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~Received 24 March 1998!

A generalized two-dimensional semiclassical Holstein model with a realistic on-site potential that contains
anharmonicity is studied. More precisely, the lattice subsystem of anharmonic on-site oscillators is supposed to
have a restricting core. The core plays the role of an effective saturation nonlinearity for the polaron~self-
trapped! solutions. We apply the ‘‘logarithmic’’ potential approximation which allows us to use effectively a
variational approach, on one hand, and to study the realistic situation of the potential core and saturation
nonlinearity, on the other hand. Analytical estimates suggest the existence of wide polarons, contrary to the
case with harmonic on-site potential. Numerical simulations confirm these estimates and show stability of such
polaron solutions. We develop a numerical technique which allows us to obtain the profile of extendedmoving
polarons. Simulations show that these polarons can propagate for long distances on the plane retaining their
shape and velocity. Collision effects of the two-dimensional polarons are also investigated.
@S0163-1829~98!02645-9#

I. INTRODUCTION

It is more than 60 years since Landau1 presented the idea
about self-localization or self-trapping of an excess electron
in a polarized field created by itself. Later, on the basis of
this idea, Pekar2 introduced the notion of apolaron as an
extra electron or a hole localized within a potential well that
it creates by displacing the atoms~ions! that surround it. The
polaron concept is ubiquitous in physics and a lot of studies
have been performed during the past half-century, including
the contributions by Fro¨hlich,3 Holstein,4 Toyozawa,5

Rashba,6 Emin and Holstein,7,8 Davydov and Kislukha,9

Scott10 and many others.12–14

In general, the polaron theory applies to any quantum
particle or a quasiparticle interacting with relatively massive
atoms~groups of atoms or even molecules! surrounding it.
For example, replacing the electron or hole with an exciton,
one obtains the theory of the formation and motion of self-
trapped excitons.9,10 Therefore the term ‘‘polaron’’ is used to
denote a wide variety of excitations beingself-localized
through interactions with optical2,4,13,14 and/or acoustic5,9,10

phonons of a lattice. However, it should be noticed that ions
in real materials are damped and subject to finite temperature
~stochastic forcing!. As a rule, disorder and different defects
are also present in real crystals. Obviously, all these factors
destroy any coherent polaron transport. Moreover, when the
electron-phonon coupling is sufficiently strong compared to
the intersite exchange interaction, the pure polaron states
have small size and they appear to be pinned to the lattice. In
this case there is no coherent polaron motion as well and
only the small-polaron hopping mechanism occurs due to
temperature.8 Nevertheless, the research on the dynamics of

pure self-trapped states, essentially in higher dimensions,
continues at an accelerating pace.

An explosion of interest inmovablepolarons has arisen
beginning from the pioneering paper by Davydov and
Kislukha9 after which the polarons~both acoustic and opti-
cal! were often called solitons as mobile objects that main-
tain dynamical integrity by balancing the effects of nonlin-
earity ~electron-phonon or exciton-phonon coupling! against
those of dispersion~exchange or resonance intersite interac-
tion! during their uniform propagation. However, all these
studies, except for the recent paper by La Magnaet al.,15

were carried out only in one dimension. On the other hand,
the generalizations of the lattice models to higher
dimensions16–19 are necessary because of natural interest to
real two- and three-dimensional crystalline systems. In par-
ticular, it is appealing to investigate the polaron dynamics in
multidimensional lattices interacting with extra electrons.
Emin and Holstein7 using scaling arguments in the con-
tinuum limit and Kalosakaset al.20 applying a discrete varia-
tional approach, analyzed the Holstein model with the short-
range ~local! electron-lattice interaction4,7 within the
adiabatic theory. They have shown that in one dimension the
standing polaron is always a ground state of the electron-
lattice system, so that there is a continuous transition from
the small-polaron regime obtained for strong electron-
phonon coupling to the large-polaron regime at weak cou-
pling. In the former case the width of the self-trapped state
~the electron wave function and the accompanied lattice de-
formation! is of few lattice sites only while in the latter one
the polaron state extends to lengths significantly larger than
the lattice spacing. The similar situation takes place for
Davydov’s soliton,11,12 in general, for the one-dimensional
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acoustic polaron.21 In higher dimensions these results drasti-
cally change: for sufficiently strong electron-lattice coupling
small ~quite narrow! polarons exist, but when the coupling
decreases, the polaron disappears.20 Since the small polaron
is pinned to the lattice, it cannot propagate. However, as
shown in the present paper, when asaturableanharmonicity
is taken into account for the on-site oscillators in the Hol-
stein model, the polaron width can be extended significantly,
resulting in theuniform polaron propagation on the two-
dimensional or three-dimensional lattice. The saturation ef-
fect means that the motion of ions isbounded, e.g., while
displacing from equilibria, the ions have a finite amplitude
including the case of strong electron-phonon coupling. Such
a limited ion motion can happen if the potential for ions has
some core, so that when an ion approaches the core, its en-
ergy tends to infinity. The saturation of the ion~atom! dis-
placements causes the saturation of the nonlinearity of the
electron-lattice interaction. Note that the saturable nonlinear-
ity has recently been used to describe successfully the propa-
gation of radially symmetric self-focused light beams.22–28

The present paper aims at studying both analytically and
numerically the propagation of the polaron on the two-
dimensional square lattice in the framework of the semiclas-
sical Holstein model. The on-site potential of the model is
generalized to have a restricting core that does not allow the
lattice ions~atoms! to displace at any distance as in the har-
monic version of the model. The core plays the role of the
saturable nonlinearity for the formation of self-trapped
states. We apply a ‘‘logarithmic’’ approximation for the on-
site potential that still has a core being close to the realistic
situation, on one hand, and allows us to use effectively a
variational approach, on the other hand. Analytical estimates
suggest the existence of the polarons with large width, con-
trary to the case with the harmonic on-site potential.20 Nu-
merical simulations confirm these estimates and show stabil-
ity of such polaron solutions. We develop a numerical
scheme which allows us to obtain the profile ofmovingpo-
larons with large extent. The simulations of the equations of
motion show that these polarons can propagate for long dis-
tances on the lattice retaining their shape and velocity.

