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On the Einstein–Stern model of rotational heat capacities
Jens Peder Dahl
Chemical Physics, Department of Chemistry, Technical University of Denmark, DTU 207,
DK-2800 Lyngby, Denmark

~Received 19 June 1998; accepted 18 September 1998!

The Einstein–Stern model for the rotational contribution to the heat capacity of a diatomic gas has
recently been resuscitated. In this communication, we show that the apparent success of the model
is illusory, because it is based on what has turned out to be an unfortunate comparison with
experiment. We also take exception to the possibility of assigning any meaning to the rotational
zero-point energy introduced by the model. ©1998 American Institute of Physics.
@S0021-9606~98!02448-9#

I. INTRODUCTION

In a conceptually interesting article from 1913, Einstein
and Stern1 discussed the possible existence of a zero-point
energy for a quantum-mechanical vibrator. Planck had pre-
sented arguments in favor of such a zero-point energy two
years earlier and had replaced his first formula for the
temperature-dependent energy of a harmonic vibrator,2
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by a second one,3
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Einstein and Stern pointed out that when expanded to second
order in hn/kT, the first formula givesEv15kT2hn/2,
whereas the second formula givesEv25kT. The two formu-
las lead, however, to the same expression for the heat
capacity4 of a system ofN vibrators, namely,
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with N being the Avogadro constant andR the gas constant.
With an additional factor of 3 this is Einstein’s expression
from 1907 for the heat capacity of a monatomic solid.5

As is well known, Einstein’s analysis solved the long
standing puzzle of the temperature dependence of the heat
capacity of solids. According to the equipartition theory of
classical statistical mechanics the heat capacity should have
the constant value 3R. But in fact it drops from the value 3R
at high temperatures to the value 0 atT50, and this is what
was accounted for by Einstein’s expression.

For a diatomic gas, the heat capacity has a value of about
5
2R at ambient temperature. According to classical statistical
mechanics, this value is made up of a contribution of3

2R
from the translational motion, and a contribution ofR from
the rotational motion. That the rotational contribution to the

heat capacity might decrease fromR to 0 by cooling was,
however, considered a realistic possibility around 1912. So,
to test this possibility Eucken measured the heat capacity of
molecular hydrogen at several temperatures between 273 and
35 K, and indeed found that the heat capacity diminished
from 4.84 to 2.98 cal mol21 K21 in that interval,6 i.e., from
2.44 to 1.50R. Soon thereafter, the temperature-dependent
heat capacities of several other gases were also measured, in
particular by Scheel and Heuse.7

Eucken tried to represent his data by an expression of the
form in Eq. ~3!, augmented by a32R term. But he found that
this led to too shallow a curve for the heat capacity as a
function of T, in comparison with the experimental curve.

This was the starting point for Einstein and Stern’s
analysis. Their idea was to tie the problem of accounting for
the form of the rotational contribution to the heat capacity of
a diatomic molecule to the problem of deciding upon the
possible existence of a zero-point energy for a vibrator. They
treated the molecule as a rigid rotator, with the rotational
energy

Er5
1

2
I ~2pn!2, ~4!

whereI is the moment of inertia, andn is the frequency of
rotation which is supposed to depend on the temperature. For
each temperature, they compared the energy of the rotator
with that of a vibrator with the same frequencyn, and re-
quired that the two energies be the same. For each of the
above energy expressions,Ev1 andEv2, this uniquely deter-
minesn and henceEr as a function ofT. Finally, the heat
capacity of a gas of rotators was determined as

Cr5N
dEr

dT
. ~5!

This leads to two expressions forCr as functions ofT. Ein-
stein and Stern compared the graphs based on these expres-
sions with Eucken’s experimental graph of the rotational
contribution to the heat capacity of molecular hydrogen.
They found that only the graph related to the expression~2!
could be brought in good agreement with the experimental
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graph, and hence concluded that the existence of a vibra-
tional zero-point energy had been made probable.

However, the derivation based on the expression~2! also
predicted a rotational zero-point energy. Today we know that
this was an incorrect prediction. The Einstein–Stern model
has, nevertheless, attracted some recent attention, through
the presentation by Milonni8 and the subsequent discussion
by Malta, Marshall, and Santos.9 Milonni rejected the model
because of our present knowledge, thata molecule has no
zero-point rotational energy. However, the latter authors
claim that the agreement with the experimental data can be
qualitatively explained in theWigner representation.

