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Resonant tunneling in a pulsed phonon field
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Mikroelektronik Centret, Technical University of Denmark, Building 345east, DK-2800 Lyngby, Denmark

~Received 2 February 1998; revised manuscript received 28 September 1998!

We theoretically investigate resonant tunneling through a single level assisted by short LO phonon pulses.
The analysis is based on the recently developed nonequilibrium linked-cluster expansion@P. Král, Phys. Rev.
B 56, 7293~1997!#, extended in this work to transient situations. The nonequilibrium spectral function for the
resonance displays the formation and decay of the phonon sidebands on ultrashort time scales. The time-
dependent tunneling current through the individual phonon satellites reflects this quasiparticle formation by
oscillations, whose time scale is set by the frequency of the phonon field and its harmonics. These oscillations
are washed out at elevated temperatures.@S0163-1829~99!04208-3#

I. INTRODUCTION

Carrier dynamics at very short time scales displays many
intriguing phenomena. Basic concepts, such as energy con-
servation in a scattering process, must be carefully rescruti-
nized. Several recent optical experiments on femtosecond
time scale have illustrated these effects.1,2 Another important
example is the work of Fu¨rst et al.,3 where the phonon-
emission related replica of the initial electron distribution,
centered atE0 , settle to the energyE02n\vLO only after
several phonon oscillation periods. A good account of this
experiment can be given with theexact one-dimensional
~1D! theory for the time-dependent electronic distribution
function in the ultrashort time scale, due to Medenet al.4

This is the time scale for quasiparticle formation and the
standard Boltzmann picture, which assumes well-defined
quasiparticles cannot be applied. Thus a proper theoretical
description must account for non-Markovian effects, such as
retardation and/or memory effects, in the collision term. Ex-
amples of such theories are those based on the
density-matrix5 or nonequilibrium Green functions,6 which
have successfully explained some of the above-mentioned
experimental features.1,2 These theories, however, often re-
sult in very complicated expressions, and a numerical evalu-
ation requires many approximations.

The purpose of this work is to introduce a different theo-
retical approach, which allows a relatively straightforward
numerical evaluation. We apply the method to a mesoscopic
transport situation, which represents a generalization of re-
cent studies of resonant tunneling assisted by quasiadiabatic
pulses of hot LA phonons.7,8 In addition, as shall be seen
below, the physics bears a similarity to the optical measure-
ments of Ref. 3. Specifically, we consider a dc-biased reso-
nant tunneling system, which is excited by short pulses of
nonequilibrium LO phonons. Experimentally, this might be
realized by subjecting the sample to suitable light pulses, the
propagation of which is known to be accompanied by lattice
vibrations.9

It is well known, both experimentally10 and
theoretically,11 that optical phonons lead to additional struc-
ture in the measured IV curve of resonant tunneling systems,
i.e., secondary maxima at voltages determined by the LO-

phonon frequency. To investigate the time-dependent forma-
tion of these structures caused bypulsedphonon fields, we
generalize the nonequilibrium linked-cluster expansion
~NLCE! of Ref. 12~to be referred to as I from this on! to the
time domain~NCLET!. This method is applied to study the
fast electron dynamics in the resonant tunneling system, in-
duced by the nonequilibrium phonon field with a zero coher-
ent part, butfast time fluctuations. This distinguishes our
work from the existing literature on time-dependent behavior
of mesoscopic systems13 ~up-to-date reviews are available,
e.g., in Ref. 14!. We calculate the time-dependent formation
of satellite peaks in the spectral function, induced by the
phonon pulses, and evaluate the related transient resonant
tunneling current through these individual peaks.

The paper is organized as follows. In Sec. II the NLCET
method for the Green functions is developed. In Sec. III we
apply this approach to a dc-biased resonant tunneling diode,
which is exposed to a very short phonon pulse. Section IV is
devoted to numerical results for the nonequilibrium spectra
and currents.