The paper is organized as follows. In the next section we
derive the equations of motion that describe the coupled sys-
tem: an excess electron interacting with classical oscillators
on a two-dimensional~2D! lattice. In Sec. III we study stand-
ing polaron solutions analytically, using variational approxi-
mations, and numerically. Moving polaron solutions are ob-
tained and studied numerically in Sec. IV. The polaron
collision is also investigated in this section. Finally, some
concluding remarks are given in Sec. V.

II. THE MODEL AND BASIC EQUATIONS

We consider a square lattice of noninteracting particles of
massM , the equilibria of which are situated at the sites la-
beled by the 2D vector (m,n) with m andn running over all
the integers. Each of these particles is subjected to an anhar-
monic on-site potentialV of the realistic shape shown in Fig.
1 ~see curve 1!, forming the on-site classical nonlinear oscil-
lator. When an external electron~or, in general, a quantum
quasiparticle! is added to such a 2D lattice, each of the os-
cillators is supposed to interact with this electron locally.

This is the issue of the standard semiclassical Holstein
model4 with local electron-phonon coupling when the anhar-
monicity of the lattice subsystem is included. In the adiabatic
limit the Lagrangian function of such a lattice interacting
with an excess electron can be written in the form

L5(
m,n

H cmn* [ i\ċmn2~E01xQmn!cmn

1J~cm21,n1cm,n211cm11,n1cm,n11!]

1
1

2
MQ̇mn

2 2Ma2v0
2V~Qmn /a!J , ~1!

where the dots denote differentiation with respect to timet
and the complex-valued lattice fieldcmn(t) ~the coefficient
functions of the one-electron state vector! describes the prob-
ability amplitude to find the electron at the (m,n)th lattice
site, so that it must be normalized to unity:

(
m,n

ucmn~ t !u251. ~2!

The constantJ.0 is the exchange~overlapping! integral that
describes the probability of the electron hopping from one
lattice site to any of its nearest-neighbor ones,E0 is the
on-site electron energy when the lattice is undistorted, i.e.,
when the particles of the lattice are found in their equilibria
andx.0 is the coupling constant of the electron-lattice in-
teraction. The states of the lattice subsystem are described by
the real-valued lattice fieldQmn(t), each ofQmn being the
displacement of the (m,n)th lattice particle from its equilib-
rium position. The dimensionless on-site potentialV(u) is
normalized by the relationsV(0)50 andV9(0)51, so that
the constantv05AK/M , with K being the elastic constant, is
the characteristic frequency of each on-site oscillator~the
eigenfrequency of small-amplitude oscillations of lattice par-
ticles!. We consider the realistic form of the potentialV(u)
with a core which prevents the nearest-neighbor lattice par-
ticles from approaching each other on very close distances. It
could be the standard (12,6) Lennard-Jones~LJ! potential

FIG. 1. The shape of the (12,6) LJ potential~curve 1! and of its
two approximations: harmonic~curve 2! and logarithmic~curve 3!.
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V~u!5
1

72
@~11u!2621#2, 21,u,`, ~3!

shown in Fig. 1 by curve 1. However, any potential that has
two cores, one foru,0 and the other foru.0, seems to be
even more realistic. Sincex.0, the total energy of the sys-
tem goes down@see the Lagrangian function~1!#, if all or
some of Qmn become negative. Therefore only theleft
branch of the potentialV(u) is of interest when self-trapped
states are considered. The distance between the core and the
equilibrium position is normalized to unity, so that the par-
ticle displacements from the equilibria are measured in the
units of the constanta being the maximally possible negative
displacement of the lattice particles~the characteristic
length!. This constant should be significantly less than the
lattice spacingl .

The form of the potential~3! is very inconvenient for
analytical studies and therefore its harmonic approximation
shown in Fig. 1 by curve 2 is commonly used in the polaron
theory.4,7,20Here we introduce another approximation which
keeps the main feature of any realistic potential, namely, the
presence of a core, and allows us to perform some analytical
studies, at least, for the static polaron solutions. This ap-
proximation is chosen in the following form:

V~u!5u2 ln~11u!5(
j 52

`
~2u! j

j
~4!

with the expansion series being valid in the interval21,u
<1. We call the potential~4! the ‘‘logarithmic’’ approxima-
tion illustrated in Fig. 1 by curve 3. The first term of the
series~4! is the harmonic approximation. From the compari-
son of the shapes of the three potentials depicted in Fig. 1
one can conclude that the logarithmic approximation is much
better than the harmonic one, particularly, in the region of
negative values of the variableu. Note that the polaron~self-
trapped! states are formed with only negative displacements
Qmn , so that the polaron theory deals only with this region
of the lattice displacements.

There are two convenient ways to rewrite the Lagrangian
~1! or the corresponding equations of motion in dimension-
less form. One of these is to use the characteristic time scale
in the electron subsystem, namely, to introduce the scaled
time ast5Jt/\. In this paper we use the characteristic time
scale for the lattice subsystem and therefore define the scaled
~dimensionless! time by

t5v0t. ~5!

Then it is convenient to introduce the new~dimensionless!
lattice fields

fmn~t!5cmn~ t !expF i

\
~E024J!t G , umn~t!5

Qmn~ t !

a
~6!

and to rewrite the Lagrangian function~1! in the following
~dimensionless! form:

L5
L
J

5(
m,n

H fmn* F ~ i /s!
dfmn

dt
1fm11,n1fm,n11

24fmn1fm21,n1fm,n212aumnfmnG
1

a

bF1

2S dumn

dt D 2

2V~umn!G J ~7!

with the three characteristic dimensionless parameters

a5
xa

J
, b5

x

Mav0
2 5

x

Ka
, s5

J

\v0
. ~8!

Then the corresponding Euler-Lagrange equations are writ-
ten as follows:

~ i /s!
dfmn

dt
52~fm11,n1fm,n1124fmn

1fm21,n1fm,n21!1aumnfmn , ~9!

d2umn

dt2
52V8~umn!2bufmnu2, ~10!

and the normalization condition~2! becomes

(
m,n

ufmn~t!u251. ~11!