In the present communication, we draw attention to the
fact that the experimental curve with which Einstein and
Stern compared their theoretical curve was the experimental
curve for so-called normal hydrogen, which is a nonequilib-
rium mixture of ortho- and parahydrogen. When a compari-
son with a proper system is performed, the success of the
Einstein–Stern model vanishes, for any diatomic molecule.

In the following, we briefly review the Einstein–Stern
model, using a dimensionless representation rather than
adopting the somewhat cumbersome units used in Einstein
and Stern’s article. We then compare the Einstein–Stern ex-
pression forCr with the modern expressions derived from
statistical mechanics, and demonstrate the poor agreement
between the two descriptions. Finally, we comment on the
so-calledangular-momentum dilemmaand the possible exis-
tence of a zero-point energy for rotational motion.

II. THE EINSTEIN–STERN MODEL

Let us introduce the rotational and vibrational tempera-
tures,Q r andQv , respectively, by the usual definitions

Q r5
h2

8p2Ik
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k
. ~6!

Q r is a constant, whereasQv depends onT through the
temperature-dependent frequencyn. Expression~4! for the
rotational energy may then be written
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The conditionEr5Ev1 becomes
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from which we get
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This equation gives the relation betweenT andn, or between
t andx, where
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The heat capacity may be written
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whereR is the gas constant. It leads to the expression
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which, through Eq.~9!, determinesCr as a function oft.
Similarly, the conditionEr5Ev2 becomes
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from which we get
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This equation gives the new relation betweent and x and
leads to the alternative expression
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for the heat capacity.
Figure 1 showsCr1 and Cr2 as functions ofT/Q r . As

pointed out by Einstein and Stern, the behavior ofCr1 for
small T is qualitatively incorrect. The graph ofCr2 is more
convincing, and Einstein and Stern showed that it could be
brought in almost quantitative agreement with the graph rep-
resenting the experimental values ofCr determined by Eu-
cken, provided a suitable value was assigned to their param-
eterp. In our notation this parameter is

p5
h2

4Q rk
. ~16!

FIG. 1. Molar constant volume heat capacity of a gas of rigid rotators
according to the model of Einstein and Stern. ‘‘ES1’’ is based on expression
~12!, ‘‘ES2’’ on expression~15!.
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For hydrogen, the determined value forp corresponds to
Q r5274 K. This is, however, a very unrealistic value, the
correct value for hydrogen being 87.5 K, a discrepancy that
has so far been left unnoticed.

As already mentioned in Sec. I, the heat capacity curve
by Eucken is the curve for so-called normal hydrogen which
is a nonequilibrium mixture of ortho- and parahydrogen. In
the following section, we shall therefore make a more appro-
priate comparison.

III. EXPRESSIONS FOR THE HEAT CAPACITY OF A
GAS OF RIGID ROTATORS

According to modern quantum-statistical mechanics, the
heat capacity of a gas of rigid rotators is given by the
expression10,11

Cr5R
]

]tS t2
]

]t
~ ln q! D , ~17!

wheret5T/Q r as above, andq is the partition function

q5(
j 50

`

~2 j 11!e2 j ~ j 11!/t. ~18!

Figure 2 shows the graph of expression~17! together with
the graph of expression~15!. The two graphs have the same
limits for low and for high temperatures, but they approach
the limits differently, and the general shapes of the graphs
are quite different.

When the rigid-rotator model is used to describe the ro-
tation of molecular hydrogen, the statistics of the nuclear
spins must be included. This complication was, of course,
unknown to Einstein and Stern whose work was published
many years before the discovery of spin. It was first properly
discussed by Dennison in 1927.12 As is now well known,10,11

the presence of the nuclear spins causes the gas to behave
like a mixture of two interconvertible gases, orthohydrogen
~total nuclear spin one! and parahydrogen~total nuclear spin
zero!. The partition function for orthohydrogen is obtained
by including only odd values ofj in the partition function of

Eq. ~18! and subsequently multiplying by a nuclear-spin de-
generacy factor of 3, while the partition function for parahy-
drogen is obtained by including only even values ofj in the
sum of Eq.~18!. In catalytically equilibrated hydrogen, the
ortho:para ratio varies with temperature, approaching the
value 3:1 for large values ofT. So-called normal hydrogen is
a hydrogen gas in which the ratio 3:1 is maintained at all
temperatures.