II. NONEQUILIBRIUM LINKED CLUSTER EXPANSION
IN TIMES

The NLCE method combines the nonequilibrium Green
functions6,15,16~NGF! with the equilibrium linked cluster ex-
pansion~LCE!.17 The appealing feature of this connection is
that all Feynman diagrams in NGF are topologically equiva-
lent to their equilibrium counterparts, which, on the other
hand, are also used in the LCE method~see, e.g., pp 524–
555 of Ref. 17, whose notation we follow closely!. Thus all
results for the NLCE method are readily at our disposal, and,
in particular, the nonequilibrium interacting electron correla-
tion functionsG, can be rather simply evaluated in terms of
nonequilibrium noninteracting functionsG0

, . In the first-
order linked cluster approximation, NLCE gives reliable re-
sults for moderate interaction strengths.12 For electrons
coupled to LO phonons, the dimensionless electron-phonon
coupling constantg, defined below Eq.~4!, should satisfyg
'0.321 ~depending on the temperature!. Here we general-
ize NLCE to the time domain~NLCET! and use it to evalu-
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ate interacting electron correlation functions in a pulsed pho-
non field.

The present time-dependent situation does not lead to any
structural changes in the theory from I; it is sufficient to
consider the time coordinates (t1 ,t2) as independent instead
of the t12t2 dependence used in steady states~the transient
phonon field breaks the time-translational invariance!. The
nonequilibrium electron correlation functionG,(t1 ,t2)
[1/\^c†(t1)c(t2)& in real times can be expanded in terms
of the correlation parts of the cluster diagramsWn

,,.(t1 ,t2),
formed by nth order terms in the interaction part of the
Hamiltonian (W1 for electron-phonon coupling is in Fig. 1!.
Explicit expressions for these correlation parts can be ob-
tained by analytic continuation performed with the Langreth
rules.6,18 In full analog with the steady-state situation in I, the
expansion forG, is then exponentially resummed in terms
of the coefficientsFn

, @G.(t1 ,t2) can be obtained sim-
ilarly#:

G,~ t1 ,t2!5 (
n50

`

Wn
,~ t1 ,t2!

5G0
,~ t12t2!expS (

n51

`

Fn
,~ t1 ,t2!D , ~1!

given by

F1
,~ t1 ,t2!5

W1
,~ t1 ,t2!

G0
,~ t12t2!

,

F2
,~ t1 ,t2!5

W2
,~ t1 ,t2!

G0
,~ t12t2!

2 1
2 F1

,~ t1 ,t2!2, . . . . ~2!

The noninteracting correlation functionsG0
,,.(t12t2) are

time homogeneous, since they correspond to the underlying
nonequilibrium steady state, without the time-dependent
phonon-field.

The correlation function in~1! can be transformed to cen-
ter of mass~CMS! coordinatest5t12t2 , T5 (t11t2/2) :

G,~t,T!5 (
n50

`

Wn
,~t,T!5G0

,~t!expS (
n51

`

Fn
,~t,T!D ,

t5t12t2 , T5
t11t2

2
. ~3!

After a Fourier transform over the difference timet, the
correlation functionsG,,.(v,T) provide the spectral and
time information byv andT, respectively. The expansion of
the nonequilibrium spectral functionA(v,T)5G.(v,T)

1G,(v,T) can be obtained in a similar fashion. It may as-
sume negative values, just like the quasidistributionf (v,T)
5G,(v,T)/@G.(v,T)1G,(v,T)#, which is an analog of
the Wigner function in transport. One should also note that a
low-order truncation of the linked cluster expansion is not
guaranteed to lead to a conserving approximation for the
quasidistribution, and, in particular, under time-dependent
situations careful checks are necessary. In the present paper,
however, all calculated quantities derive from the nonequi-
librium spectral function, which satisfies the sum rule

* dv
2p A(v,T)51, and the conservation rules are satisfied by

construction.

III. APPLICATION TO TUNNELING

We apply the NLCET to a resonant tunneling system
coupled to LO phonons, which was examined in steady-state
situations in I. In the present work the phonon population has
a pulse form, but the coherent part of the phonon field is
zero.19

A. Model

The model consists of a quantum well with one level
coupled to two wide-band reservoirs and one LO phonon
mode. The Hamiltonian is thus

H5 (
k; a5L,R

Ek,ack,a
† ck,a1E0d†d

1 (
k;a5L,R

gk;a~ck,a
† d1H.c.!1\v0b†b1Md†d~b1b†!.

