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Maximum Likelihood Blood Velocity Estimator
Incorporating Properties of Flow Physics

Malene Schlaikjer and Jørgen Arendt Jensen, Senior Member, IEEE

Abstract—The aspect of correlation among the blood ve-
locities in time and space has not received much attention
in previous blood velocity estimators. The theory of fluid
mechanics predicts this property of the blood flow. Addi-
tionally, most estimators based on a cross-correlation anal-
ysis are limited on the maximum velocity detectable. This
is due to the occurrence of multiple peaks in the cross-
correlation function. In this study a new estimator (CMLE),
which is based on correlation (C) properties inherited from
fluid flow and maximum likelihood estimation (MLE), is de-
rived and evaluated on a set of simulated and in vivo data
from the carotid artery. The estimator is meant for two-
dimensional (2-D) color flow imaging. The resulting math-
ematical relation for the estimator consists of two terms.
The first term performs a cross-correlation analysis on the
signal segment in the radio frequency (RF)-data under in-
vestigation. The flow physic properties are exploited in the
second term, as the range of velocity values investigated
in the cross-correlation analysis are compared to the veloc-
ity estimates in the temporal and spatial neighborhood of
the signal segment under investigation. The new estimator
has been compared to the cross-correlation (CC) estimator
and the previously developed maximum likelihood estima-
tor (MLE). The results show that the CMLE can handle
a larger velocity search range and is capable of estimating
even low velocity levels from tissue motion. The CC and the
MLE produce incorrect velocity estimates due to the multi-
ple peaks, when the velocity search range is increased above
the maximum detectable velocity. The root-mean square er-
ror (RMS) on the velocity estimates for the simulated data
is on the order of 7 cm/s (14%) for the CMLE, and it is
comparable to the RMS for the CC and the MLE. When the
velocity search range is set to twice the limit of the CC and
the MLE, the number of incorrect velocity estimates are 0,
19.1, and 7.2% for the CMLE, CC, and MLE, respectively.
The ability to handle a larger search range and estimating
low velocity levels was confirmed on in vivo data.

I. Introduction

Medical ultrasound imaging is used extensively for di-
agnosing diseases in the cardiovascular system (e.g.,

arterial stenosis, insufficient heart valve function). The dis-
tribution and magnitude of the blood velocities contain
valuable information for the diagnosing. Estimates of the
blood velocities can be obtained from a set of acquired
RF-signals by proper processing of these. Over the years a
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number of estimators have been proposed and used in var-
ious scanners. An exhaustive presentation of all these are
out of the scope of this article, but they can be obtained
from the literature [1], [2].

All estimators employ the fact that a shift in position of
the scatterers causes a shift in time of interaction; thereby,
causing a shift in position of the reflected echo in the ac-
quired RF-signal [1]. For narrow-band signals, the time
shift can be approximated by a phase shift between the
sample values in two consecutively acquired RF-signals at
a given depth, due to the oscillating nature of the sig-
nals. This feature is exploited in the autocorrelation esti-
mator developed by Namekawa et al. [3] in 1982, and was
further described by Kasai et al. [4] in 1985. The blood
velocity is computed here from the phase shift [4]. The
estimator is computationally very simple and has been
very popular. An extension to use averaging over a num-
ber of samples in each line was proposed by Loupas et al.
[5], [6]. The maximum detectable velocity is limited and
is inversely proportional to the center frequency and the
time between pulse emissions. Blood velocities above the
limit are aliased. Other estimators have been developed
to overcome this problem at the cost of computationally
more demanding algorithms. This is now of less concern
due to the advances within electronics. Several estimators
have been developed, which determine the time shift it-
self. Among these are the cross-correlation estimator [7]–
[9], the maximum likelihood estimator [10], [11], and the
butterfly search technique [12], [13]. The aim of the pro-
cessing is to find matching signal segments in consecu-
tive RF-signals. A similarity investigation is performed by
means of a cross-correlation or a variance analysis. The
analysis is performed for a range of temporal shifts, and
the location of the maximum or minimum value of the re-
sulting function determines the time shift, and thereby the
velocity for the segment under investigation. In principle,
any search range can be investigated with these estima-
tors, and thereby the limitations of the autocorrelation es-
timator can be overcome. With the cross-correlation based
estimators, this is unfortunately not completely true. An
upper bound on the search range usually has to be intro-
duced to avoid detection of incorrect peaks in the cross-
correlation function [14]–[16], which limits the usability of
estimators based merely on a cross-correlation analysis.

