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Based on correspondence rules between quantum-mechanical operators and classical functions in
phase space we construct exchange-energy densities in position space. Whereas these are not unique
but depend on the chosen correspondence rule, the exchange potential is unique. We calculate this
exchange-energy density for 15 closed-shell atoms, and compare it with kinetic- and
Coulomb-energy densities. It is found that it has a dominating local-density character, but
electron-shell effects are recognizable. The approximate exchange-energy functionals that have
been proposed so far are found to account only poorly for the observed behaviors. Instead we use
our results in proposing an alternative functional that depends on both first- and second-order
derivatives of the electron density. ©1999 American Institute of Physics.
@S0021-9606~99!31218-6#

I. INTRODUCTION

During the last few decades density-functional methods
have become an important tool in exploring electronic and
structural properties of materials whereby all types of mate-
rials ranging from small molecules to infinite crystals cur-
rently are being treated~see, e.g., Ref. 1, and references
therein!. These methods are based on the theorems of Ho-
henberg and Kohn2 who showed that any ground-state prop-
erty is a unique functional of the density of the system of
interest. Kohn and Sham3 showed that it was useful to refor-
mulate the problem of calculating the total electronic energy
Ee as that of solving a set of single-particle equations~in
Hartree a.u.!,

@2 1
2¹

21Veff~r !#c i~r !5e ic i~r !. ~1!

Veff is an effective potential containing three terms,

Veff~r !5Vn~r !1VC~r !1Vxc~r !, ~2!

where the first term is the Coulomb potential due to the
nuclei, the second term is that of the electrons, and the last
term on the right-hand side is the so-called exchange-
correlation potential.

Vxc(r ) is defined as the functional derivative of the
exchange-correlation energy,

Vxc~r !5
dExc

dr~r !
, ~3!

with Exc in turn being defined as a sum of the exchange and
correlation energy

Exc52Ex1Ec ~4!

Due to convenience, we have changed the sign ofEx com-
pared to common practice.

Similar to Ee , Ex and Ec are functionals ofr~r ! al-
though their precise forms are unknown. In practical calcu-
lations one applies therefore approximations, which, e.g., for
the exchange energy amounts to writing

2Ex.E«x~r !•r~r !dr , ~5!

with «x at the pointr being a function of the electron density
and of some of its derivatives at this point,

«x~r !5«x@r~r !,u¹r~r !u,¹2r~r !,...#. ~6!

There exists a number of different approximations of this
type and below we shall discuss some of those. For the
present purpose it suffices to notice that«x(r )•r(r ) of Eq.
~5! plays the role of an exchange-energy density in position
space.

A common approach for obtaining approximate func-
tionals is to consider the total exchange energy, Eq.~5!, for a
set of systems and from this set of data try to derive the
functional of Eq.~6!. It should be obvious that this procedure
is not unique, and that many different functionals may lead
to similar results for the chosen set of systems. Alternatively,
more detailed information is obtained by focusing on the
exchange potentialVx(r ), but despite the relation~3!, it is in
general not possible to extract the energy density of Eq.~5!
uniquely from this information.

For closed-shell systems the Hartree–Fock approxima-
tion provides a useful alternative to the density-functional
methods. In that case the exchange energy is defined as

Ex52 (
i , j 51

N/2 E E f i* ~r1!f j* ~r2!f j~r1!f i~r2!

ur12r2u
dr1dr2 , ~7!
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where we have assumed that the number of electronsN is
even and that we haveN/2 doubly degenerate, filled orbitals
that pairwise only differ in the spin component.

Unfortunately, Eq.~7! does not directly lead to a unique
definition of an exchange-energy density in position space.
Any transformation of the form

S r
r 8 D5U•S r1

r2
D ~8!

and subsequently integration overr 8 leads to a possible
exchange-energy density. In Eq.~8!, U is any real matrix
whose determinant equals61. Studies forU being the unit
matrix were recently presented by Filippi, Gonze, and
Umrigar,4 by Gritsenko, van Leeuwen, and Baerends,5 and
by Hoodet al.6

It is the purpose of the present work to show how the
concepts of correspondence rules and phase-space functions
can be used in obtaining exchange-energy densities in posi-
tion space. This will be the subject of Sec. II. In Sec. III we
shall show that independent of the chosen correspondence
rule, the resulting exchange potentialVx is unique, although
the exchange-energy density is not. The Weyl correspon-
dence rule and the therewith connected Wigner phase-space
function have certain conceptual advantages~to be discussed
below! and therefore we shall in Sec. IV use those in speci-
fying one particular exchange-energy density. Section V is
devoted to results for 15 closed-shell atoms~He, Be, Ne, Mg,
Ar, Ca, Zn, Kr, Sr, Cd, Xe, Ba, Yb, Hg, and Rn!, and in Sec.
VI we shall use the information thereby obtained in explor-
ing the quality of a number of proposed approximate forms
for the exchange-energy density. It is found that the approxi-
mate forms do not describe our results as accurately as might
be desirable. Therefore, in Sec. VII we shall use our results
in proposing another approximate form, and, finally, in Sec.
VIII we offer a conclusion.