~4!

HereEk,a5L,R are electron energies in the left~right! reser-
voirs, E0 is the energy of the level, and the parameters
gk,a5L,R give the coupling of the level to the reservoirs. The
phonon energy\v0 and the electron-phonon matrix element
M define the interaction strengthg5(M /\v0)2.

Under dc bias, the electrochemical potentials in the reser-
voirs mL,R shift in opposite directions by equal amounts.
Then the free electron correlation functions and propagators
for the electrons on the level are20 (t5t12t2)

G0
,~t!5E dv

2p
e2 ivt

G/2

~\v2E0!21G2/4

3@nFD~\v2mL!1nFD~\v2mR!#,

G0
.~t!5E dv

2p
e2 ivt

G/2

~\v2E0!21G2/4

3@22nFD~\v2mL!2nFD~\v2mR!#,

G0
r ,a~t!57 i u~6t!@G0

.~t!1G0
,~t!#

57
i

\
u~6t!e2

i
\ E0t7

G
2\ t, ~5!

FIG. 1. The first-order linked cluster diagramW1 . An analytic
continuation to real times gives the expression forDW,(t1 ,t2)
used in the text.
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where G characterizes the coupling to the reservoirs, as-
sumed symmetric as in I. The correlation functions and
propagators for the equilibrium phonons are

D,~t!5
i

\
$e2 iv0tnBE~v0!1eiv0t@11nBE~v0!#%,

D.~t!5
i

\
$e2 iv0t@11nBE~v0!#1eiv0tnBE~v0!%,

Dr ,a~t!57 i u~6t!@D.~t!2D,~t!#

57
2

\
u~6t!sin~v0t!. ~6!

As usual, negative frequencies, related to phonon emission,
are eliminated bynBE(2v0)52@11nBE(v0)#. In the pres-
ence of the pulsed phonon field, all the correlation functions
separately depend on both time variables (t1 ,t2). Below we
construct the pulsed phonon correlation functions, by ne-
glecting back action of the tunneling electrons on the
phonons, and evaluate the electron correlation functions in
this field by the NLCET method.

B. The time-dependent phonon field

As mentioned in the Introduction, subjecting a semicon-
ductor sample to light pulse can result in a propagating pho-
non pulse. Viewed from the resonant-tunneling diode, the
propagating phonon pulse implies that within a certain time-
interval the phonon distribution, which interacts with the di-
ode, deviates from its equilibrium value. Alternatively, a
pulsed photon-field that couples directly with the tunneling
electrons, leads to similar physics.21 In order to test the
NLCET method in this transient problem, we neglect, for
simplicity, the coherent component of the excitation boson
field, which can be described by simpler methods, and con-
sider only its component with a random phase.

A mathematical description of this physical situation can
be achieved as follows. The population of the LO phonon
field at frequencyv0 suddenly increases at the timeT50 by
nP(v0) phonons and remains constant untilT5T0 , when
nP(v0) is switched off. This process can be described by the
nonequilibrium phonon distribution

f P~v0 ,T!5nBE~v0!1Dv0
~T!,

Dv0
~T!5nP~v0! @u~T2T0!2u~T!#, ~7!

which can be used to construct the total phonon correlation
functionsD,,D.. This construction, however, must be done
carefully. In Kadanoff-Baym equations, two closely related
approaches are used for constructing nonequilibrium correla-
tion functions from the nonequilibrium distributions; the KB
Ansatz15 and the GKB Ansatz.22 The NLCET method is not
iterative and the Ansatz must be done on the nonequilibrium
phonon field, which is not the product of the solution but
entersexternally. Therefore it seems to be worth to explore
both approaches in this situation in Appendix. We realize
that in NLCET the consistent approach is also the GKB An-
satz, giving the nonequilibrium phonon correlation functions
in ~A4!

DD,~t,T!5DD.~t,T!'
2

\
cos~v0t!

3Fu~t!Dv0S T2
t

2D1u~2t!Dv0S T1
t

2D G .
~8!