A general property of the currently proposed estimators
is that the acquired RF-signals are split up in a number of
segments, and the estimation then is performed on each of
these segments separately. The aspect of temporal and spa-
tial correlation between the velocities in the blood vessels
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(and thereby among the segments) has not received much
attention. In a study by Forsberg et al. [17] temporal cor-
relation is incorporated, as the estimator parameters are
continuously varied according to the previously estimated
velocity. In the current study the physical situation of fluid
flow in a tubing system is exploited. The theory of non-
turbulent flow physics states that the transitions between
the velocity levels in time and space occur as a smooth and
continuous function [18]. Given the estimated velocities in
neighboring points (in time and space) of the segment un-
der investigation, a priori knowledge on the velocity value
in the segment is present. The basis for the velocity esti-
mation can be improved, if this property is acknowledged
and incorporated into the estimator. The limitations of
the previously mentioned estimators, hopefully, then can
be circumvented.

In this paper a new estimator, which incorporates the
correlation property and is based on maximum likelihood
theory, will be presented. The estimator is meant for 2-
D color flow imaging. The estimator uses the correlation
property along with the cross-correlation analysis of the
RF-signals. The aspect of temporal and spatial correla-
tion is discussed in Section II. In Section III, the maxi-
mum likelihood estimator by Ferrara and Algazi [10], [11]
and the new maximum likelihood estimator will be intro-
duced. The main purpose of this paper is to present a new
estimator; therefore, the majority of the paper contains
the theory on the estimator. A selection of results is pre-
sented to verify that the estimator works and has its justi-
fication. The simulated and in vivo data from the carotid
artery used for the performance evaluation are presented
in Section IV, and the performance of the two estimators is
evaluated in Section V. Section VI contains a discussion of
the estimator, and the work is summed up in Section VII.

II. Correlation Between Velocities in Blood

Vessel

The cardiovascular system acts as a piping system, in
which the blood flows to and from the organs and tissues
in the human body. Investigation of non-turbulent flow
physics [18] reveals that the temporal and spatial correla-
tion exist, so the velocities in a bounded spatial and tem-
poral neighborhood are similar (not identical) in order to
fulfill the correlation property. Therefore, a situation with
a high-negative velocity surrounded in time and space by
high-positive velocities is unlikely. In the human cardio-
vascular system, turbulent flow also is present e.g., at ves-
sel bifurcations and the heart valves. More complex flow
patterns and flow physics exist under these conditions. In
the following, flow under non-turbulent conditions is con-
sidered to investigate the feasibility of incorporating flow
physics. Turbulent flow is to be addressed in future work.

The correlation property is confirmable by inspection
of the velocity profiles for the larger arteries (e.g., carotid
and femoral arteries) [19]. Examples of the velocity profile
across the radius at a number of time instances in the car-

Fig. 1. Plots of velocity profiles in the femoral artery. Top: Velocity
profiles along the diameter of the vessel for a number time instances
in the cardiac cycle. The dotted, vertical lines indicate zero velocity.
Bottom: Blood velocity as a function of time in the center of the
femoral artery. Heart beat rate : 60 beats/minute.

diac cycle are plotted in the top plot in Fig. 1. The plots
confirm the spatial correlation along the radial dimension.
The temporal correlation is evident from the bottom plot
in Fig. 1. Therefore, the velocity variations in a bounded
region in time and space are limited. This introduces an
a priori knowledge of the velocity in a given location, if
the velocities in the neighborhood are known. It has to be
similar in value to its temporal and spatial neighbors. This
a priori knowledge should be exploited and incorporated
in a blood velocity estimator. At this point it is important
to stress that the variation patterns and the amplitude of
velocity changes in time and space vary for the different
vessels in the cardiovascular system. This also is evident in
the plots. In most scanners today, the blood velocities are
estimated at discrete time instances (controlled by frame
rate and the recording of the individual RF-signals) on a
discrete spatial grid. Under these circumstances, the veloc-
ities are not identical in a neighborhood as the velocities
are not estimated at the same time instant. They are sim-
ilar and, thereby, correlated when the individual estimates
are not far apart in time and space. This is the case in
medical ultrasound imaging with the current capabilities
on frame rate and image resolution. Therefore, the level of
temporal and spatial correlation among the neighboring
values of the blood velocities are dependent on temporal
and spatial resolution and must be accounted for in the
estimator. So, despite the discrete nature of blood velocity
estimation, the variations in time and space of the veloci-
ties will be limited and should be exploited in the estima-
tor. The aim is to develop an estimator based on maximum
likelihood theory, and a probability density function must
be determined to express the correlation property. An esti-
mate of the velocity v in the segment under investigation is
obtained through maximization of the probability density.
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A range of velocity values will be investigated. The like-
lihood of each velocity will be determined, and the most
likely velocity will be the velocity estimate for the segment
under investigation. It is the velocity projected onto the
beam axis that is estimated. The correct velocity is ob-
tained by correcting for the projection angle between the
beam axis and the vessel. The probability density function,
p(v), will be split up in two terms: p(v) = pa(v)pRF(v).
The a priori knowledge given by the correlation property is
contained in pa, whereas the information extractable from
the acquired RF-signals in the segment under investiga-
tion is described by pRF(v). The determination of pa(v) is
the focus of this section, and the derivation of pRF(v) is
described in Section III.