Each of the parametersa, b, ands defined by Eqs.~8!
has the definite physical meaning. Thus, according to the
linear Schro¨dinger equation~9!, in which the displacement
field umn forms a potential well caused by the lattice defor-
mation, the parametera measures the depth of this well
~given by the electron-phonon coupling constantx) com-
pared to its width~given by the electron dispersion constant
J). Therefore the parametera describes the magnitude of the
electron trapping by lattice deformation. In contrast, the pa-
rameterb measures the response of the electron on the lat-
tice. According to the linear lattice equation~10! with the
source created by the electron, the parameterb describes the
magnitude of the source that distorts the lattice, i.e., ‘‘digs’’
a potential well for itself. The third parameters is a dynami-
cal one; it disappears in the static theory and measures the
ratio of characteristic time scales of both the subsystems
~electron and lattice!.

Let us now evaluate the possible values of the parameters
a, b, ands which are reasonable from the physical point of
view. Using some data described by Scott10 as well as other
data from the references therein, we may choose the follow-
ing characteristic values:a50.1 Å, J55 cm21, M5mp
where mp is the proton mass,v051013 s21, and x
5(2 – 6)310211 Newtons. If we take, for instance,x52
310211 Newtons, then the dimensionless constantsa, b,
and s calculated according Eqs.~8! take the values:a
52.0, b512.0, ands50.94. These values or a little bit
bigger will be used below in our numerical calculations.
Note that the increase of the exchange interactionJ to the
values more reasonable for crystals leads to increasing the
polaron size and therefore to higher polaron movability.

PRB 58 14 307POLARON DYNAMICS IN A TWO-DIMENSIONAL . . .



We need to have also the general expression for the
Hamiltonian function~the total energy! of our system. To
write it, we define the following conjugate momenta:

Pmn5
]L

]~dfmn /dt!
5

i

s
fmn* ,

Pmn5
]L

]~dumn /dt!
5

dumn

dt
, ~12!

where the Lagrangian functionL is given by Eq.~7!. Then
the dimensionless Hamiltonian function~in units of J) takes
the form

H5H$Pmn ,fmn ;Pmn ,umn%5(
m,n

S Pmn

dfmn

dt
1Pmn

dumn

dt D2L

5(
m,n

H fmn* @2~fm11,n1fm,n1124fmn1fm21,n1fm,n21!1aumnfmn#1
a

bF1

2S dumn

dt D 2

1V~umn!G J . ~13!

We look for the solutions of the equations of motion~9!
and~10! in the form of a modulated plane wave propagating
in any direction on the 2D lattice given by the wave vector
k5(k1 ,k2). Therefore we substitute the ansatz

fmn~t!5wmn~t!exp$ i @mk11nk22s~«01«!t#%,
~14!

where

«052~22cosk12cosk2! ~15!

is the free-electron energy band, into the basic equations pre-
sented above. Thus, the equations of motion~9! and~10! are
reduced to the three equations:

2cosk1~wm11,n22wmn1wm21,n!

2cosk2~wm,n1122wmn1wm,n21!1aumnwmn5«wmn ,

~16!

dwmn

dt
52s@sink1~wm11,n2wm21,n!

1sink2~wm,n112wm,n21!#, ~17!

d2umn

dt2
52V8~umn!2bwmn

2 . ~18!

Using next the normalization condition@see Eqs.~11! and
~14!#

(
m,n

wmn
2 51, ~19!

the Lagrangian and Hamiltonian functions~7! and ~13! are
transformed to

L52(
m,n

H cosk1~wm11,n2wmn!
2

1cosk2~wm,n112wmn!
21aumnwmn

2 2«wmn
2

2
a

bF1

2S dumn

dt D 2

2V~umn!G J , ~20!

H5(
m,n

H cosk1~wm11,n2wmn!
2

1cosk2~wm,n112wmn!
21aumnwmn

2

1
a

bF1

2S dumn

dt D 2

1V~umn!G J , ~21!

respectively.
The dimensionless energy«,0 of binding the electron to

a lattice deformation is the spectral parameter of the station-
ary 2D Schro¨dinger equation~16!. This parameter is to be
found together with the lattice deformation field. However, it
can be expressed in terms of both the lattice fieldswmn and
umn as follows. Indeed, multiplying both sides of Eq.~16! by
wmn , summing them over all (m,n)’s and using the normal-
ization condition~19!, we obtain

«5(
m,n

@cosk1~wm11,n2wmn!
2

1cosk2~wm,n112wmn!
21aumnwmn

2 #. ~22!

On the other hand, the total energyE of the electron-phonon
system@i.e., the Hamiltonian function~21!# can be expressed
in terms of the binding energy« as

E5H5«01«1
a

b (
m,n

F1

2S dumn

dt D 2

1V~umn!G , ~23!

where«0 is given by Eq.~15!. Therefore the total energyE is
split into the two parts: the electron and lattice ones, each of
these consisting of both the kinetic and potential energies.

To conclude this section, we consider the limiting case
when the lattice is undistorted (umn[0). In this limit the
binding energy«→0 and, according to the linear dispersion
law ~15!, the group velocity in the electron subsystem is

v5
Jl

\

]«0

]k
5

2Jl

\
~sink1 ,sink2! ~24!

with l being the lattice spacing. Therefore we may define the
dimensionless velocity

s5v/ lv052s~sink1 ,sink2!, ~25!
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which describes the propagation velocity of thelinear waves
of electron probability if the lattice is undistorted.

III. STANDING 2D POLARON SOLUTIONS

First we consider the particular case of standing~static!
solutions for the logarithmic potential~4!. Using that
d2un /dt250, from Eq.~18! @see also Eq.~10!# we obtain

umn52
bufmnu2

11bufmnu2
52

bwmn
2

11bwmn
2

. ~26!