Below, we prove that the structure of arguments in
DD,,.(t,T) assures causal phonon-induced observables.

C. Time-dependentG<,G>

The phonon correlation functions in~8! can be used di-
rectly in the NLCET method to obtain the transient electron
correlatorsG,,G.. We consider only the lowest order term,

G,~t,T!'G0
,~t!exp@F1

,~t!1DF1
,~t,T!#, ~9!

which can be factorized into a steady-state contribution

Gsteady
, ~t!5G0

,~t!exp@F1
,~t!#, ~10!

describing static tunneling modified by equilibrium phonons,
and a time-dependent term, exp@DF1

,(t,T)#. In the present
study, which focuses on the time-dependent changes in the
tunneling current, it is sufficient to approximateGsteady

,

'G0
, , i.e., the effects due to equilibrium phonons are not

considered.23

The first order linked cluster factorW1 in ~2! is repre-
sented by the diagram in Fig. 1. The change of the related
correlation partDW1

,(t1 ,t2), induced by the phonon pulse,
is obtained with the Langreth rules6,18 @the expression for
DW1

.(t1 ,t2) is analogous#:

DW1
,~ t1 ,t2!5M2E dt3E dt4$G0

,~ t12t3!@G0~ t32t4!DD~ t3 ,t4!#aG0
a~ t42t2!

1G0
r ~ t12t3!G0

,~ t32t4!DD,~ t3 ,t4!G0
a~ t42t2!1G0

r ~ t12t3!@G0~ t32t4!DD~ t3 ,t4!# rG0
,~ t42t2!%.

~11!
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Here the phonon Green functionsDD are given by~8!, and
the free electron Green functionsG0 are given by the nonin-
teracting solution~5!, respectively. The integrals in~11! can
be easily performed numerically, if the theta functions in~8!
are taken as integration limits in~11!, so that the phonon
functions depend only on the time-translationally invariant
cosines. From the changeDW1

,(t1 ,t2) the first order coeffi-
cient DF1

,(t,T) in ~3! results as@DF1
.(t,T) andDA1(t,T)

can be obtained similarly#:

DF1
,~t,T!5

DW1
,~t,T!

G0
,~t!

. ~12!

Substitution of these coefficients in~9! gives the first-order
linked cluster approximation for the time-dependent correla-
tion functions G,(t,T), G.(t,T). Physical observables

calculated from these functions must be causal. In the next
section we explicitly show that this is the case for the in-
duced change in the current, if the phonon correlation func-
tions ~8! are used.

D. Time-dependent tunneling current

The expression for the time-dependent tunneling current
can be obtained by the steps used in Sec. IV of Ref. 13. In
the wide-band limit with symmetric coupling, the currents
from the left and right reservoirs to the level satisfyJL(t)
52JR(t). Therefore, it is very convenient to rearrange the
current in a symmetrized way with respect to these
reservoirs,13,8 because in this form the terms explicitly in-
volving the level populationG, cancel. Then the current
assumes a very simple form

J~ t !5
JL~ t !2JR~ t !

2
5

eG

4i E2`

`

d t̄@dnFD~ t2 t̄ !Ga~ t̄ ,t !1Gr~ t, t̄ !dnFD~ t̄ 2t !#

5
eG

4i E2`

`

dt@Ga~t,T5t1t/2!2Gr~t,T5t2t/2!#dnFD~2t!, ~13!

where dnFD(t)5*dv/2pe2 ivt@nFD(\v2mL)2nFD(\v
2mR)# is a Fourier transform of the difference of two Fermi-
Dirac distributions. The effect of this term is to average out
the transient time oscillations from the propagators
Gr ,a(t,T5t6t/2) and consequently from the currentJ(t).
The averaging is stronger the broaderdnFD(v) is in energy,
corresponding to higher biases or temperatures.

We next explicitly demonstrate the causality of the cur-
rent J(t) in ~13!: the current must satisfyJ(t,0)5J0 ,
whereJ0 is the static current before the phonon pulse. We
observe first that the term in square brackets in the second
line of ~13! can be expressed in terms of the nonequilibrium
spectrallike function:

A~t,t ![ i @Gr~t,T5t2t/2!2Ga~t,T5t1t/2!#

5u~t!A~t,t2t/2!1u~2t!A~t,t1t/2!.