To our knowledge there exist only two previous studies
where the exchange energy was studied from a phase-space
point of view. In the first of those,7 some of the formulas that
we shall discuss here were presented, and exchange-energy
densities for some few closed-shell atoms were presented.
But the attempts for constructing improved approximate den-
sity functionals were very limited. A somewhat different ap-
proach was taken by Ghosh and Parr8 who also used their
results in proposing an approximate exchange-energy func-
tional. They used, however, approximate phase-space func-
tions whereby some uncontrolled approximations may have
been introduced. We finally add that Burke, Perdew, and
co-workers9–13 also have studied the total exchange energy
by analyzing the energy density in position space. They used,
however, a very different approach than ours, and also their
emphasis is different from ours.

II. CORRESPONDENCE RULES AND PHASE-SPACE
FUNCTIONS

For the sake of simplicity we consider a single-particle
system. According to classical mechanics any quantityA is a
function in phase space. We may Fourier transform it,

A~r ,p!5
1

~2p!3 E E a~s,t!ei ~r–s1p–t!dsdt ~9!

with

a~s,t!5
1

~2p!3 E E A~r ,p!e2 i ~r–s1p–t!drdp. ~10!

The quantum-mechanical operator corresponding toA
~characterizing it by a caret! is then defined through

Â5
1

~2p!3 E E a~s,t!ei ~ r̂–s1p̂–tg~s,t!dsdt, ~11!

where different correspondence rules correspond to different
choices ofg(s,t) ~see, e.g., Refs. 14–16!. g(s,t) is, in prin-
ciple, general but is chosen to fulfill

g~0,t!5g~s,0!51. ~12!

It shall be stressed that there is no restrictive criterion that
allows a unique specification ofg(s,t). The Weyl correspon-
dence, which is the one we shall pursue@see the discussion
following Eq. ~21!#, hasg(s,t)51.

Combining Eqs.~9! and ~11! leads to

Â5E E A~r ,p!

3F 1

~2p!6 E E e2 i ~r–s1p–t!ei ~ r̂–s1p̂–t!g~s,t!dsdtGdrdp.

~13!

This gives the prescription for constructing the quantum-
mechanical operator from a given classical function. In order
to obtain the reverse transformation we proceed as follows.
We consider any two eigenstates of the position operator,ur 8&
and ur 9& and construct the matrix element for those with the
operator of Eq.~13!,

^r 8uÂur 9&5E E A~r ,p!F 1

~2p!6 E E e2 i ~r–s1p–t!

3^r 8uei ~ r̂–s1p̂–t!ur 9&g~s,t!dsdtGdrdp. ~14!

By applying the following identities:17

ei ~ r̂–s1p̂–t!5ei ~1/2!s–tei r̂–sei p̂–t,

ei p̂–tur 9&5ur 92t&,
~15!

ei r̂–sur 92t&5ei ~r92t!–sur 92t&,

~r 8ur 92t!5d~r 82r 91t!,

and setting

r 85R2 1
2u,

~16!
r 95R1 1

2u,

we obtain after some straightforward manipulations
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K R2
1

2
uUÂUR1

1

2
uL 5E E A~r ,p!

1

~2p!6

3E ei @s•~R2r !2p–u#g~s,u!dsdrdp.

~17!

We multiply by e2 iq•R and integrate overR which gives

E K R2
1

2
uUÂUR1

1

2
uL e2 iq•RdR

5
1

~2p!3 E E A~r ,p!g~q,u!e2 i ~q–r1p–u!drdp, ~18!

or, by inverting this Fourier transform,

A~r ,R!5
1

~2p!3 E E E 1

g~q,u! K R2
1

2
uUÂUR1

1

2
uL

3ei ~q–r1p–u!e2 iq–RdRdqdu. ~19!

Equation~19! is the one we shall use in defining a func-
tion in phase space corresponding to the quantum-
mechanical exchange operator. It is seen that this function
will depend on the chosen correspondence rule through the
function g(q,u) but the resulting exchange potential is nev-
ertheless independent of the correspondence rule.

However, before discussing the exchange energies we
shall define position-space densities in the general case. To
this end we return to Eq.~13!. Then, any matrix element
^c i uÂuc j& can be expressed as

^c i uÂuc j&5E E A~r ,p!F 1

~2p!6 E E e2 i ~r–s1p–t!

3^c i uei ~ r̂–s1p̂–t!uc j&g~s,t!dsdtGdrdp

[E E A~r ,p! f i j ~r ,p!drdp. ~20!

Here, f i j (r ,p) is a function in phase space that is indepen-
dent of the operator and only depends on the two statesc i

and c j as well as on the chosen correspondence rule, char-
acterized through the functiong(s,t).

For i 5 j , the phase-space functionf i i is that of a state,
otherwise it is that of a transition. Fori 5 j it shares many
properties with a probability distribution in phase space. For
example, besides Eq.~20! we also have

E f i i ~r ,p!dp5uc i~r !u2,

~21!E f i i ~r ,p!dr5uc i~p!u2,

which follows from Eq.~12!. On the other hand,f i i (r ,p) is
in general not real or non-negative, and only for the Weyl
correspondence@in which caseg(s,t)[1 and f becomes
Wigner’s phase-space function18# is the phase-space function
in the general case real but may be negative. This property
together with some other useful properties of the Weyl cor-
respondence~i.e., the fact that no other correspondence rule

leads to operators that are invariant under certain canonical
transformations, and the fact that the exchange hole as de-
fined with the Weyl correspondence can be considered local!
and of the Wigner function15,19,20 make us propose to base
the discussion on the Wigner function and the Weyl corre-
spondence rule.