Inserting this expression into the Lagrangian~20! or the
Hamiltonian~21! and using thatk15k250 for the static case
@see Eq.~17!#, we find that the energy of the system can be
written in the form

E52L5(
m,n

@~wm11,n2wmn!
2

1~wm,n112wmn!
22~a/b!V~bwmn

2 !# ~27!

where the potentialV is given by Eq.~4! and the term with
the spectral parameter~binding energy! « has been omitted
because it is constant due to the normalization condition
~19!. Next, substituting the solution~26! into Eq. ~16!, we
get the discrete nonlinear Schro¨dinger ~DNLS! equation of
the form

wm11,n1wm,n1124wmn1wm21,n1wm,n21

1gwmn
3 /~11bwmn

2 !1«wmn50, ~28!

where the parametersa andb in the nonlinear term appear
in the form of the product which we denote by

g5ab5x2/JMv0
2 . ~29!

When the constantb→0, Eq.~28! is reduced to the stan-
dard DNLS equation with cubic nonlinearity which corre-
sponds to theharmonicHolstein model. In this limit both the
parameters are ‘‘sticked’’ together, forming onlyonecharac-
teristic parameterg, which can be referred to as the self-
trapping coupling constant. Indeed, it describes both the ef-
fects in the self-trapping mechanism:~i! the capture of an
electron by the potential well of the lattice deformation field
(a) and~ii ! the creation of the potential well by the electron
acting as an external force (b). However, in the anharmonic
case, this mutual proportionality is broken because the influ-
ence of the electron on the lattice becomes nonlinear as seen
from the equation of motion~18!.

In the opposite limitb→`, the nonlinear term in the
DNLS equation~28! is transformed to the linear one, so that
the nonlinearity in this equation disappears and, as a result,
the localization effect should diminish. In other words, the
nonlinearity is saturated and one should expect that wide
~extended! polaron solutions can exist as well, contrary to
the harmonic Holstein model which admits either very nar-
row polaron solutions or completely extended~delocalized!
states.20 Therefore, the core anharmonicity leads to the
DNLS equation with thesaturationnonlinearity. It follows
from Fig. 1 that realistic potentials should reveal the satura-
tion effect even more.

To study analytically the polaron solutions to Eqs.~16!
and ~18! with the constraint~19!, we use a variational ap-
proach, using both a discrete trial function defined on the 2D
lattice and a 2D continuous trial function. Each of these
functions is chosen to have only one variational parameter
describing the size of localization. Substituting a discrete
trial function into the expression for the energy~27! or a
continuous trial function into the continuum version of this
energy, we shall obtain a corresponding function with re-
spect to the variational parameter which can be minimized
and its optimal value can be calculated.

A. Discrete variational approximation

In this subsection we use the discrete variational ap-
proach, assuming the exponentially decreasing behavior of a
trial 2D lattice function for the fieldwmn normalized by the
condition~19!. From the symmetric point of view the follow-
ing two ‘‘opposite’’ positions of the polaron center should be
considered:~i! the polaron is located exactly at a lattice site
and ~ii ! at the middle point between the four nearest-
neighbor lattice sites~the central point of the lattice cell!.
Intuitively, the on-site position~i! seems to have lower en-
ergy. However, this should be checked. For this first case we
consider the discrete normalized trial function20

wmn5Aqumu1unu, A5A~q!5
12q2

11q2 , ~30!

with the variational parameterq, 0,q,1, which determines
how strongly the polaron is localized. The substitution of this
trial function into the expression~27! yields

E54
~12q!2

11q2

2aH 12b21F ln~11bA2!14(
n51

`

ln~11bA2q2n!

14 (
m,n51

`

ln~11bA2q2m12n!G J . ~31!

For the polaron states centered in the middle of the lattice
cell we consider the second ansatz as follows:

wmn5
1

2
q~q!~12q2!qumu1unu, ~32!

whereq(q)5q22 if m>1 andn>1, q(q)5q21 if m<0
and n>1 or m>1 andn<0, andq(q)51 if m<0 andn
<0. Substituting this ansatz into Eq.~27!, we obtain the
second expression for the variational energyE:

E52~12q!22aF124b21

3 (
m,n51

`

lnS 11
b

4
~12q2!2q2m12n24D G . ~33!
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We find the optimal valueq5q0 from the condition that the
energyE attains a minimum at this value. As a result, we
have found that the energy~31! is lower than the energy
~33!. Therefore, in what follows we shall use only the trial
function ~30!. In the harmonic limit the energy~31! is re-
duced to the expression

E5
4~12q!2

11q2 2
g

2
~12q2!2

~11q4!2

~11q2!6 ~34!

obtained by Kalosakaset al.20 Note that in the limit of ex-
tended statesq→1 and for this case the trial ansatz~30! is
transformed to the explicit form which should be written for
any finite square domain consisting ofN2 lattice sites. The
normalized functionwmn for the uniformly extended states is
wmn5N21, so that the energy~31! for this square becomes

EN5a@~N2/b!ln~11b/N2!21#. ~35!

In the limit of the infinite square domain we have
lim

N→`
EN50. Therefore, for localized states there should

be a certain valueq5q0 at which the variational energy~31!
takes its minimal~negative! value.

The variational energy of the systemE given by Eq.~31!
is plotted in Fig. 2 as a function of the parameterq for
different values of the characteristic parametersa andb. Let
q5q05q0(a,b) be the minimum of each curveE5E(q).
Contrary to the results for the harmonic approximation,20 the
polaron width, which depends drastically on the parameters
a andb, can be quite large. Indeed, we haveq050.242 for
a57 andb512 ~curve 1! which corresponds to the narrow
solution, butq050.562 fora53 andb510 ~curve 2! which
is the intermediate case, and evenq050.841 ata51 and
b520 ~curve 3!. The latter set of the parameter values fora
andb provides a fairly extended profile. The cross section of
the 2D profileufmnu5wmn at m50 calculated according to
the ansatz~30! for these three solutionsq5q0 is plotted in
Fig. 3. Therefore, we have shown, at least, within the loga-
rithmic approximation, the existence of the 2D polaron solu-
tions admitting, in dependence of the parametersa and b,

the whole spectrum of polaron widths, contrary to the case of
the harmonic approximation20 where only narrow localized
states can exist.