Note also that the time arguments have a very similar form to
the GKB Ansatz for the phonon Green functions in~8!. If
A(t,t,0)5A0(t), the proof is complete. The phonon GKB
Ansatz makesDW1

,,.(t1 ,t2) causal in the timest1 ,t2 @i.e., it
vanishes ift1,0 or t2,0; this can be easily checked from
Eq. ~11!#, and hence the spectral functionA(t1 ,t2) is causal
in t1 ,t2 . We examine now the first term,u(t)A(t,t2t/2)
~the second term gives the same result!. By construction, it
can be nonzero only ift.0. Then, for observation timest
,0 ~i.e., before the nonequilibrium phonon pulse is opera-
tive! it holds thatt2t/2[t2,0 and consequently the spec-
tral function has its equilibrium form,A(t,t2t/2,0)
5A0(t12t2). Therefore the current is equal the steady-state
valueJ(t)5J0 , which explicitly proves its causality. On the
other hand, the use of the KB Ansatz for the phonon func-
tions ~A1! would break this causality ofJ(t), similarly as

neglecting the shifts6t/2 in the time arguments of the
propagatorsGr ,a(t,t6t/2). The last approximation~see also
Ref. 24! is based analogously as the KB Ansatz and it is
equal the lowest order approximation in gradient expansions
in the shifts6t/2, applied for slow external fields.16,25,26We
caution against this expansion under transient conditions,
since it is inevitably accompanied by noncausality.

The current can be given a more intuitive form with the
help of the above explicitlyt-causal spectral function
A(t,t). It can be expressed in terms of the frequency repre-
sentation ofA(v,t) as follows:

J~ t !5
eG

4\E d\v

2p
A~v,t !@nFD~\v2mL!2nFD~\v2mR!#.

~14!

It is important to distinguish the physical difference of the
two functionsA and A; the functionA can be used to cal-
culate~generalized! densities of states, but in the calculation
of transient current one must useA. Substitution ofA(v,t)
by A(v,t) in the current formula~14! gives the above lowest
order term in the gradient expansion.

IV. NUMERICAL RESULTS

We first investigate numerical results for the nonequilib-
rium spectral functionA(v,T). Later the transient tunneling
currentJ(t) is evaluated as well.

A. Nonequilibrium spectrum

In Fig. 2 the time evolution is shown for the function
A(v,T), calculated from expression~9! for a pulsed phonon
field of Eq. ~8!. The phonon pulse is present in the time
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interval T5(0,4TLO), where TLO'200 fs (\v0

520 meV) is the oscillation period of the phonon field.
Other parameters are: the level energyE050, the coupling
G58 meV, the strength of the electron-phonon couplingg
50.2, the nonequilibrium phonon population23 nP(v0)51
and the temperature of the reservoirsTlatt530 K. Since the
changeA(v,T) depends very little on the valuesE0 ,Tlatt and
the dc bias, we take the equilibrium valuesmL5mR50. The
correlation functionsG,(v,T), G.(v,T) are slightly more
sensitive to the dc bias, but their time evolution essentially
follows A(v,T). In A(v,T) the formation and destruction of
satellite peaks can be clearly observed. The first satellite
peaks emerge from the main resonance and settle to the po-
sition v5v0 in about T'TLO . When the pulse ends the
evolution of A(v,T) toward the noninteractingA0(v,T) is
also oscillatory, with positive maxima at the positions of the
steady-state peaks and negative minima in between.

In Fig. 3 we show the time evolution ofA(v,T) in the
individual phonon satellites. The main resonance (A0), first
(4A1) and second (8A2) satellites are presented by the solid,
dashed, and dotted lines, respectively. The transfer of the

spectral weight to the satellites can be understood as a po-
laron formation. For all peaks this transient process ends
approximately atTLO , since only one-phonon processes are
present inW1 . In the exact calculations of a 1D model,3 the
spectral and population dynamics related with the second
order satellites takes longer than in the first order satellites.
In Fig. 3 the formation process of the polaron is accompa-
nied by fast oscillations, with a time periodTf'TLO/3, prac-
tically independent ong or G. The spectral functionA(v,T)
determines thet-causal spectral functionA(v,t), with a
complex time behavior reflected in the tunneling current~see
Figs. 4–6!.

