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Field-Induced Deformation as a Mechanism for Scanning Tunneling Microscopy
Based Nanofabrication

O. Hansen, J. T. Ravnkilde, U. Quaade, K. Stokbro, and F. Grey
Mikroelektronik Centret, Technical University of Denmark, Building 345e, DK-2800 Lyngby, Denmark

(Received 15 July 1998)

The voltage between tip and sample in a scanning tunneling microscope (STM) results in a large
electric field localized near the tip apex. The mechanical stress due to this field can cause appreciable
deformation of both tip and sample on the scale of the tunnel gap. We derive an approximate analytical
expression for this deformation and confirm the validity of the result by comparison with a finite
element analysis. We derive the condition for a field-induced jump to contact of tip and sample and
show that this agrees well with experimental results for material transfer between tip and sample by
voltage pulsing in ultrahigh vacuum. [S0031-9007(98)08020-X]

PACS numbers: 61.16.Ch, 41.20.Cv, 74.25.Ld

In a scanning tunneling microscope (STM), the sepa-
ration between the tip and sample is a key parameter for
quantitative interpretation of the images and spectroscopic
data that the STM produces. Normally, this distance is
not accessible to direct measurement and must instead be
inferred from measurements of current, voltage, and dis-
placement of the piezoelectric scanner tube. Direct in-
teraction due to the interatomic potentials between atoms
on the tip and the sample can cause significant deforma-
tions of both tip and sample [1–6]. Such direct interac-
tion has important consequences for measurements of the
absolute tip position [7], the tunnel barrier height [8], the
atomic corrugation of surfaces [1,9], and the phenomenon
of jump to contact, where a mechanical instability causes
tip and sample to suddenly join [3,4].

In this Letter, we show how the electric field due to
the applied bias between the tip and sample can also be a
significant source of elastic deformation. This possibility
has not received attention previously, because most experi-
mental studies of tip-sample interaction attempt to mini-
mize any field effects by using very low biases [9,10],
while in theoretical studies, field effects are usually ne-
glected [5]. We find, however, that the field induced de-
formation of both tip and sample is significant at typical
scanning voltages. Further, we determine the conditions
under which this purely elastic deformation results in jump
to contact and show that they agree quantitatively with
published experimental results by Guo and Thompson [11]
for material transfer between tip and sample by voltage
pulsing. Field-induced elastic jump to contact is thus an
alternative to the field evaporation mechanism proposed in
many STM nanofabrication experiments [11–13] the va-
lidity of which remains controversial [11,14].

The theoretical approach in this study is to develop a
simple yet accurate analytical expression for the elastic
deformation of tip and surface using classical continuum
mechanics and electrostatics. The accuracy of the analyti-
cal expression is determined by comparison with a finite
element analysis of tip and sample modeled as continu-
ous elastic media. This approach does not give detailed

atomic-scale information, but it has the advantage that it
can be applied to systems much larger than those acces-
sible to molecular dynamics simulations.

As shown in the inset of Fig. 1, we treat the tip to
a first approximation as a spherical cap of radiusR on
a truncated cone with the half opening angleu0. With
no applied field, the tunnel gap ish0 and with the field
induced deformation it ish. Typical values in STM are
h ­ 5 Å, R ­ 1000 Å [15]; in other words,h ø R. We
assume cylindrical symmetry, withr the radial coordinate
and z the vertical coordinate. The sample surface is the
plane defined byzssrd ­ 0 . The tip surface near the tip
apex isztsrd ­ h 1 Rs1 2 coswd, wherew ­ arcsins r

R d
is the angle measured from the center of the spherical cap
of the tip (see Fig. 1 inset).