Now let us analyze the role of the parametersa andb in
the polaron formation more precisely. We have calculated
the two dependences of the solutionq5q0 on a for b fixed
and, vice versa,b for a fixed. The solutionq05q0(a) as a
function of a is presented in Fig. 4 for three values of the
parameterb: b53 ~curve 1!, b55 ~curve 2!, and b510
~curve 3!. The important result is that the polaron state does
not exist for all values ofa, but only for a greater than a
critical valueac5ac(b). At a5ac the optimal variational
parameterq0 attains its maximum value that corresponds to
the broad polaron solution and it decreases gradually with
the increase ofa. This means that the polaron is getting
more and more narrow when the nonlinear term in Eq.~28!
increases, but the saturation parameterb is constant. Figure
4 also demonstrates how the critical valueac depends on the
parameterb: it decreases whenb increases. This behavior
can be explained by the form of the nonlinear term in Eq.
~28!: the decrease ofa and the increase at the same time of

FIG. 2. The total energyE(q) given by Eq.~31! and plotted as
a function of the variational parameterq for the following three sets
of parameter values:a57 andb56 ~curve 1!, a53 andb510
~curve 2!, anda51, b520 ~curve 3!.

FIG. 3. Them50 section of the polaron profile for the normal-
ized lattice functionuf0nu5w0n at a57, b56 ~curve 1!, a53,
b510 ~curve 2!, anda51, b520 ~curve 3!.

FIG. 4. Optimal value,q0, of the variational parameterq as a
function of a at the three values ofb: b510 ~curve 1!, b55
~curve 2!, andb53 ~curve 3!.
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b, keeping their product~i.e., the self-trapping parameterg),
enlarges the saturation effect of the nonlinearity, resulting in
broadening the existence area of polaron solutions. On the
other hand, ifb is large enough, we do not observe signifi-
cant changes in the dependence of the solutionq0 on the
parametera.

Similarly to the results illustrated by Fig. 4, for each value
of the parametera a certain critical valuebc5bc(a) can be
found, starting from which (b.bc) the solution q0
5q0(b) exists~see Fig. 5!. Again, with the decrease ofa,
the critical valuebc decreases. The polaron becomes nar-
rower because the nonlinear term in the DNLS equation~28!
is getting larger if the self-trapping parameterg keeps the
same value, but the saturation parameterb decreases. For
large values ofb the nonlinearity reaches saturation and
therefore the shape of the polaron solution does not change
whenb tends to infinity. Having found both the dependences
ac5ac(b) and bc5bc(a), we can plot a diagram curve
which separates, on the plane (a,b), the areas of existence
and nonexistence of the polaron solutions. Such a curve is
plotted in Fig. 6. Nearby this curve the polaron profiles being
in the existence region are very extended and while crossing
this curve, they continuously run to completely delocalized
states. Those polaron states which are far away from the
existence diagram are quite narrow.

B. A variational approach in the continuum limit

The discrete approximation described in the previous sub-
section is supposed to work well for narrow solutions while
for broad polarons this approach seems to be crude. In order
to check this, it is reasonable to treat our system in the con-
tinuum limit, using an appropriate 2D continuous trial func-
tion. To compare the results for the 2D case with those for
other dimensions and since the calculations can be easily
performed for any dimensiond, we consider here the general
case. Thus, in the continuum limit we substitute thed-
dimensional lattice vector (n1 , . . . ,nd) by the continuous
vector (x1 , . . . ,xd), settingx15n1 , . . . ,xd5nd . Then the
discrete expression~27! is transformed to

E5E @~¹w!22~a/b!V~bw2!#dx1 . . . dxd ,

¹5~]x1
, . . . ,]xd

!. ~36!

From the point of view of analytical calculations it is conve-
nient to use the following continuous normalized trial func-
tion:

w5w~x1 , . . . ,xd!5~m/2!d/2)
i 51

d

sech~mxi ! ~37!

with the variational parameterm. Using the series expansion
~4! and the trial function~37!, by straightforward calcula-
tions we obtain

E~m!5
d

3
m21a(

j 52

` cj
d

j
@2b~m/2!d# j 21, ~38!

where the constantscj ’s are defined by

cj5
1

2E sech2 jzdz5
~2 j 22!!!

~2 j 21!!!
. ~39!

Since all the coefficientscj are bounded from above, say,
beginning fromj >4, we havecj<48/105,1/2, the series in
the energy ~38! is well-defined in the interval 0,m
<2(2b21)1/d. Therefore for sufficiently small solutionsm
~when the continuum limit indeed can be applied! we can get
some reasonable results. Particularly, we can consider the
harmonic limit which is easily obtained from the expansion
~38! if only the term with j 52 is kept. Consequently, taking
into account thatc252/3, one can write the following ex-
pression for the variational energy in the harmonic limit:

E~m!5~d/3!m22~g/2!~m/3!d. ~40!

Similarly, rewriting Eq.~22! in the continuum limit, one can
calculate the binding energy« in the harmonic approxima-
tion:

FIG. 5. Optimal value,q0, of the parameterq as a function ofb
at the three values ofa: a510 ~curve 1!, a55 ~curve 2!, anda
51 ~curve 3!. FIG. 6. Existence diagram; the curve splits the (a,b) plane into

the two regions: the existence~dark area! and nonexistence~below
the curve! of polaron solutions.
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«~m!5~d/3!m22g~m/3!d. ~41!

The total variational energyE(m) given by Eq.~40! has a
nontrivial minimum only in the 1D case. This minimum is
attained atm05g/4, so that the variational solution for the
1D Holstein model:

w~x!5~g/8!1/2sech~gx/4!, «52g2/16 ~42!

coincides with the exact solution~in the harmonic limit! of
the corresponding continuum version of the DNLS equation
@see Eq.~28!#

w91gw31«w50, ~43!

where the functionw(x) satisfies the continuum version of
the normalization condition~19!. It is important to note that
this solution is valid for sufficiently small values of the cou-
pling parameterg (g!1) when the continuum approxima-
tion is applied.

As for the 2D case, the minimum of the energy~40! is
indefinite, but it occurs only at the fixed value of the cou-
pling constant:g51/12; it takes the zero value, the same as
for the delocalized state. There are no minima in higher di-
mensions. However, if any anharmonicity is involved, a
minimum may appear in the two dimensions. Indeed, let us
consider the next term in the series expansion~38! when d
52. Then we obtain the expression

E~m!5
2

3
m2S 12

g

12
1

2

225
gbm2D . ~44!