A mathematical measure of similarity should be derived
to describe the correlation property, and the probability
density pa(v) determined herefore. A characteristic of two
similar values is that the difference is small and limited.
A difference comparison between the velocity in the point
under investigation v(l, s, f) and its neighbors v(l + i, s +
j, f + k) determines similarity:

D(i, j, k) =
v(l + i, s + j, f + k) − v(l, s, f)

∆(i, j, k)
, (1)

where l represents the line number in the image, s is the
segment number in the line, and f is the frame number. A
normalization variable ∆(i, j, k) has been introduced in the
difference computation. It determines the distance in time
or space between neighbors and, therefore, accounts for a
given resolution in the velocity profiles. The variables i and
j determine the bounded spatial neighbors, and they take
values in the range [−1; 1]. The variable k can take only
the values −1 and 0, as only velocity estimates from the
present and previous frame are available at the time of the
evaluation of segment s in line l in frame f . Only certain
combinations of i, j, and k will be used, and a discussion
and definition of these follows later. At this point it is as-
sumed that the differences between the velocities are small
and limited. This assumption is investigated for the blood
flow in the human vessels through a histogram analysis of
the differences for a given velocity profile. The differences
D along the acoustical (axial) axis for (i, j, k) = (0, 1, 0),
the lateral axis (i, j, k) = (1, 0, 0), and the temporal axis
(i, j, k) = (0, 0,−1) have been determined for the femoral
and carotid arteries throughout a full cardiac cycle. With
these choices of (i, j, k) (1) represents the spatial and tem-
poral derivatives. The measure along the lateral and ax-
ial directions determines the shear rate between spatial
neighbors. The acceleration is determined in the temporal
direction. A number of 2-D velocity images equivalent to
the color flow maps (CFM) on a scanner were produced.
Thereby, the variations due to the differences in acquisi-
tion time of the individual RF-signals for each image line
are accounted for. The velocity values were determined by
defining a vessel with a physical realistic radius. For the
femoral and carotid arteries Womersley’s blood flow model
[19] determines the velocity at any position as a function
of time. A typical time sequence for acquisition of RF-

Fig. 2. Example of a 2-D velocity image for CFM imaging in the
systolic phase.

signals for color flow imaging was used to determine the
time values, which were inserted in the model to obtain the
individual lines in a 2-D velocity image. A set of images
equal to the time span of a cardiac cycle were generated,
and an example of a 2-D velocity image (imaged as a sur-
face plot) is plotted in Fig. 2. The frame rate for the given
scan setup is 10 frames/s, and the distance between lines
and axial pixel centers are 0.4 mm and 0.8 mm, respec-
tively. Histogram plots of the differences for the carotid
and femoral arteries are shown in Fig. 3. The plots verify
that the temporal and spatial velocity variations between
neighbors are limited. The course of the distributions can
be explained through inspection of the flow profiles and
the variations from frame to frame. The high, negative
difference values, which occur in the temporal density of
the carotid artery, resemble the velocity changes when the
present and previous frame contain part of the systolic
and the diastolic phase, respectively. The positive veloc-
ity differences occur during the diastolic phase. The latter
has a longer temporal duration; therefore, small changes
are seen more often in the cardiac cycle. The plots rep-
resent one realization of the flow profile across the vessel
over a cardiac cycle for the current choice of image size
and resolution. To allow for some variation and to lower
the complexity of the estimator, the temporal and spatial
density functions are approximated by a Gaussian distri-
bution with zero mean. The statistical distribution for the
measure of similarity, therefore, is set as follows:

pa(v(l, s, f)) =
1
Z

exp
(

−ζ1D1(l, s, f)
σ2

1
− ζ2D2(l, s, f)