The exact electric fieldEt andEs on the tip and sample
(both assumed metallic) cannot be expressed in closed
form [16]. However, simple yet accurate expressions for
the electric field near the apex can be derived from a
concentric spheres model [17]

Etswd .
V

h 1 Rf1 2 cosswdg

µ
1 1
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∂
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Essrd .
V

f
p

r2 1 sR 1 hd2 2 Rg
Rp

r2 1 sR 1 hd2
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To a first approximation the electric field on the tip or the
sample falls to half its maximum value at a characteristic
radiusrc .

p
2Rh ø R.

The electrostatic pressure on a metallic surface due to
the electric fieldE on the surface ispsrd ­

1
2 ´E2srd [18],

where´ is the permittivity of the dielectric between the tip
and sample surfaces. The deformation of the tip and the
sample due to the electrostatic pressure can be calculated
from elastic theory using a superposition of Boussinesq’s
solution to a point force load on a semi-infinite sample
[19]. The deformationwssrd of the sample in thez
direction becomes
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FIG. 1. The deformation of a tungsten samplewssrd and
tip wtsrd as a function of the radial position fromANSYS
finite element calculations; both the converged results (ws,t h`j)
and results from the first iteration (ws,t h1j) are shown. For
comparison also, the sample deformations calculated from the
model Eq. (3) (usingh ­ h0) are shown. The applied bias is
V ­ 5 V. The inset shows a schematic of the STM tip and
sample: R is the radius of the spherical cap,h and h0 the
deformed and relaxed tip to sample distance, respectively,u0
is the half top angle of the truncated conical tip shank, andw
is the polar angle. The deformed surfaces are indicated with
dashed lines.

wssrd ­
s1 2 n2

s d
pYs

Z 2p

0

Z `

0
pssr 0d dl df , (3)

with sr 0d2 ­ r2 1 l2 2 2rl cosf . ps is the pressure
on the sample,Ys is Young’s modulus, andns is Poisson’s
ratio of the sample. At the apex the angular integral is
trivial and the deformationws0 ­ wss0d becomes

ws0 ­
2s1 2 n2

s d
Ys

Z `

0
pssrd dr

.
s1 2 n2

s d
Ys

ps0
p

2

p
2Rh , (4)

whereps0 ­ pss0d.
Below, we shall show by comparison withANSYS [20]

finite element analysis that Eq. (3) accurately reproduces
the deformation of the sample. A typical geometry used in
finite element analysis isR ­ 1000 Å and h ­ 5 Å (the
units are in principle arbitrary in this simulation, since
tip and sample are treated as continuous media). The
spherical tip apex is joined smoothly with a truncated
cone of half opening angle 30± (angles in the range
20±–40± give almost identical results). The tip extends
to z ­ 10 000 Å and the sample toz ­ 210 000 Å and
r ­ 9525 Å. These boundaries are effectively frozen
during calculations of elastic relaxation. An adaptive
meshing and elements with curved surfaces are used. In
the calculations the smallest node separation is 0.5 Å (near
the tip apex). Calculations on tips with a small hemi-

spherical protrusion at the apex have also been performed
[21] and give results similar to those presented here.

An iterative procedure is carried out where the tip
and sample surfaces are fixed and the electric field is
calculated; the stress due to this field is then fixed and
the elastic relaxation of tip and sample is calculated.
The deformed tip is used in a new calculation of the
electric field followed by a new calculation of the stress
and elastic relaxation. For sufficiently smallV , this
calculation converges at the first iteration and is well
approximated by Eq. (3) usingh ­ h0. In Fig. 1 the
deformations of the tip and sample surfaces are shown
as a function of the radial distance from apex obtained
from a converged iterative finite element calculation.
The elastic parameters used are those of tungsten (Y ­
411 GPa, n ­ 0.28 [22]). For comparison, the sample
deformation calculated from Eq. (3) is shown.