Figure 3 shows the heat capacity curves for orthohydro-
gen, parahydrogen, normal hydrogen, and equilibrated hy-
drogen~for which the partition function isqpara1qortho).

In Fig. 4, we show again the heat capacity curve for
normal hydrogen, but with the value 87.5 K inserted forQ r .
Shown are also the Einstein–Stern curves corresponding to
Q r587.5 and 274 K. Einstein and Stern’s analysis corre-
sponds to a comparison of the curve for normal hydrogen at
87.5 K with the Einstein–Stern 274 K curve. Although the
two curves are quite similar, the result of such a comparison

FIG. 2. Molar constant volume heat capacity of a gas of rigid rotators.
‘‘Exact’’ is based on the partition function of Eq.~18!, ‘‘ES’’ on the model
of Einstein and Stern, expression~15!.

FIG. 3. Molar constant volume heat capacity curves for equilibrated hydro-
gen, orthohydrogen, parahydrogen, and normal hydrogen.

FIG. 4. Molar constant volume heat capacity curve for normal hydrogen
compared with heat capacity curves based on the model of Einstein and
Stern, expression~15!, with Q r587.5 and 274 K.
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is now without meaning, and so is accordingly ‘‘the remark-
able agreement between the curves.’’

IV. THE ANGULAR-MOMENTUM DILEMMA

As mentioned in Sec. I, Einstein and Stern used their
analysis to favor expression~2! for the energy of a vibrator
over expression~1!. In the light of the present work, accord-
ing to which the Einstein–Stern model in fact leads to an
unacceptable heat capacity curve, this becomes a weak de-
duction. But then it is not needed anyway, since the correct-
ness of expression~2! follows straightforwardly from mod-
ern molecular quantum mechanics. Molecular quantum
mechanics also uniquely predicts the energy levels of a rigid
rotator to be

Ej5
h2

8p2I
j ~ j 11!, j 50,1,2, . . . ~19!

as already used in setting up the partition function of Eq.
~18!. Expression~19! leads to a vanishing zero-point energy
for the rotator.

Relation~13! leads toQv52Q r at T50. It then follows
from the relations~6! and ~7! that the Einstein–Stern model
predicts a rotational zero-point energy

Er05
h2

8p2I
. ~20!

In light of our rejection of the validity of the Einstein–Stern
model, we need not assign any specific meaning to this re-
sult. Yet, we must comment on the remark made by Malta
et al.,9 that it can be qualitatively explained in the Wigner
representation.

We have discussed the Weyl–Wigner representation and
applications of it in several articles. In connection with our
work on the electronic Wigner function for the ground state
of the hydrogen atom,13 we discussed what we called the
angular-momentum dilemmaat some length. This is the
problem of reconciling the fact that the Bohr theory predicts
an angular momentum different from zero for the hydrogen
atom’s ground state, with the fact that the Schro¨dinger theory
predicts the value zero. As we pointed out in our article, the
difference can be qualitatively understood by realizing that
the Weyl transform of theoperator l̂ 2 is the phase-space

function l 22 3
2\

2, as first noticed by Shewell.14 Thus, the
zero expectation value of the operatorl̂ 2 necessarily corre-
sponds to a nonvanishing phase-space average3

2\
2 of the

function l 2. In their article on the Wigner density of a rigid
rotator, Malta et al. turn this argument upside-down by as-
signing ana priori interest to thephase-space functionl 2.
This, then, let them suggest that the proper angular momen-
tum operator bel̂ 21 3

2\
2 rather than simplyl̂ 2. As a result,

the rotator acquires an angular momentum of3
2\

2 in its
ground state, which in a qualitative way is supposed to ex-
plain a nonvanishing zero-point energy. There is, however,
no doubt that Eq.~19! is the correct expression for the en-
ergy of a molecular rotator and hence, that the operatorl̂ 2

correctly accounts for the magnitude of the angular momen-
tum of a rotator.

V. CONCLUSIONS

In the present work, we have shown that the success of
the Einstein–Stern model is an illusion, and we have elimi-
nated the incentive to seek a justification of a nonvanishing
zero-point energy for rotational motion.
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