Independent of the correspondence rule, Eq.~20! may be
rewritten as

^c i uÂuc j&5E F E A~r ,p! f i j ~r ,p!dpGdr[E ai j ~r !dr , ~22!

where ai j (r ) is a position-space density for the quantum-
mechanical operator and for the transition (iÞ j ) or state
( i 5 j ) of interest.

III. EXCHANGE-ENERGY DENSITIES AND
POTENTIALS

Equation~7! can be written as a sum of expectation val-
ues for the single-particle orbitals,

Ex52 (
i , j 51

N/2

^f i uK̂ j uf i&, ~23!

where the exchange operatorK̂ j for the jth orbital is defined
as

K̂ j5K̂ j~r !5E f j* ~r 8!P̂12f j~r 8!

ur2r 8u
dr 8. ~24!

Here, P̂12 is a permutation operator that interchanges the
arguments of the following two functions.

Equation~19! makes it possible to define a function in
phase space according to the operator of Eq.~24!. To this
end we need

K R2
1

2
uUK̂ jUR1

1

2
uL 5

f j* ~R2 1
2u!f j~R1 1

2u!

uuu
, ~25!

giving

K j~r ,p!5
1

~2p!3 E E E 1

g~q,u!
eiq•~r2R!

3eip•u
f j* ~R2 1

2u!f j~R1 1
2u!

u
dRdqdu. ~26!

This is the ‘‘classical’’ function in phase space correspond-
ing to the exchange operatorK̂ j of Eq. ~24!.

Equation ~26! leads to the following exchange-energy
density in position space:

ex~r !52 (
i , j 51

N/2 E K j~r ,p! f i i ~r ,p!dp ~27!

@notice,ex of Eq. ~27! is not the same as«x of Eq. ~5!#, and
the total exchange energy is obtained by integrationex(r )
over the complete space,

Ex5Eex~r !dr . ~28!

Also Ghosh and Parr8 calculated an exchange-energy
density in position space by considering a phase-space den-
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sity based on Wigner’s phase-space functions. They, how-
ever, approximated the latter by a functional of the electron
density and the kinetic-energy density, whereby they ob-
tained approximate exchange-energy densities. For the
kinetic-energy density they used actually the form given be-
low @Eq. ~34!# without noticing its relation to Wigner’s
phase-space function.

Whereasex(r ) depends on the correspondence rule,Ex

does not. Furthermore, therefore also the exchange potential

Vx~r !5
dEx

dr~r !
~29!

is independent of the correspondence rule.

IV. THE EXCHANGE-ENERGY DENSITY FOR THE
WEYL CORRESPONDENCE

As discussed in Sec. II, the Weyl correspondence and
the thereto related Wigner phase-space function have par-
ticularly appealing properties that suggest basing the discus-
sion on those. Then, we set

g~s,t!51, ~30!

and after some straightforward manipulation we obtain7

ex~r !58 (
i , j 51

N/2 E f i* ~r2r1!f i~r1r1!f j* ~r1r1!f j~r2r1!

r 1

3dr1 . ~31!

Comparing with Eqs.~7! and~8! we see that this corresponds
to one particular choice for the matrixU,

U5S 1
2

1
2

21 1
D . ~32!

We shall compare the exchange-energy density with the
Coulomb and the kinetic-energy densities that can be defined
following a similar procedure. For the former we obtain

eC~r !52 (
i , j 51

N/2 E f i* ~r12r !f i~r12r !f j* ~r !f j~r !

r 1
dr1 ,

~33!

whereas the kinetic-energy density is given through7,21

ek~r !52(
i 51

N/2 F2
1

8
f i* ~r !¹2f i~r !2

1

8
f i~r !¹2f i* ~r !

1
1

4
u¹f i~r !u2G . ~34!

The latter is obtained using a procedure analogous to that for
the exchange-energy density, i.e., from the classical expres-
sion for the kinetic energy in phase space, (p2/2), we calcu-
late the kinetic-energy density in phase space and through
integration over the momentum coordinates we obtain the
density in position space.

V. RESULTS FOR CLOSED-SHELL ATOMS

We have calculated the various energy densities for the
15 closed-shell atoms He, Be, Ne, Mg, Ar, Ca, Zn, Kr, Sr,
Cd, Xe, Ba, Yb, Hg, and Rn. Due to the closed shells the
Hartree–Fock approximation is a good one.

The orbitals can be characterized by the three quantum
numbers (n,l ,m) ~neglecting spin!,

f i~r !5fnlm~r !5Rnl~r !Ylm~u,f!, ~35!

whereRnl(r ) is expanded in a series of Gaussians as given
by Huzinaga and Klobukowski.22

Ultimately we shall be interested in relating our results
to density-functional calculations, and it may therefore be
questioned whether it is a reasonable approximation to re-
place the orbitals of Eq.~35! by the Hartree–Fock orbitals of
Huzinaga and Klobukowski.22 However, a comparison~not
shown! between the functions of Huzinaga and Klobukowski
and those of a density-functional calculation~with the local-
density approximation of von Barth and Hedin23 for ex-
change and correlation effects! for the isolated atoms shows
that the two sets of functions in fact are very similar except
for the outermost regions of the atoms, where the density-
functional densities tend to fall off more rapidly than the
Hartree–Fock densities. This may be considered related to
the problem that the currently applied local-density approxi-
mations do not have the proper asymptotic behaviors.

