shall quant.|fy t'he performan'ces of the various
Fig. 6(c) is not a constant. But the fact that is roughly a approximations by considering the quantity
constant for a giverp makes it worthwhile to attempt to 1 25 2) 12
compare it with functions op and possibly some of its de- q=[1—52 ] , (49
rivatives. Whether this result is a consequence of the fact that =1
the Weyl correspondence leads to a more local exchangghere the sum runs over the 15 atoms of our stiggys any
hole than the “standard” definitiof® remains an open ques- of the approximate forms oé,, andE, is the exact total
tion. exchange energy calculated with the wave functions of Huzi-

Finally, it turned out that in order to obtain a uniform naga and Klobukowsl&? g is thus the root of the mean of
description of the energy densities it is more useful to depicthe squares of the deviations of the total exchange energy.
Table | contains the calculated total exchange energies using

the different forms to be discussed below for the various
T atoms of the present study together with the valueg.of

EX—477J € r2dr
0

10
10

(a) (c) Although related analyses have been published before, we
include significantly mordfirst of all, heaviey atoms and
S I { ¥ functionals. All atoms are closed-shell atoms but, neverthe-
i ’ ’ less, we can not exclude that in some cases additional corre-
lation effects will modify details of our conclusions.
o ==t o Lo aRersin o L " ) T}hghomogenous—elec'tron.—gas expressjon of Sfaed
o0, (o) 8,36} () os1s) (00 Gaspa“’ [Eq. (4_6); shown in F|g._'(a) a_nd given the short-
hand labelX« in Table | and Fig. T is seen to perform
FIG. 6. As Fig. 5, but the renormalized energy densities. reasonably well on the average except for for very low elec-

Downloaded 24 Jan 2010 to 192.38.67.112. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 110, No. 19, 15 May 1999

o (=]

<

M. Springborg and J. P. Dahl 9367

FIG. 7. The ratio between various approximate
exchange-energy densities and the exact ones. Each plot
shows the curves for the 15 different atoms for a certain
approximate energy density. The approximations are
those of(a) Slater and Gspa (X«), (b) Sham(S72),

(c) Perdew and Wan@PW86), (d) Becke(B88), (e) and

(f) DePristo and KresgDK87-1 and DK87-2, (g)
Becke(B88), (h) PerdewmP91), and(i)—(k) Tozeret al.

[=]
-6 -3 0 3 8

iog,00) (:0.)

(THG97-1, THG97-2, and THG97}3Fur further de-
tails, see the text.

tron densities, although it does not describe the oscillationactually, the total exchange energies are worse than those of
due to the electronic shell structure. For this form we findthex« approximationg=11.98 and 11.97 a.u., respectively.

g=7.30a.u.
Shant® (labeled S71 in Table | and Fig) proposed
F(s,t)=1+0.0864%2, (50)

which results in the curves of Fig(h). It does improve the

Becke”? has more recently proposed
F(s,t)=1+0.2743%1+0.1964 Arsinh(7.7956)] ! (55)

(labeled B88 for which we in Fig. 71g) show the resulting

total exchange energies, but, as we shall see later, it growf&/rVes. Also this gives one of the smallest valuesqofy

with sin contrast to our results.

In their first generalized gradient-corrected functional,

Perdew and co-workef$suggested using
F(s,t)=(1+1.296°+ 14s*+0.255)15 (51)

(labeled PW8B which gives the curves of Fig.(@ and a

value ofg markedly improved compared with that of the

value. Also this function grows with but much weaker than

=0.20a.u.
The most recent form of Perdéhhas

1+0.196% Arsinh(7.7956) + s2(0.2743- 0.150& ~ 10%°)
140.196% Arsinh(7.7956) + 0.004*

F(st)=
(56)

(labeled P91 whereby the curves of Fig.(fi) are obtained,
and which gives one of the smallest values qf g

that of Sham which is the reason for the worse performance. 5 194 .

of the latter.
Becke® proposed originally

F(s,t)=1+0.244%2. (1+0.42547) 08 (52)

(labeled B86 giving one of the best values df, i.e., q
=0.194a.u., and the curves of Figdy.
DePristo and Kres$ proposed using either

1+6.715%

_ 2
F(s,t)=1+0.235k 15269132 (53

(labeled DK87-1 or

1+ 6.445%%-%

= 2= -
F(s,)=1+0.2355" > 0o,

(54)

All the approximate forms so far have performed reason-
ably well for larger values op, without being able to de-
scribe the electronic shell structures well. Only for very
small values ofp, these expressions show large deviations
from the exact densities. This is different for the expressions
of Tozeret al,** according to which