B. Phono-induced current

We calculate the induced resonant currentDJ(t) from
~14! for different level positionsE0 . These situations are
modeled, for simplicity, by the sameA(v,T), which is just
shifted in energy11 @the transient part ofA(v,T) depends
very little on the level positionE0]. The tunneling window is
given by the different chemical potentialsmL52 meV, mR
522 meV. In Fig. 4 we show the induced currentDJ0(t)
through the main resonanceE050. The dashed~solid! lines
correspond to the temperaturesT55 K (30 K). As the
temperature rises, the oscillations, with the approximate pe-
riod TLO , become washed out. They are quite reminiscent to

FIG. 2. The time evolution of the nonequilibrium spectral func-
tion A(v,T) excited by the pulse of the phonon field in the GKB
Ansatz, switched in the intervalT5(0,4TLO). The formation~de-
struction! of satellites takes roughly a timeTLO .

FIG. 3. The time evolution ofA(v,T) in the individual peaks:
the main resonance (A0), first satellite (A1 , multiplied by 4! and
second satellite (A2 , multiplied by 8! are presented by the solid,
dashed, and dotted lines. At the pulse edges fast oscillations can be
observed.

FIG. 4. The tunneling current through the main resonance
DJ0(t), calculated for an injection window of the width 4 meV
and for the temperatureT55 K (30 K), presented by the dashed
~solid! line. The fast oscillations wash out with the temperature and
the current gets the rectangular form.

FIG. 5. The tunneling current through the first satelliteDJ1(t),
calculated as in Fig. 4. The oscillations are twice faster.
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the ‘‘ringing’’ observed in a similar~noninteracting! system
in a pulsed electric field.13 We can check the causality of the
current close to the pulse edgest50, 4TLO . The oscillations
in J(t) survive for long observation timest, in contrast to
fast decay ofA(v,T) as a function ofT. The reason is
simple: the distributionA(t,t) for large t is connected with
A(t,T5t6t/2) for any value ofT ~it picks up oscillations
from earlyT). The oscillations diminish because of the ran-
domization coming from the width of the injection window,
given by the differencenFD(\v2mL)2nFD(\v2mR),
similarly as in Ref. 13. In reality this process could be
shorter, since the phonon distribution for this interacting sys-
tem evolves self-consistently and thus brings some additional
randomization. After the pulse ends, damped oscillatory evo-
lution with a similar relaxation time brings the current back
to its original value.

In Fig. 5 the induced current through the first satellite
DJ1(t) at E05220 meV is shown for the same excitation
conditions. AtT55 K the current saturates relatively slowly
with many oscillations with an approximate period ofTLO/2.
They again disappear at higher temperatures, where the re-
sponse closely follows the rectangular pulse form. Finally, in
Fig. 6 we present the induced current through the second
satellite DJ2(t) at E05240 meV. Its time evolution is
more complex, with beatings of the approximate periods
TLO ,TLO/2. The oscillations are very large at both edges of
the pulse, where they can shortly give negative values to the
transient current. These negative current overshoots are es-
pecially large if the dc bias is tuned between the satellites,
where they balance the positive transient values at the main
resonance and satellites. Because the sum rules are fulfilled
at any time, the total current through the resonance for a very
wide window is independent on time.

V. CONCLUSION

We have studied resonant tunneling through a single level
in the presence of pulsed LO phonon field. The analysis has
been conducted by the nonequilibrium linked cluster
expansion,12 generalized to the time domain. The distribution
function for the pulsed phonon field, with a zero coherent
component, has been constructed and the phonon correlation
functions were described by the GKB Ansatz. A detailed
examination shows that this Ansatz is necessary in order to

obtain an explicitly causal formula for the time-dependent
tunneling current.