For the closed-shell atoms the exchange-energy density
becomes

ex~r !58 (
n1 ,n2

(
l 1 ,l 2

(
m1 ,m2

E 1

r 1
fn1 ,l 1 ,m1

* ~r2r1!

3fn1 ,l 1 ,m1
~r1r1!fn2 ,l 2 ,m2

* ~r1r1!

3fn2 ,l 2 ,m2
~r2r1!dr1

58 (
n1 ,n2

(
l 1 ,l 2

(
m1 ,m2

~21! l 11 l 2E 1

r 1
Rn1 ,l 1

* ~r a!

3Rn2 ,l 2
~r a!Rn1 ,l 1

~r b!Rn2 ,l 2
* ~r b!

3Yl 1 ,m1
* ~ua ,fa!Yl 2 ,m2

~ua ,fa!Yl 1 ,m1
~ub ,fb!

3Yl 2 ,m2
* ~ub ,fb!dr , ~36!

where we have introduced

ra5r12r ,
~37!

rb5r11r ,

and used that the parity of the functionfn,l ,m with respect to
inversion in the origin is (21)1.

By using that24

(
m

Ylm* ~u1 ,f1!Ylm~u2 ,f2!5Pl~cosu0!
1

2p
A2l 11

2
, ~38!

where u0 is the angle between the directions described by
(u1 ,f1) and (u2 ,f2), and Pl is the lth Legendre polyno-
mial, we obtain
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ex~r !52 (
n1 ,n2

(
l 1 ,l 2

~21! l 11 l 2

p
~2l 111!1/2~2l 211!1/2

3E
0

`E
0

p

Rn1 ,l 1
* ~r a!Rn2 ,l 2

~r a!Rn1 ,l 1
~r b!Rn2 ,l 2

* ~r b!

3Pl 1S r 1
22r 2

r ar b
D Pl 2S r 1

22r 2

r ar b
D r 1 sinu1du1dr1 . ~39!

Here, we have used that

cosu05
r 1

22r 2

r ar b
~40!

due to Eq.~37!.
In our calculations we utilize that, due to the spherical

symmetry of the atoms, we need only to calculate the energy
densities as a function ofr. For a discrete set ofr values for
any of the 15 atoms we evaluate the expression of Eq.~39!
numerically. Since this easily becomes computationally in-
volved, one has to limit the number of integration points. By
varying this number we estimate that our final results for the
exchange-energy density are accurate within 1%–2%, but
the total exchange energy is 1–2 orders of magnitude more
accurate.

For the sake of comparison we shall also present results
for Coulomb and kinetic-energy densities. For the former we
use Eq.~33! with the functions of Eq.~35! in obtaining

eC~r !52 (
n1 ,n2

(
l 1 ,l 2

Vn1 ,l 1
~r !rn2 ,l 2

~r !, ~41!

wherern2 ,l 2
(r ) is the ~spherically! symmetric electron den-

sity of the (n2 ,l 2) shell,

rn2 ,l 2
~r !5rn2 ,l 2

~r !5uRn2l 2
~r !u2

2l 211

4p
~42!

and Vn1 ,l 1
(r ) is the ~also spherically symmetric! Coulomb

potential from the electron densityrn1 ,l 1
(r ), which obeys

Poisson’s equation

2¹2Vn1 ,l 1
~r !54prn1 ,l 1

~r !. ~43!

In our calculations we calculate the electron densities of Eq.
~42! and solve subsequently~numerically! Poisson’s equa-
tion ~43! for the individual electronic shells.

Finally, the kinetic-energy density, Eq.~34!, can in the
present case be written as

ek~r !5(
n

(
l

2l 11

8p F2Rnl~r !
d2Rnl~r !

dr2 2
2

r
Rnl~r !

3
dRnl~r !

dr
1

2l ~ l 11!

r 2 Rnl
2 ~r !1S dRnl~r !

dr D 2G , ~44!

where we have used various well-known properties of the
spherical harmonicsYlm .

We have calculated these properties together with
u¹r~r !u andu¹2r(r )u for the 15 closed-shell atoms mentioned
above. As representative examples we show in Fig. 1 the
densities for four of those, He, Be, Cd, and Rn.

In Fig. 1 we see that all functions are approximately
smooth, monotonous functions ofr. u¹ru shows some minor
deviations from this behavior which are due to the shell
structure. As a further consequence of this,u¹2ru has more
pronounced oscillations.

In particular the Coulomb-energy density is a very
smooth function ofr which can be explained as being due to
the very nonlocal dependence ofeC on the total electron
densityr~r !. Also the kinetic-energy density appears as al-
most straight lines in the plots except for the region abso-
lutely closest to the nuclei~i.e., for the largest values ofr!,
where it raises more steeply.ek has, however, some extra
features at the positions whereu¹ru has oscillations, i.e., also
the kinetic-energy density is sensitive to the shell structure,
which should not surprise when considering Eq.~44!. It may,
on the other hand, be considered more surprising that also
the exchange-energy density shows clear shell-structure ef-
fects. Thus, although alsoex is roughly straight lines in Fig.
1, there are additional oscillations at the positions of the
electronic shells. This fact was already recognized in our
earlier work.7