F(Sat):z Wacpasc- (57)
a,c
They give three different suggestionghere labeled

THG97-1, THG97-2, and THG97-3, respectivelior the
spin-unpolarized case, differing in the number of terhs
12, and 12, respectivelyand in the coefficienta/,.. As seen

(labeled DK87-2 which leads to the two sets of curves of in Figs. 7i)-7(k), these forms have also severe deviations
Figs. Me) and 1f). As is obvious from these figures, these for large values op, for which they either significantly un-
functionals perform hardly better than the other ones, andjerestimate or significantly overestimate the exchange-
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TABLE I. The total exchange energiéi a.u) for the different closed-shell atoms. The headirigs-(k)
correspond to the density-functional expressions of Fig. 7, whereas “present” and “exact” label the values of
the present work and the exact total exchange energies, respectively. For the present work we have three
different sets differing in the parameters that are set nonzero. These parameters are specified in the heading, too,
as are also the short-hand labels for the various approximatiasshe parameter of Eq49).

@

(b)

(©

(d)

(©

®

9

Atom Xa S71 PW86 B86 DK87-1 DK&87-2 B88
He 0.88 0.97 1.03 1.02 1.26 1.26 1.01
Be 2.31 2.50 2.68 2.66 3.24 3.24 2.66
Ne 11.03 11.55 12.22 12.15 14.04 14.04 12.14
Mg 14.61 15.24 16.10 16.02 18.40 18.40 16.00
Ar 27.86 28.86 30.29 30.18 34.11 34.11 30.15
Ca 32.59 33.71 35.34 35.22 39.69 39.69 35.19
zn 65.64 67.37 69.94 69.88 77.06 77.06 69.86
Kr 88.62 90.74 93.85 93.87 102.73 102.73 93.87
Sr 96.36 98.60 101.91 101.96 111.38 111.38 101.96
Cd 141.54 144.45 148.65 148.90 161.18 161.18 148.93
Xe 170.57 173.88 178.61 178.98 193.01 193.00 179.04
Ba 180.24 183.68 188.60 189.02 203.63 203.61 189.08
Yb 265.55 269.92 275.91 276.84 295.36 295.34 276.99
Hg 332.14 337.20 343.95 345.27 366.62 366.59 345.49
Rn 372.98 378.46 385.67 387.23 410.29 410.26 387.49
q 7.30 4.46 0.66 0.19 11.98 11.97 0.20

(h) (i) () (k) present  present present
Atom P91 THG97-1 THG97-2 THG97-3 (a,b,h (a,b,dj (ab,c,dex exact
He 1.02 1.35 1.46 1.45 0.97 0.99 0.91 1.03
Be 2.65 3.32 3.47 3.48 2.57 2.64 2.37 2.67
Ne 12.12 14.20 14.38 14.42 12.08 12.10 12.14 12.10
Mg 15.98 18.47 18.68 18.73 16.01 16.02 15.86 16.00
Ar 30.12 33.35 34.23 34.18 30.14 30.15 30.15 30.19
Ca 35.16 38.19 39.63 39.47 35.25 35.25 35.31 35.22
Zn 69.83 68.25 77.40 75.65 69.86 69.82 69.78 69.65
Kr 93.83 85.14 105.10 100.88 93.76 93.78 93.83 93.87
Sr 101.92 89.79 114.84 109.41 101.92 101.91 101.81 101.96
Cd 148.88 111.59 176.55 161.08 148.89 148.87 149.01 148.94
Xe 178.99 118.70 222.21 196.58 178.91 178.94 179.18 179.12
Ba 189.03 119.51 238.83 208.97 189.02 189.03 189.11 189.13
Yb 276.93 123.90 404.47 330.02 276.85 276.85 276.29 276.26
Hg 345.43 106.18 569.14 442.10 345.38 345.36 345.33 345.37
Rn 387.42 84.07 689.47 520.47 387.32 387.33 387.58 387.58
q 0.19 110.36 104.29 45.42 0.19 0.19 0.11

energy density. Accordingly, thgvalues for these are large, we add that the smallest valuessaforrespond to the largest

i.e.,, q=110.36, 104.29, and 45.42 a.u. for the three formsyalues ofp.

respectively.