For the continuum limit to be applied we need the variational
parameterm to be as small as possible (m!1). One can see
from expression~44! that this happens if the coupling param-
eter g exceeds 12, so that the sum of the first two terms is
negative and it is close to 1 while the second~positive! term
should increase as much as possible. This can be achieved
for large values ofb. The minimum of the energy~44! oc-
curs at

m05
15

2b
Ab

12
2

1

a
. ~45!

Thus, contrary to the 1D case~where the inequalityg!1 is
required for the existence of wide polaron profiles!, the broad
2D polaron solutions can exist only if the inequalityg.12 is
approximately satisfied. Below this will be confirmed nu-
merically by exact results. Therefore, it should be empha-
sized that the range of the system parameters for which well-
defined polaron solutions exist critically depends on spatial
dimensionality.

Similarly, one can also calculate the binding energy«
adding the next term in the series expansion to the harmonic
approximation~41!. Using then the solution~45!, we obtain
the dependence

«5«~a,b!52
25

4bS 11

144
g1

5

g
2

4

3D . ~46!

This energy is negative for allg.12 and it decreases linearly
~approximately! with the increase of the parametera at fixed
values ofb. It also decreases with the growth of the param-
eter b at fixed values ofa. This behavior described by the

two inequalities]a/]«,0 and ]b/]«,0 is in correspon-
dence with the stability criterion proved analytically by
Laedkeet al.29 and confirmed numerically by Christiansen
et al.30 for the 2D DNLS equation.

C. Results obtained by minimization

In the previous two subsections we have studied the sys-
tem of Eqs.~16! and ~18! under the various approximations
in order to have an idea about its general features. Now we
want to establish how good our variational approximations
are and also whether the polaron solutions are stable or not.
Exact standing polaron solutions to the problem can be found
numerically by minimization of the energy~27! under the
constraint~19!. This constraint means that the polaron solu-
tions ~more precisely, thewmn profile! have to be found on
the multidimensional sphere~19!. This conditional minimi-
zation problem was solved by using the conjugate-gradients
method. The results of the discrete variational approximation
were used as initial conditions for the minimization proce-
dure. For narrow polaron solutions they appeared to be quite
good approximations. The comparison of the exact results
obtained by minimization with both the variational approxi-
mations is given in Fig. 7. Here we have plotted the ampli-
tude A5maxufmnu5maxwmn found by these three different
techniques: the dotted curve was obtained by the discrete
variational procedure and calculated according to Eq.~31!,
the dashed curve was found using the continuous variational
approach and calculated by summing the series~38! with d
52, and the solid curve is the numerical solution obtained
by minimization. Each of these solutions demonstrates the
nonexistence of localized solutions for sufficiently smallb
,bc . As illustrated by the dashed and solid curves, near the
critical valuebc , where the polaron solutions are extended,
the results obtained by minimization and the continuous
variational method practically coincide. On the other hand,
far away from the pointbc , when the polaron solutions be-
come narrow, the discrete variational solution is close to that
obtained by minimization~compare the dotted and solid
curves!.

FIG. 7. AmplitudeA of the wmn lattice field against the satura-
tion parameterb obtained at the valuea51 within the discrete
variational approach~dotted curve!, in the continuum limit~dashed
curve!, and by minimization~solid curve!.
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The 2D profiles of theufmnu5wmn andumn components
which were obtained by minimization are shown in Fig. 8. In
Fig. 9 we show a direct comparison between the numerically
obtained solution and the one obtained by the discrete varia-

tional method for the case in Fig. 8. The agreement of the
results is excellent for both the polaron components. Simi-
larly, we examined the continuous variational method. The
two-component polaron profile shown in Fig. 10 is quite
wide and therefore it is reasonable to compare it with the
corresponding results obtained within the continuous varia-
tional approach. Such a comparison is presented in Fig. 11
for them50 section of both the polaron components. Again,
the agreement is quite satisfactory. Finally, the polaron pro-
files obtained by minimization were used as initial data for
the simulations of the basic equations of motion~9! and~10!,
using the fourth-order Runge-Kutta method. The solutions
were found to be real stationary; the initial profile did not
change during the time evolution of 1000 periodsT
52p/se of carrier oscillations.

Using the minimization procedure, we have also calcu-
lated the dependence of the binding energy« on the system
parametersa andb, using the expression@see Eqs.~22! and
~26!#

«5(
m,n

@~wm11,n2wmn!
21~wm,n112wmn!

2

2gwmn
4 /~11bwmn

2 !#. ~47!

Particularly, the solid curve in Fig. 12 describes the behavior
of « as a function of the saturation parameterb at a fixed
value ofa. The dashed line in this figure illustrates the ap-
proximate dependence~46! which approaches the exact
curve for small values ofb, as expected due to taking into
account only the cubic term in the series expansion. As men-
tioned above, the dependence«5«(a,b) is in correspon-
dence with the stability criterion obtained previously29,30 in
the case of the 2D DNLS equation. Also, the full numerical
solutions with the polaron as an initial condition indicate
stability.

FIG. 8. Narrow profile of the~a! ufmnu25wmn
2 and ~b! 2umn

polaron components obtained by minimization for the parameter
valuesa57 andb53.

FIG. 9. The m50 section of the polaron profiles obtained
within the discrete variational approach~dashed lines! and by mini-
mization~solid lines!: the ~a! uf0nu25w0n

2 and~b! u0n lattice func-
tions; a57 andb53.

FIG. 10. Broad profile of the~a! ufmnu25wmn
2 and ~b! 2umn

polaron components obtained by minimization fora51 and b
515.
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IV. MOVING 2D POLARONS

In this section we are interested in the motion of the 2D
polarons. Since the polarons with narrow profile are pinned
to the lattice, we expect to get their motion when the polaron
width is sufficiently large, i.e., in the continuum limit. In
fact, we need to have some numerical procedure which
would allow us to find for each velocitystationarypolaron
profiles. Next, whether or not these profiles are stationary,
could be checked by direct simulations of the basic equations
of motion ~9! and ~10!.