σ2
2

)
,

(2)

where Z is a normalization constant, which assures that
pa(v) sums up to one when integrated. The parameters ζ1
and ζ2 are scaling factors, and σ2

1 and σ2
2 are the variances

of the temporal and spatial distributions. The subscript a
is used to indicate that the defined density determines an
a priori knowledge of the situation under investigation (in
this case the estimation of the velocity in a given spatial
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Fig. 3. The temporal, lateral, and axial probability densities of the
differences for the carotid artery (top row) and femoral artery (bot-
tom row) on simulated 2-D CFM images.

point). The terms D1 and D2 contain the similarity in-
vestigation along the temporal and spatial direction. The
splitting of the similarity investigation in two terms makes
it possible to incorporate differences in the levels of spa-
tial and temporal correlation. Before defining D1 and D2,
the neighborhood available, when estimating the velocity
in (l, s, f) must be determined. The sequence, which de-
termines the acquisition order of the RF-data for velocity
estimation across the image, varies among scanners, the
scan setup, the range of velocities to be imaged, etc. The
choice of acquisition sequence and processing scheme de-
termine which spatial neighbors are available and can be
used at the time of estimation of the velocity in (l, s, f).
In this study the following processing scheme is assumed
in the medical ultrasound scanner:

• the set of RF-lines for each lateral position are pro-
cessed after each other (line by line from left to right),
and

• each line is split up in a number of segments, and the
segments are processed after each other (from first to
last segment).

With this choice, only two velocity estimates—
representing two spatial neighbors along the axial and lat-
eral directions—within the same frame are available when
the estimation is carried out for position (l, s, f). The ve-
locity estimates are: v̂(l−1, s, f) and v̂(l, s−1, f). Velocity
estimates from the previous frame are used to make a com-
plete neighborhood, which contains information around
the segment under investigation. The neighborhood of ve-
locity estimates V becomes: V = [v̂(l−1, s, f), v̂(l+1, s, f−
1), v̂(l, s − 1, f), v̂(l, s + 1, f − 1), v̂(l, s, f − 1)]. Note that
the velocities in V are themselves estimates, which have
been obtained with the estimator in a previous step in the
processing of the acquired RF data. A full neighborhood
does not exist for the first and last segment in each line,
the first and last line in the image, and the first frame.
Therefore, the similarity investigation cannot be carried
out and is omitted in the estimation for these situations.
Based on the available estimates, V , the difference terms,
D1 and D2, are defined as:

D1(l, s, f) = (v̂(l, s, f − 1)−vp(l, s, f))2+(v̂(l +1, s, f − 1)

− vp(l, s, f))2 +(v̂(l, s+1, f − 1)−vp(l, s, f))2,

D2(l, s, f) = (v̂(l − 1, s, f) − vp(l, s, f))2

+ (v̂(l, s − 1, f) − vp(l, s, f))2,
(3)

where vp represents the velocity currently being inves-
tigated as the velocity estimate for segment s in line
l in frame f . All estimates from the previous frame—
irrespective of spatial position—are gathered in D1. In D2
the available spatial neighbors within the same frame are
used. The normalization variable in (1) will be contained
in the following in σ1 and σ2. A range (p = {1, N}) of (dis-
crete) velocity values are investigated for each segment. At
this point the a priori knowledge present due to the cor-
relation property has been mathematically quantified and
a density determined, which can express if the velocity vp

is likely given the velocities in the neighborhood V . The
acquired RF-data along each image line also contain valu-
able information for the estimation of the velocity, and the
incorporation of this and the derivation of pRF is the topic
of the subsequent section.

III. Maximum Likelihood Velocity Estimation

The theory of maximum likelihood detection and esti-
mation have been developed and used in radars [20], [21].
The techniques also are applicable for blood velocity esti-
mation and will be exploited in this study. In Section III-A
an estimator based on the maximum likelihood theory is
derived [10], [11], and the incorporation of the correlation
property follows in Section III-B.
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A. Wideband Maximum Likelihood Estimator

A characteristic signal,
√

Es(t), emitted by an object
(e.g., air-plane or blood scatterer) is a sufficient basis for
the detection and estimation of location and velocity of
the object. The parameter E represents the signal energy,
and it is assumed that