The exchange and Coulomb-energy densities of Eqs.
~39! and~41! appear as double summations over the interac-
tions between pairs of (n,l ) shells. In order to study the
interactions between the different shells separately, we show
in Figs. 2 and 3 the electron densities and the exchange and
Coulomb-energy densities for the different shells for the Ne
atom. From Fig. 3 it is clear that the exchange-energy den-
sity for intershell interactions@i.e., the (1s,2s), (1s,2p), and
(2s,2p) components# are markedly smaller than the corre-
sponding Coulomb-energy densities. This may be taken as a
confirmation of the result of Gritsenkoet al.25 that the ex-
change potential shows a clear shell structure and that the

FIG. 1. The exchange-energy densityex , the kinetic-energy densityek , the
Coulomb-energy densityeC , u¹ru, and u¹2ru for ~a! a He atom,~b! a Be
atom,~c! a Cd Atom, and~d! a Rn atom.ek has been multiplied by 106, eC

by 104, ex by 102, andu¹2ru by 1024. The various functions are presented
as functions of the electron densityr on a double-logarithmic scale, and the
labels on the figure correspond to the order of appearance for logr50.
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intra-shell interactions are much larger than the intershell
interactions. By comparing with Fig. 2 we also see that the
structure of the Coulomb-energy density for the electron
density of shell (n1 ,l 1) and the Coulomb potential of shell
(n2 ,l 2) is mainly determined by the structure of the (n1 ,l 1)
shell, manifesting the delocalized nature of the Coulomb po-
tential.

The total exchange- and Coulomb-energy densities for
the Ne atom, obtained by adding the various components of
Fig. 3, are shown in Fig. 4. A comparison with Fig. 2 shows
clearly the shell structure, first of all for the exchange-energy
density. We add that Filippiet al.4 also calculated an
exchange-energy density for the Ne atom but obtained by
carrying only ther2 integration in Eq.~7! through anddefin-
ing the resulting function ofr1 as the exchange-energy den-
sity. Their results show very similar shell structures like
those of Fig. 4. This suggests that although our results are
obtained for a specific correspondence rule, they are more
general. Since we use a different sampling in (r1 ,r2)-space
@cf. Eqs.~7!, ~8!, and~32!# this result is far from trivial.

One of the most interesting questions is whether the
various energy densities are simple functionals of the elec-
tron density. In order to analyze this further we first use that
the different energy densities in Fig. 1 appear roughly as
straight lines, which also is the case for those atoms not
shown; see Fig. 5. We therefore first seek an approximation
of the form

e~r !.ẽ~r !5a•@r~r !#b, ~45!

wheree is eitherek , eC , ex , or u¹ru. A least-squares fit for
all 15 atoms simultaneously resulted in (a,b)
5(12.038, 1.5958),~11.832, 1.2071!, ~0.3072, 1.4557!, and
~6.685, 1.2107! for the four functions, respectively. We
stress that these fits are introduced only as convenient in
analyzing our results, but not as accurate representations of
those.

Subsequently, we studied renormalized densities ob-
tained by considering the true densities divided by the ap-

FIG. 2. Orbitals and total electron density for a Ne atom.~a! and ~b! show
rRnl(r ) for ~a! s functions and~b! p functions, and~c! shows 4pr 2r(r ).

FIG. 3. Exchange- and Coulomb-energy densities for a Ne atom for the
interactions between different pairs of electronic shells (n1 ,l 1) and (n2 ,l 2).
The full curves show the exchange-energy densities. The dotted curves show
the Coulomb-energy density for the electron density of the (n1 ,l 1) shell in
the Coulombic field of the (n2 ,l 2) shell, whereas the two shells have been
interchanged for the dashed curves. The pairs of shells are~a! (1s,1s), ~b!
(1s,2s), ~c! (1s,2p), ~d! (2s,2s), ~e! (2s,2p), and~f! (2p,2p).

FIG. 4. Exchange~full curve! and Coulomb~dashed curve! energy density
for the Ne atom in a logarithmic scale as a function ofr.
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proximate ones of Eq.~45!. These functions are shown in
Fig. 6.

From Figs. 5~a! and 6~a! it is seen that the Coulomb-
energy density is a strongly non-local functional of the elec-
tron density. In fact, the 15 curves for the different atoms in
Fig. 6~a! are roughly parallel and, for a givenr, the value
grows with the total number of electrons of the system of
interest.

The kinetic-energy density in Fig. 6~b! is less spread out
than the Coulomb-energy density, except for for the largest
density for each atom for which the energy density possesses
a sharp increase, as well as for the lowest energy density that
depends less strongly on the electron density. Both of these
features are very clearly recognized in Fig. 6~b!. Since the
kinetic-energy density involves the first- and second-order
derivatives of the basis functions that—being Gaussians—
may have incorrect behaviors for very small and very larger,
we cannot exclude that these features are of nonphysical ori-
gin.

Of the three energy densities in Fig. 5, the exchange-
energy density is the one that shows the smallest variations
for a givenr, indicating that this function in fact to a good
approximation is a local function ofr. It does, however,
show some spread for the smallest values ofr ~i.e., for
log10r<22!. Therefore, the renormalized energy density of
Fig. 6~c! is not a constant. But the fact thatex is roughly a
constant for a givenr makes it worthwhile to attempt to
compare it with functions ofr and possibly some of its de-
rivatives. Whether this result is a consequence of the fact that
the Weyl correspondence leads to a more local exchange
hole than the ‘‘standard’’ definition,20 remains an open ques-
tion.

Finally, it turned out that in order to obtain a uniform
description of the energy densities it is more useful to depict

them as a function ofr than as a function of a position-space
coordinate.