Numerical results for the nonequilibrium electron spectral
function have been obtained by the NLCET method in the
first order cluster approximation. They reveal the formation
and collapse of satellite peaks on an ultrashort time scale.
The transient current through the individual peaks, related
with this polaron formation processes, has been calculated.
At low temperatures of the injected electrons, it shows oscil-
lations with the phonon frequency and its harmonics. At high
temperatures these oscillations become washed out, so that
the current follows the rectangular shape of the phonon
pulse. Our results indicate that considerable insight about the
microscopic details of electron-phonon interactions can be
obtained in the time domain. We hope that they can stimulate
future experiments with short phonon pulses.
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APPENDIX

Here we use the nonequilibrium distributionf P(v0 ,T) in
~7! to construct the nonequilibrium phonon correlation func-
tions DD,(t,T), DD.(t,T). The most straightforward ap-
proach results by replacing the equilibrium occupation fac-
tors nBE(v0) in ~6! by f P(v0 ,T) and assuming thatT is the
averagetime betweent1 andt2 @T5(t11t2)/2#. Equivalent,
but more compact description, uses in~6! both positive and
negative frequencies, and definesf P(2v0 ,T)5nBE(2v0)
1D2v0

(T), where D2v0
(T)52Dv0

(T). We denote the
parts of the free phonon spectral function17 related with
positive/negative frequencies byAD6(v)562pd(v
7v0)/\ and their Fourier transformed counterparts by
AD6(t)56(1/\)e7 iv0t. The substitution off P(6v0 ,T) in
~6! then gives the KB Ansatz15 for the transient change of the
phonon correlation functions and propagators

DD,~t,T!5DD.~t,T!

'AD6~t!D6v0
~T!5

2

\
cos~v0t!Dv0

~T!,

DDr ,a~t,T!57 i u~6t!@DD.~t,T!2DD,~t,T!#50.
~A1!

Here the productAD6(t)D6v0
(T) is

AD6~t!D6v0
~T!5AD1~t!Dv0

~T!1AD2~t!D2v0
~T!

5
2

\
cos~v0t!Dv0

~T!, ~A2!

where the definition ofAD6(t) andD2v0
(T) are used. The

phonon functions in~A1! are causal in the central variableT,
but when applied in the NLCET method, they lead to some
unphysical results.

It has been known since the work of Lipavsky´ et al.,22

that the KB Ansatz does not fulfill the requirement of cau-

FIG. 6. The tunneling current through the second satellite
DJ2(t), calculated as in Fig. 4. Very irregular evolution with beat-
ing can be observed.
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sality of the correlation functions in the individual times
t1 ,t2 @i.e.,DD,,.(t,T)Þ0 for TP(0,T0) even if t1 or t2 are
out of (0,T0)]. The problem results from identification of the
time T in f P(v0 ,T) with the central time (t11t2)/2. The
simplest correction is called the GKB Ansatz,22 and we show
in the main text that it can give plausible results also in the
NLCET method.

In this Ansatz, the phonon spectrumAD(t)5 i @Dr(t1
2t2)2Da(t12t2)# from the nonequilibrium correlation
functionsDD, andDD. is resolved into two components,
propagating forwards and backwards in time (Dr ,Da), re-
spectively. These are multiplied by the population change
D6v0

with the initial time coordinatest1 ,t2 , pertinent to
each of the two terms, instead of the center of mass
(t11t2)/2

DD,~ t1 ,t2!' iD 6
r ~ t12t2!D6v0

~ t2!

2 iD6v0
~ t1! D6

a ~ t12t2!. ~A3!

Here the spectral functionAD(t) in the propagators
Dr ,a(t)57 i u(6t)AD(t) is again resolved in the positive/
negative frequency partsAD6(t) and the related propagator
componentsD6

r ,a(t12t2) are multiplied by the factors
D6v0

(t1,2) as in~A2!. This gives the functionsDD,,.(t,T)
in the form

DD,~t,T!5DD.~t,T!

'
2

\
cos~v0t!Fu~t!Dv0S T2

t

2D
1u~2t!Dv0S T1

t

2D G . ~A4!

They reduce to the KB Ansatz from~A1! if the shifts6t/2
of the step functionDv0

(T6t/2) are neglected.
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