From Fig. 1 we see that the deformation of the tip is
very similar to the deformation of the sample. The reason
is that as long asR ¿ h, the electric field and resulting
stress are confined to a regionrc .

p
2Rh ø R. On this

scale tip and sample behave roughly symmetrically, so
wssrd ø wtsrd. Hence, the deformationwt0 of the tip at
the apex is approximately

wt0 .
s1 2 n2

t d
Yt

pt0
p

2

p
2Rh , (5)

whereYt is Young’s modulus andnt is Poisson’s ratio of
the tip material. pt0 is the tip apex pressure. Thus, the
reduction in tunneling distancew0 ­ ws0 1 wt0 becomes

w0 .
p0

Yr

p

2

p
2Rh , (6)

where Yr is the reduced Young’s modulus for the tip-
sample system1

Yr
­

s12n2
t d

Yt
1

s12n2
s d

Ys
and p0 ­

1
2 ´s V

h d2 .
ps0 . pt0.

At a sufficiently large bias voltageVC , the system be-
comes unstable and the tip and sample jump to contact.
The jump-to-contact voltage can be estimated from an in-
vestigation of the derivative of the elastic and the elec-
trostatic forces in equilibrium or by solving Eq. (6) for the
applied voltage needed to achieve a given reduction in tun-
nel distance

V sw0d ­

s
4Yr

´p

w0sh0 2 w0d2p
2Rsh0 2 w0d

. (7)

The jump-to-contact condition is then
≠V sw0d

≠w0
­ 0, which

is fulfilled at wC ­
2
5 h0. Hence, at jump to contact the

tunnel gap ishC ­
3
5 h0. From Eq. (7) the jump-to-contact

voltageVC is obtained

VC ­

vuut24
25

s
3
5

?

s
Yr

´p

h3
0p

2Rh0
. (8)

The deformation of the sample surface, however, leads to
a finite radius of curvaturers for the sample surface near
apex. From Eq. (3) the sample radius of curvaturers ­
4
3 Rh0yws0 is obtained. Detailed calculations [21] show
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that a similar correction applies to the curvature of the tip.
It follows that the sample radius of curvature is comparable
to the tip radiusR when the sample deformationws0 is
comparable to the initial tip-to-sample distanceh0. Hence,
an effective radiusReff of the tip-sample system must be
used in the calculations

1
Reff

­
1
R

1
3
4

wt0

Rh0
1

3
4

ws0

Rh0
­

1
R

√
1 1

3
4

w0

h0

!
.

(9)
Using the effective radius of curvatureReff in Eq. (7)
yields a corrected applied voltageVrsw0d to sustain a given
reduction in the tunnel gap

Vrsw0d ­

vuut4Yr

´p

w0sh0 2 w0d2p
2Rsh0 2 w0d

s
1 1

3
4

w0

h0
. (10)

In this case the jump to contact condition is ful-
filled for a reduction in tunneling gap ofwC ­
s
p

697 2 11dy36h0 . 0.428h0. Simultaneously, the
jump-to-contact voltage is increased by 7% compared to
the value predicted from Eq. (8). The jump-to-contact
voltageVC is seen to be rather insensitive to the radius
of curvature of the tipsVC ~ R20.25d, quite sensitive to
the reduced Young’s modulussVC ~

p
Yr d, and very

sensitive to the equilibrium tunnel gapsVC ~ h1.25
0 d.

In Fig. 2 the tunnel gap calculated from Eqs. (7) and
(10) as a function of the applied bias voltage is compared
to finite element calculations. The model calculations and
the finite element calculations are seen to be in excellent
agreement. Close to the jump-to-contact condition, the
radius of curvature correction is seen to improve the
model predictions.