VI. FACTORIZING ex

According to the original derivations of Slater26 and
Gáspár27 the exchange-energy density for an extended homo-
geneous system can be written as

exa5
3

4 S 3

p D 1/3

r4/3. ~46!

This corresponds to (a,b)5(0.7386, 1.3333) in Eq.~45!,
which differs somewhat from the values quoted above ob-
tained through the fit.

The expression of Eq.~46! is the exact one for a homog-
enous electron gas, so that deviations from this is due to
inhomogeneities of the electron density. Accordingly, the
function F defined as

ex5F•exa ~47!

will equal 1 for the homogenous electron gas. In order to
include some of the effects ofF on inhomogeneities we will
hereassumethat F in any point in position space is a func-
tion of s and t defined through

s5
u¹ru

2~3p2!1/3r4/3,

~48!

t5
¹2r

r5/3 .

There exists a number of different proposals for analyti-
cal expressions for the functionF(s,t) ~which in most cases
actually is a function of onlys!. In order to study how well
these perform we show in Fig. 7 the ratios between the ap-
proximate exchange-energy densities and our exact one of
Fig. 5~c!. We shall quantify the performances of the various
approximations by considering the quantity

q5H 1

15(
i 51

15 FEx24pE
0

`

ẽxr
2drG2J 1/2

, ~49!

where the sum runs over the 15 atoms of our study.ẽx is any
of the approximate forms ofex , and Ex is the exact total
exchange energy calculated with the wave functions of Huzi-
naga and Klobukowski.22 q is thus the root of the mean of
the squares of the deviations of the total exchange energy.
Table I contains the calculated total exchange energies using
the different forms to be discussed below for the various
atoms of the present study together with the values ofq.
Although related analyses have been published before, we
include significantly more~first of all, heavier! atoms and
functionals. All atoms are closed-shell atoms but, neverthe-
less, we can not exclude that in some cases additional corre-
lation effects will modify details of our conclusions.

The homogenous-electron-gas expression of Slater26 and
Gáspár27 @Eq. ~46!; shown in Fig. 7~a! and given the short-
hand labelXa in Table I and Fig. 7# is seen to perform
reasonably well on the average except for for very low elec-

FIG. 5. The~a! Coulomb,~b! kinetic, and~c! exchange-energy density as a
function of the electron density for all 15 atoms in double-logarithmic plots.

FIG. 6. As Fig. 5, but the renormalized energy densities.
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tron densities, although it does not describe the oscillations
due to the electronic shell structure. For this form we find
q57.30 a.u.

Sham28 ~labeled S71 in Table I and Fig. 7! proposed

F~s,t !5110.08641s2, ~50!

which results in the curves of Fig. 7~b!. It does improve the
total exchange energies, but, as we shall see later, it grows
with s in contrast to our results.

In their first generalized gradient-corrected functional,
Perdew and co-workers29 suggested using

F~s,t !5~111.296s2114s410.2s6!1/15, ~51!

~labeled PW86! which gives the curves of Fig. 7~c! and a
value ofq markedly improved compared with that of thexa
value. Also this function grows withs, but much weaker than
that of Sham which is the reason for the worse performance
of the latter.

Becke30 proposed originally

F~s,t !5110.2449s2
•~110.4254s2!20.8, ~52!

~labeled B86! giving one of the best values ofq, i.e., q
50.19 a.u., and the curves of Fig. 7~d!.

DePristo and Kress31 proposed using either

F~s,t !5110.2351s2
116.7159s

112.6913s2 ~53!

~labeled DK87-1! or

F~s,t !5110.2351s2
116.4457s0.98

112.5570s2 , ~54!

~labeled DK87-2! which leads to the two sets of curves of
Figs. 7~e! and 7~f!. As is obvious from these figures, these
functionals perform hardly better than the other ones, and,

actually, the total exchange energies are worse than those of
thexa approximation,q511.98 and 11.97 a.u., respectively.

Becke32 has more recently proposed

F~s,t !5110.2743s2@110.1964s Arsinh~7.7956s!#21 ~55!

~labeled B88! for which we in Fig. 7~g! show the resulting
curves. Also this gives one of the smallest values ofq, q
50.20 a.u.

The most recent form of Perdew33 has

F~s,t !5
110.1965s Arsinh~7.7956s!1s2~0.274320.1508e2100s2

!

110.1965s Arsinh~7.7956s!10.004s4

~56!

~labeled P91! whereby the curves of Fig. 7~h! are obtained,
and which gives one of the smallest values ofq, q
50.19 a.u.

All the approximate forms so far have performed reason-
ably well for larger values ofr, without being able to de-
scribe the electronic shell structures well. Only for very
small values ofr, these expressions show large deviations
from the exact densities. This is different for the expressions
of Tozeret al.,34 according to which

F~s,t !5(
a,c

wacr
asc. ~57!