In order to find soliton solutions of large extent in the 1D
case which aresmoothlattice fields, the numerical procedure
is quite simple.31 However, it becomes much more sophisti-
cated in higher dimensions. Below we develop this approach
by using appropriate discretizations of spatial partial deriva-
tives.

Let us consider the propagation of some stationary profile
with a constant velocitys5(s1 ,s2) in the direction given by

the wave vectork5(k1 ,k2). We setm5x andn5y and for
traveling-wave solutions one can write

wmn~t!5w~x2s1t,y2s2t!, umn~t!5u~x2s1t,y2s2t!.
~48!

Therefore, using the definition of the dimensionless timet
given by Eq.~5!, we find that the velocitys is measured in
units of lv0 where l is the lattice spacing, so thats5v/v0
with v05 lv0 @the same as for the linear waves, see Eq.
~25!#. Moreover, Eq.~17! implies the same one-to-one cor-
respondence between the vectorss and k as given by Eq.
~25!. Indeed, in the continuum limit one can write the fol-
lowing discretization:

dwmn

dt
52~s1]x1s2]y!w

.2
1

2
@s1~wm11,n2wm21,n!

1s2~wm,n112wm,n21!#. ~49!

Comparing Eqs.~17! and ~49! gives the same relation~25!
valid also for the linear waves of the probability amplitude
for the free electron.

For seeking localized solutions of a sufficiently extended
profile we use the following representation of the time de-
rivative d2umn /dt2 in Eq. ~18! by symmetrized 2D second-
order spatial difference derivatives:

d2un

dt2 5~s1
2]x

212s1s2]x]y1s2
2]y

2!w

.s1
2~wm11,n22wmn1wm21,n!1s1s2~um11,n1um,n1122umn2um11,n212um21,n111um,n21

1um21,n!1s2
2~wm,n1122wmn1wm,n21!. ~50!

Then the difference equations~16! and~18!, with the left-hand side replaced by the right-hand side of Eq.~50!, are obtained

as extremum conditions]L̄/]wmn50 and]L̄/]umn50 of the discretized Lagrangian function

FIG. 11. Them50 section of the polaron profiles obtained
within the continuum variational approach~dashed lines! and by
minimization ~solid lines!: the ~a! uf0nu25w0n

2 and ~b! u0n lattice
fields; a51, b515, andm050.278 .

FIG. 12. Binding electron energy« as a function of the satura-
tion parameterb calculated by minimization~solid line! and in the
continuum limit when only the quadratic and cubic terms in the
series expansion~4! are kept,a51.
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L̄5L̄$wmn ;umn%52(
m,n

H cosk1~wm11,n2wmn!
21cosk2~wm,n112wmn!

21aumnwmn
2

2
1

2
@s1~um11,n2umn!1s2~um,n112umn!#

21V~umn!J . ~51!

Note that this procedure is applied only for sufficiently wide
polaron profiles.

Similarly to the previous section, we found the profile of
moving polaron solutions by minimization. This minimiza-
tion procedure was performed using the conjugate-gradients
method.

A. Single-polaron motion

The numerical results that describe the motion of a single
2D polaron are presented in the set of Figs. 13 and 14. Thus,
the first panels~a,b! of Figs. 13 and 14 represent the initial
~at t50) two-component polaron profiles found by the mini-

mization of the function2L̄. By an appropriate choice of the
system parameters, these profiles were chosen to be suffi-
ciently narrow, in order to demonstrate braking the polaron
due to its pinning to the lattice, and extended, to get uniform
polaron motion. The final~at t5300) polaron profiles are
presented in the second panels~c,d! of these figures. Figure
13 shows that at the beginning of the motion the polaron
loses some part of its velocity, it became wider, and after-
wards its motion was stabilized with less velocity and with-
out emission of small-amplitude waves. This part of the po-
laron kinetic energy was transformed to some breatherlike
lattice oscillations that were left at the initial position of the
polaron. This indicates that if one forces the narrow state to

FIG. 13. Nonuniform motion of the narrow polaron accompanied by emission of small-amplitude waves due to its pinning to the lattice
for the parameter valuesa54, b55, ands50.2: initial ~a! ufmn(0)u25wmn

2 (0), ~b! 2umn(0) and final~c! ufmn(300)u25wmn
2 (300), ~d!

2umn(300) polaron profiles. The direction of polaron propagation and its velocity are given by the vectorsk5(0.7,0.5) ands
5(0.258,0.192).
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move, it tends to transform into a broader stable state which
then moves almost uniformly without changing its form. On
the other hand, as illustrated in Fig. 14, the wide polaron
propagates freely with the constant velocity, retaining its
shape and the direction of propagation. The effective mass of
a polaron~i.e., the 2D soliton! M0 moving uniformly on the
2D lattice along some direction given by the wave vectork
5(k1 ,k2) can be calculated numerically according to the
formula

M05
2J

l 2v0
2 lim

s→0

E~s!2E~0!

s2
[

J

l 2v0
2M̄0 , ~52!

where the energyE(s) is calculated according to Eq.~23!

andM̄ 0 is the dimensionless polaron mass. Here the effective
polaron massM0 has been defined from the expansion of the
total energy of a moving polaron into the series with respect
to the velocityv and finding the coefficient atv2/2, similarly
to the procedure of calculating the effective mass of an elec-
tron m0 in the band~15!: m05\2/2l 2J with l being the lat-
tice spacing constant. In the units ofJ/ l 2v0

2 the ~dimension-

less! effective electron mass ism̄051/2s2. For the parameter

values a51, b514, and s50.2 we have foundM̄0
512.36, while the effective electron mass in the band is
m̄0512.50. Therefore, we have obtained that the polaron
mass is less than the band electron mass. This occurs because
the energy level~22! goes down with increasing the polaron
velocity s. The valueM̄0512.36 has been obtained for the
two directions of polaron propagation: along them axis and
the lattice diagonal.