Measurements of the threshold voltage for pulsed volt-
age material transfer between tip and sample as a function
of the low bias tunnel resistance [11] are reproduced in
Fig. 3 for a tungsten tip and gold sample. The jump-to-
contact voltage calculated using Eq. (7) with the elastic
parameters for Au (Y ­ 78.5 GPa,n ­ 0.42 [22]) and W
[23], is shown in the same figure, withh0 determined from
the measured tunnel resistanceRT using [24]

1
RT

­
e2

2p h̄
3AT

4ph

s
2mF

h̄2 exp

√
22h

s
2mF

h̄2

!
, (11)

whereF (here 4.5 eV) is the barrier height,e is the unit
charge,m the electron mass, and̄h Planck’s constant.
Assuming a tip radius ofR ­ 1000 Å , the only unknown
parameter is the tunnel current cross section,AT . A value
in the rangeAT ­ 3 Å2 (solid line) toAT ­ 6 Å2 (dashed
line), corresponding to tunneling from a single atom on
the tip, agrees well with the measurements. Thus we find
that the measurements are fully consistent with a field-
induced elastic jump to contact between tip and sample.
It follows that we would expect an ordering of voltage
thresholds according to the square root of the reduced
Young’s modulus of the tip-sample system if material
transfer experiments are performed at a fixed initial tip to
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FIG. 2. The tunnel gap as a function of the applied bias
voltage. The full lines show the calculated tunnel gap for the
case of a W tip and sample, whereas the dashed lines are for
an Au tip and sample. In both cases calculations are shown for
a field-free tunnel distance of 3 and 5 Å. The crosses are data
from ANSYS finite element simulations. Calculations with and
without radius of curvature correction are shown.

sample separationh0. Other measurements of threshold
voltage for material transfer exist [12], but these are in air,
where the situation is considerably more complex, due to
the presence of water.

The surface strainez normal to the surface due to
the electrostatic pressure isez ­ s1 2 n 2 2n2d p

Y [19].
However, the maximum on-axis strain in the same direc-
tion is found below the surface and is roughly 25% higher
(dependent on Poisson’s ratio) than the surface on-axis
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FIG. 3. Voltage threshold for material transfer between a gold
sample and a tungsten tip as a function of the low bias voltage
tunnel gap resistance, reproduced from Guo and Thompson
[11]. Also shown is the calculated jump-to-contact voltage
assuming a tip radiusR ­ 1000 Å and a tunnel current cross
section AT ­ 3 Å2 (full line) or 6 Å2 (dashed line). For
comparison, a calculation for a gold tip withAT ­ 3 Å2 is
shown (dash-dotted line).
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strain. At the edge of jump to contact the surface strain is
obtained fromVC Eq. (8):

ezc ­
s1 2 n 2 2n2d´

2Y
V 2

C

h2
c

­
Yr

Y
4s1 2 n 2 2n2d

p
p

15

s
h0

2R
, (12)

whereY and n are the elastic properties of the surface.
We note that the use of expressions for a static system is
justified because we estimate that the elastic deformations
described here have response times in the picosecond
range [25], whereas the shortest pulses used for pulse
modification by STM are longer than 1 ns.

If the tip and the sample are of the same material the sur-
face strain at jump to contact becomesezc . 0.5% if R ­
1000 Å andh0 ­ 5 Å, whereas a considerably sharper tip
with R ­ 100 Å has a jump-to-contact surface strain of
ezc . 1.5%. As a result, jump to contact due to an elec-
tric field can be achieved by accumulation of small, elastic
changes in local interatomic distances over a large volume.
This contrasts with the large changes of interatomic dis-
tances (.10%) observed in molecular dynamics simula-
tions for jump to contact due to the interaction potential
between tip and sample [4]. This discrepancy may occur
in part because large-scale elastic deformation is precluded
in molecular dynamics simulations, due to the small vol-
ume in which atomic coordinates are allowed to relax. In-
deed, if jump to contact can be achieved by purely elastic
deformation, then this will preempt mechanisms that have
been proposed based on plastic deformation [11,14,26].

In conclusion, the electric fieldE between the tip of
an STM and a surface produces an elastic extension of
both tip and sample which reaches a value of about
1
5 h0 before jump to contact occurs. Pulsed voltage
experiments in vacuum are in quantitative agreement with
field-induced elastic jump to contact as a mechanism for
nanofabrication.
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