They give three different suggestions~here labeled
THG97-1, THG97-2, and THG97-3, respectively! for the
spin-unpolarized case, differing in the number of terms~4,
12, and 12, respectively! and in the coefficientswac . As seen
in Figs. 7~i!–7~k!, these forms have also severe deviations
for large values ofr, for which they either significantly un-
derestimate or significantly overestimate the exchange-

FIG. 7. The ratio between various approximate
exchange-energy densities and the exact ones. Each plot
shows the curves for the 15 different atoms for a certain
approximate energy density. The approximations are
those of~a! Slater and Ga´spár (Xa), ~b! Sham~S71!,
~c! Perdew and Wang~PW86!, ~d! Becke~B88!, ~e! and
~f! DePristo and Kress~DK87-1 and DK87-2!, ~g!
Becke~B88!, ~h! Perdew~P91!, and~i!–~k! Tozeret al.
~THG97-1, THG97-2, and THG97-3!. Fur further de-
tails, see the text.
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energy density. Accordingly, theq values for these are large,
i.e., q5110.36, 104.29, and 45.42 a.u. for the three forms,
respectively.

From the results of Fig. 7 as well as the values ofq for
the different approximate functionals it is obvious that none
of them provides an excellent fit for the exchange-energy
density, and in fact when basing the discussion onq of Eq.
~49!, the two forms of Becke30 and Perdew33 of Eqs.~52! and
~56!, respectively, are the best ones. In order to see how this
becomes the case we show in Figs. 8~a! and 8~b! our calcu-
lated F based on Eq.~47!. It is seen that in particular for
smalls, F is not unique, which implies that it is not possible
to describeF exactly when considering only a dependence
on s ~a similar result was recently found also by J¨emmer and
Knowles,35 but from very different arguments!. But in addi-
tion we see thatF→0 for larges, and of the forms above this
is only the case for the functional of Perdew of Eq.~56!. In
Fig. 8~a! we see also thatF approaches the value 1 fors
→0, as it should for the homogenous electron gas. Finally,

we add that the smallest values ofs correspond to the largest
values ofr.

VII. AN ALTERNATIVE FUNCTIONAL

It is obvious from Figs. 8~a! and 8~b! that F is not a
unique function ofs. By plotting F as a function oft @Eq.
~48!# we obtain the results of Figs. 8~c!–8~e!, from which it
is clear that alsot is not able to specifyF uniquely. Similar
to the dependence ofF on s, also for larget, F→0, and small
t corresponds to larger.

We shall therefore attempt to writeF as a function of
both s and t. However, it turns out thatF is not uniquely
specified throughs and t either. Moreover, our study does
not at all cover the complete (s,t) plane, but, instead,s and
t are somewhat interrelated.

Despite these problems we seek a simple function ofs
andt that describes the results of Fig. 8. Since our exchange
hole can be argued to be localized,20 our results form an

TABLE I. The total exchange energies~in a.u.! for the different closed-shell atoms. The headings~a!–~k!
correspond to the density-functional expressions of Fig. 7, whereas ‘‘present’’ and ‘‘exact’’ label the values of
the present work and the exact total exchange energies, respectively. For the present work we have three
different sets differing in the parameters that are set nonzero. These parameters are specified in the heading, too,
as are also the short-hand labels for the various approximations.q is the parameter of Eq.~49!.

Atom
~a!
Xa

~b!
S71

~c!
PW86

~d!
B86

~e!
DK87-1

~f!
DK87-2

~g!
B88

He 0.88 0.97 1.03 1.02 1.26 1.26 1.01
Be 2.31 2.50 2.68 2.66 3.24 3.24 2.66
Ne 11.03 11.55 12.22 12.15 14.04 14.04 12.14
Mg 14.61 15.24 16.10 16.02 18.40 18.40 16.00
Ar 27.86 28.86 30.29 30.18 34.11 34.11 30.15
Ca 32.59 33.71 35.34 35.22 39.69 39.69 35.19
Zn 65.64 67.37 69.94 69.88 77.06 77.06 69.86
Kr 88.62 90.74 93.85 93.87 102.73 102.73 93.87
Sr 96.36 98.60 101.91 101.96 111.38 111.38 101.96
Cd 141.54 144.45 148.65 148.90 161.18 161.18 148.93
Xe 170.57 173.88 178.61 178.98 193.01 193.00 179.04
Ba 180.24 183.68 188.60 189.02 203.63 203.61 189.08
Yb 265.55 269.92 275.91 276.84 295.36 295.34 276.99
Hg 332.14 337.20 343.95 345.27 366.62 366.59 345.49
Rn 372.98 378.46 385.67 387.23 410.29 410.26 387.49
q 7.30 4.46 0.66 0.19 11.98 11.97 0.20

Atom
~h!
P91

~i!
THG97-1

~j!
THG97-2

~k!
THG97-3

present
~a,b,f!

present
~a,b,d,f!

present
~a,b,c,d,e,f! exact

He 1.02 1.35 1.46 1.45 0.97 0.99 0.91 1.03
Be 2.65 3.32 3.47 3.48 2.57 2.64 2.37 2.67
Ne 12.12 14.20 14.38 14.42 12.08 12.10 12.14 12.10
Mg 15.98 18.47 18.68 18.73 16.01 16.02 15.86 16.00
Ar 30.12 33.35 34.23 34.18 30.14 30.15 30.15 30.19
Ca 35.16 38.19 39.63 39.47 35.25 35.25 35.31 35.22
Zn 69.83 68.25 77.40 75.65 69.86 69.82 69.78 69.65
Kr 93.83 85.14 105.10 100.88 93.76 93.78 93.83 93.87
Sr 101.92 89.79 114.84 109.41 101.92 101.91 101.81 101.96
Cd 148.88 111.59 176.55 161.08 148.89 148.87 149.01 148.94
Xe 178.99 118.70 222.21 196.58 178.91 178.94 179.18 179.12
Ba 189.03 119.51 238.83 208.97 189.02 189.03 189.11 189.13
Yb 276.93 123.90 404.47 330.02 276.85 276.85 276.29 276.26
Hg 345.43 106.18 569.14 442.10 345.38 345.36 345.33 345.37
Rn 387.42 84.07 689.47 520.47 387.32 387.33 387.58 387.58
q 0.19 110.36 104.29 45.42 0.19 0.19 0.11
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excellent starting point for studying a local description of
exchange effects. From Fig. 8 we see thatF has to approach
0 for s or t being large~notice, that our study does not cover
the case thatt is large but negative!, and sinceF was found
to be.0 everywhere in our calculations~which is a far from
obvious finding!, and sinceF[1 for s5t50, we approxi-
mateF as