F_rom the result; of Fig. 7 as WeII.a_s the \_/aluesqcibr VIL. AN ALTERNATIVE FUNCTIONAL
the different approximate functionals it is obvious that none

of them provides an excellent fit for the exchange-energy
density, and in fact when basing the discussiomasf Eq.  unique function ofs. By plotting F as a function oft [Eq.
(49), the two forms of Beck& and Perdew of Egs.(52) and  (48)] we obtain the results of Figs(@—8(e), from which it
(56), respectively, are the best ones. In order to see how this clear that alsa is not able to speciffF uniquely. Similar
becomes the case we show in Fig&)&nd 8b) our calcu- to the dependence &ons, also for largd, F— 0, and small
lated F based on Eq(47). It is seen that in particular for t corresponds to large.

smalls, F is not unique, which implies that it is not possible We shall therefore attempt to writé as a function of

to describeF exactly when considering only a dependenceboth s andt. However, it turns out thaF is not uniquely
ons (a similar result was recently found also lsndmer and  specified throughs andt either. Moreover, our study does
Knowles®® but from very different argumentsBut in addi-  not at all cover the completest) plane, but, insteads and

tion we see thaff — 0 for larges, and of the forms above this t are somewhat interrelated.

is only the case for the functional of Perdew of E§6). In Despite these problems we seek a simple functios of
Fig. 8@ we see also thaF approaches the value 1 far  andt that describes the results of Fig. 8. Since our exchange
—0, as it should for the homogenous electron gas. Finallyhole can be argued to be localiz€dour results form an

It is obvious from Figs. &) and 8b) that F is not a
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FIG. 9. As Fig. 7, but for the approximate form of E4S8) and(59) using
all six fit parameters.

I (¢) proximate functionals. However, using just the total ex-
- ] change energy as a measure for the quality of the approxi-
I ] mation gives that the increased number of parameters hardly

i improves the fit. Moreover, the most complicated fit appears

o o0 o so00 1o* to improve the description of the more complicated systems

(i.e., the heavier atomsbut simultaneously reducing the

quality for the lighter atoms.

FIG. 8. Each panel shows the superposition of the 15 cuiwes for each The quahty Of. the, approximate eXpre_‘Q’SIOﬂ of EGE8)

atom) obtained by plottingF of Eq. (47) as a function[(a),(b)] of sand ~ and (59) is seen in Fig. 9. In fact, only in the absolutely

[(©—(e)] of t. (@) and (b) [(c), (d), and(e)] differ by the abscissa scales.  outer- or innermost parts of the atoms, does the ratio between
the exact and the approximate exchange-energy density show
significant deviations from the ideal value of 1. This indi-

excellent starting point for studying a local description of €S that this form is much better capable of describing the

exchange effects. From Fig. 8 we see thdtas to approach oscillatory pehawor of the exchange-energy density than any

0 for s or t being large(notice, that our study does not cover ©f the previously proposed forms. We add that our approxi-

the case that is large but negative and sincer was found ~Mate forms with a smaller number of parameters lead to

to be >0 everywhere in our calculatiorihich is a far from ~ Similar results except in the lowdimit.

obvious finding, and sinceF=1 for s=t=0, we approxi-

mateF as

t (a.u.)

VIIl. CONCLUSIONS

> - 5. (58 In the present work we have used the concept of phase-
1-f+(f+as+bt+cs’ +dsttet) space functions to define densities in position space for arbi-
The constants$, a, b, ¢, d, ande were determined through a trary quantum-mechanical operators and arbitrary states. The
least-squares fit to our results. We considered three differefhase-space functions are intimately related to the correspon-
approximations differing in the parameters that were allowedlence between classical functions and quantum mechanical
to be nonzero. Our optimized parameters from the three sé&perators. Therefore, the fact that more different correspon-
of calculations are dence rules are possible leads to different phase-space func-
tions. However, the Wigner phase-space function, which fol-
f=0.69360,0.77907,0.44157, lows from the Weyl correspondence rule, has several

F(st)=

a=—0.025964-—0.017 162 0.252 94, appealing properties compared with any other phase-space
function. Therefore, we have here focused on this, whereby
b=—0.0074335;-0.008 3317,0.035977, (59  the position-space densities for arbitrary operators and states
¢=0.0,0.0,0.041 285, are uniquely determined. _
We concentrated on the quantum-mechanical exchange-
d=0.0,0.001 860 6; 0.023 244, energy operator for which we defined a position-space den-

sity for anyN-electron state that could be written as a single

€=0.0,0.0-0.00063501, Slater determinant ofN/2 doubly occupied orbitals. We
where the first, second, and third set was obtained by optistressed that the resulting exchange potential, as derived
mizing (a,b,f), (a,b,d,f), and @,b,c,d,e,f), respectively, within the concept of density-functional theory, is indepen-
and keeping all other parameters fixed at 0. The valupa¥if  dent of the chosen correspondence rule. This is important
Eqg. (49) becomes 0.19, 0.19, and 0.11 a.u., respectively, i.esince it assures that the orbitals will be independent of the
up to about 40% smaller than that of any of the other ap-correspondence rule.
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