B. Two-polaron interactions

Now we are interested in the interaction of two polarons
on the square lattice. We assume the two electrons to be
noninteracting particles, so that we can work in the frame-
work of the model described in Sec. II. However, the physi-
cal meaning of the wave functioncmn becomes a bit differ-
ent, namely, now we assumeucmnu2 to be the probability of
two electrons to be found on the site (m,n). Therefore the
normalization condition~2! should hold in our simulations.
Despite the electrons are assumed to be noninteracting par-
ticles, an effective attractive interaction between them ap-
pears due to the lattice deformation forming a stable bipo-

FIG. 14. Uniform motion of the extended polaron in the lattice witha51, b512, ands50.2: initial ~a! ufmn(0)u25wmn
2 (0), ~b!

2umn(0) and final~c! ufmn(300)u25wmn
2 (300), ~d! 2umn(300) polaron profiles. The direction of polaron propagation and its velocity are

given by the vectorsk5(0.6,0.5) ands5(0.226,0.192).
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laronic state. Thus, the simple analytical arguments32 in the
harmonic approximation for 1D standing polarons show that
the binding energy per one electron is four times larger in the
bipolaronic state than in the polaronic state with one electron
~it is much easier for two electrons to dig a potential well
when they are together than separated by a long distance!.
However, in the case of moving polarons, such a bound state
will not be formed if the relative velocity of two polarons is
too high, when the kinetic energy of the polarons exceeds the
energy of their binding.

We collide the two moving polarons, the profiles of which
are obtained by the minimization techniques described
above. In order to find their initial profiles correctly, we no-
tice that the probability of each electron localized separately
on the lattice is 1/2 instead of 1. Therefore the normalization
condition ~19! in the minimization procedure should be
changed accordingly, i.e., 1 should be replaced by 1/2 for
both the electrons which are sufficiently separated. We simu-
lated the collision on the 2003200 square lattice and found
that the polarons interact practically elastically for all initial
velocities, except for very small ones when the duration of
their interaction is very large. In the latter case, the collision
was observed to be destructive. This can be explained as

follows. At low velocities the time of the polaron interaction
is quite long, resulting in strong effective perturbation of
each polaron. Since the minimum of the variational energy
~31! for extended polarons is very shallow~see Fig. 2!, it is
quite easy to ‘‘kick out’’ a polaron from this ground state. It
may be possible that during long time the polaron will come
back to this ground state, but it is difficult to observe this in
numerical experiments due to long integration time and large
lattice size. However, if we choose the parameter values that
correspond to narrower polarons, their collision with these
small velocities was observed to be nearly elastic. The results
of the two-polaron collision with higher velocities are pre-
sented in Fig. 15. The polarons were started to move towards
each other not along the same line, but parallelly with a
sufficiently small distance between the lines of their motion.
This distance was less than the width of the polaron, see Fig.
15. As illustrated by this figure, the interaction of the po-
larons is close to being elastic. Note that the time intervals at
which the collision contours are shown in this figure are not
equidistant. Finally, we would like to mention that the de-
tailed interaction is really very complex and depends on sev-
eral parameters. This is the subject for future studies and it is
beyond the scope of the present paper.

FIG. 15. Interaction of two extended polarons in the lattice witha51, b514, ands50.2 shown by profile contours for theumn polaron
component at the time instants:~a! t5200,~b! t5250,~c! t5275, and~d! t5325. The direction of polaron propagation and their velocities
are given by the vectorsk5(0.5,0.5) ands5(0.192,0.192).
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V. CONCLUSIONS

In this paper we have studied the polaron problem, i.e.,
the interaction of an extra electron~generally, a quantum
quasiparticle! with the two-dimensional~2D! square lattice
within the well-known Holstein model with local electron-
lattice coupling. This is the simplest model in the polaron
theory and its solution is known when the on-site potential is
harmonic. The results known for one dimension drastically
differ from those in two or three dimensions. Thus, while for
the 1D model the localized~polaron! solutions exist for any
values of system parameters and there is the continuous tran-
sition from the small-polaron regime to the large one, in two
or three dimensions the polaron solutions are known to exist
only for sufficiently strong electron-lattice coupling. More-
over, these self-trapped states appear to be quite narrow, lo-
calized mainly at one lattice site. If the electron-lattice inter-
action is not strong enough, only completely delocalized
solutions are possible. On the other hand, one could expect
that if the displacement of the lattice particles from equilibria
is somehow restricted, say, by a core, then a 2D polaron
profile would become more extended. Therefore our goal
was to consider the realistic situation when the on-site oscil-
lators areanharmonic, containing a restricting core. In order
to treat the model with such a potential, we have introduced
a ‘‘logarithmic’’ approximation which, on one hand, still has
the core as realistic potentials and, on the other hand, allows
us to apply variational approximations for analytical investi-
gations of the problem. As a result, we have shown that, in
dependence on the system parameters, the self-trapped states
with extendedprofiles can also exist. Such extended polarons
have been shown to propagateuniformly on the 2D lattice.
We have developed the numerical procedure to calculate
moving polaron profiles. We have used these as initial data
for simulations of the equations of motion showing that

stable moving polarons of a certain extent are indeed pos-
sible. We have also obtained the diagram on the plane of
system parameters which shows the areas of existence and
nonexistence of the 2D polaron solutions.

We have also found that the presence of an anharmonicity
‘‘splits’’ the electron-lattice coupling parameterg
5x2/JMv0

2 @see Eqs.~8! and ~29!#, commonly used in the
polaron theory, into the two parametersa andb describing
the two effects. The former parameter describes the depth of
a potential well~compared to its width! that traps an external
electron while the latter one determines the source strength
for the lattice distortion created by the electron. In the har-
monic limit both the equations of motion~9! and ~10! are
linear and, as result, the self-trapping constantg is obtained
just by the multiplication of these constants@see Eq.~29!#.
Note that the nonlinearity of the polaron problem comes
from this product. However, in the general case, these con-
stants are separated and such a splitting should be generic in
any ‘‘anharmonic’’ polaron theory. Note also that the anhar-
monicity has its own parameter which differs froma andb.
Finally, it should be mentioned that the results on the polaron
mobility obtained in this paper are relevant to problems of
electron transport in condensed-matter systems.
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