F~s,t !.
1

12 f 21~ f 1as1bt1cs21dst1et2!2 . ~58!

The constantsf, a, b, c, d, ande were determined through a
least-squares fit to our results. We considered three different
approximations differing in the parameters that were allowed
to be nonzero. Our optimized parameters from the three set
of calculations are

f 50.693 60,0.779 07,0.441 57,

a520.025 964,20.017 162,20.252 94,

b520.007 433 5,20.008 331 7,0.035 977, ~59!

c50.0,0.0,0.041 285,

d50.0,0.001 860 6,20.023 244,

e50.0,0.0,20.000 635 01,

where the first, second, and third set was obtained by opti-
mizing (a,b, f ), (a,b,d, f ), and (a,b,c,d,e, f ), respectively,
and keeping all other parameters fixed at 0. The value ofq of
Eq. ~49! becomes 0.19, 0.19, and 0.11 a.u., respectively, i.e.,
up to about 40% smaller than that of any of the other ap-

proximate functionals. However, using just the total ex-
change energy as a measure for the quality of the approxi-
mation gives that the increased number of parameters hardly
improves the fit. Moreover, the most complicated fit appears
to improve the description of the more complicated systems
~i.e., the heavier atoms! but simultaneously reducing the
quality for the lighter atoms.

The quality of the approximate expression of Eqs.~58!
and ~59! is seen in Fig. 9. In fact, only in the absolutely
outer- or innermost parts of the atoms, does the ratio between
the exact and the approximate exchange-energy density show
significant deviations from the ideal value of 1. This indi-
cates that this form is much better capable of describing the
oscillatory behavior of the exchange-energy density than any
of the previously proposed forms. We add that our approxi-
mate forms with a smaller number of parameters lead to
similar results except in the low-r limit.

VIII. CONCLUSIONS

In the present work we have used the concept of phase-
space functions to define densities in position space for arbi-
trary quantum-mechanical operators and arbitrary states. The
phase-space functions are intimately related to the correspon-
dence between classical functions and quantum mechanical
operators. Therefore, the fact that more different correspon-
dence rules are possible leads to different phase-space func-
tions. However, the Wigner phase-space function, which fol-
lows from the Weyl correspondence rule, has several
appealing properties compared with any other phase-space
function. Therefore, we have here focused on this, whereby
the position-space densities for arbitrary operators and states
are uniquely determined.

We concentrated on the quantum-mechanical exchange-
energy operator for which we defined a position-space den-
sity for anyN-electron state that could be written as a single
Slater determinant ofN/2 doubly occupied orbitals. We
stressed that the resulting exchange potential, as derived
within the concept of density-functional theory, is indepen-
dent of the chosen correspondence rule. This is important
since it assures that the orbitals will be independent of the
correspondence rule.

FIG. 8. Each panel shows the superposition of the 15 curves~one for each
atom! obtained by plottingF of Eq. ~47! as a function@~a!,~b!# of s and
@~c!–~e!# of t. ~a! and ~b! @~c!, ~d!, and~e!# differ by the abscissa scales.

FIG. 9. As Fig. 7, but for the approximate form of Eqs.~58! and~59! using
all six fit parameters.
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Subsequently we calculated the exchange-energy density
for a number of closed-shell atoms and compared it with
Coulomb and exchange-energy densities. We found that of
the three, the exchange-energy density in a given pointr
shows the weakest dependence on the electron density in
points far away fromr , although effects due to the electronic
shells were recognizable. By separating the exchange-energy
density into various inter- and intrashell components we
found that the interactions between different (n,l ) shells
were markedly smaller than the intrashell components, once
again supporting the local nature of the exchange-energy
density.

Since our results provide a very detailed description of
exchange effects and since it can be argued that the Weyl
correspondence leads to a local exchange hole,20 we could
access the quality of various approximate local descriptions
of the exchange-energy density, much more detailed than
usually is the case. We found that none of the existing ap-
proximate schemes describe the details of the exchange-
energy densities accurately, and in particular the regions
closest to the nuclei and most far from those were poorly
described. As a consequence we proposed an alternative ap-
proximate form. To this end we found that it was useful to
consider a functional that depends not only onu¹ru but also
on ¹2r. The functional is given in Eqs.~58! and~59! but is
only applicable for the spin-unpolarized case. We found that
the new form improves the total exchange energies with
about 40%, but, what may be more important when studying
the formation of chemical bonds, it provided a more accurate
description of the oscillatory behavior of the exchange-
energy density. It will be useful to extend our form to the
spin-polarized case as well as to try its performance on vari-
ous smaller molecules. Results on such studies will be re-
ported elsewhere.
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