∫ Ts

0 s2(t)dt = 1. The variable Ts

represents the temporal length of the characteristic sig-
nal. Use of a sensor (e.g., transducer) makes it possible to
acquire the signal and perform an analysis to determine
the features of the object. As the presence of the object
is not known a priori, the acquired signal, rc(t), either
contains noise, n, only or the emitted signal with noise
added. Two situations—equal to two hypotheses (H0, H1)
in statistics—can exist:

rc(t) =

{√
Es(t + τ1) + n(t) 0 ≤ t ≤ T : H1

n(t) 0 ≤ t ≤ T : H0, (4)

where T represents the temporal length of an observation.
The subscript c indicates that the signal is represented in
complex form. The temporal location of the characteris-
tic signal within the acquired signal is described by the
temporal variable τ1, which value is unknown. Therefore,
the acquired signal rc(t) must be split up in a number of
signal segments, rs(t, τ), of length Ts, (Ts < T ). The aim
of the subsequent analysis is to detect, if any of the seg-
ments contain the characteristic signal, so the value of τ1
can be determined. Thereby the presence and location of
the object are estimated. The velocity can be estimated
by acquiring a number of signals rc(t), and determine τ1
for each. The temporal shifts, τ1, between the different ac-
quired lines along with the sound speed give the basis for
an estimate of the velocity of the object. The information
present in each signal segment, rs(t, τ), can be compressed
into a set of coefficients, qj , based on a series expansion:

rs(t, τ) = lim
K→∞

K∑
j=1

qjψj(t),

0 ≤ t ≤ Ts,

(5)

where ψj are a set of orthonormal functions. If ψ1 is equal
to s(t), the coefficient q1 become:

q1 =

{∫ Ts

0

(√
Es(t) + n(t)

)
s∗(t)dt =

√
E + n1 : H1,∫ Ts

0 n(t)s∗(t)dt = n1 : H0. (6)

All other qj (j > 1) will contain no information related
to s(t), as all ψj are orthogonal to s(t). The information
needed to perform the detection and estimation is fully
contained in q1, and a set of q1 values are determined for
each value of τ . The computation of q1 equals a correla-
tion analysis between rs(t, τ) and s(t), so q1(τ) tells how
alike these signals are. The theory on maximum likelihood
estimation [20], [21] predicts that the estimate of τ1 is de-

termined by computing q1 for a range of τ values. The
estimate is found, where the likelihood ratio:

LR(Q1(τ)) =
pq1|H1(Q1|H1)
pq1|H0(Q1|H0)

, (7)

takes its maximum value:

τ̂1 = arg max
τ

(LR(Q1(τ))). (8)

The variable Q1 represents an observation of q1 for a given
value of τ , and pq1|H0 and pq1|H1 are the probability density
functions under H0 and H1, respectively. The likelihood
ratio represents a comparison of the probability values,
and the ratio value expresses which hypothesis is more
likely.

The above method is applicable for blood velocity es-
timation, although the characteristic signal is not known
a priori. In medical ultrasound, a signal is emitted by the
transducer and propagates in tissue. The signal is scat-
tered by the individual scatterers distributed in space. The
acquired RF-signals, therefore, consist of the sum of re-
flected contributions from the scatterers. As the composi-
tion of the tissue structures (e.g., blood, vessels, fat, liver,
or kidney tissue) is not known a priori, it is not possible to
predict the course of the acquired RF-signal. Still, a lim-
ited group (in space) of scatterers generate a characteris-
tic pattern in the RF-signal, which will show in successive
acquired RF-signals along the same line [10], [22]. If the
scatterers are moving between acquisitions, the temporal
position of the pattern will change according to the veloc-
ity at a constant rate, as long as the successive RF-signals
are acquired within a time window of few milliseconds. The
latter requirement is fulfilled in commercially available ul-
trasound scanners. The need for a characteristic signal to
perform the correlation analysis in (6) can be obtained by
using the characteristic patterns in the RF-signal acquired
first. The first RF-signal, therefore, is split up in a number
of segments, and the signal in each of these is used as the
characteristic signal to determine the position of the pat-
tern in the successive RF-signals. The processing and the
resulting estimate of the temporal shift is performed for
each of the segments in the RF-signals. Thereby, the com-
putation of q1 becomes a correlation analysis between a
segment in the first line and a temporally shifted segment
in a successive line, l:

q1,l(vp) =
Ns−1∑
k=0

rs(1, k + isegNs)rs(l, k + isegNs + m · (l − 1)), (9)

where m gives the temporal shift in position of the seg-
ments in the RF-signals in number of samples and is a
function of the investigated velocity vp. The parameter iseg

determines the segment number, and Ns tells the number
of samples within this segment. The number of lines avail-
able for the analysis are referred to by the parameter Nl,
and thereby, Nl values of q1 are obtained from each correla-
tion analysis of one segment for one choice of the temporal
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shift. In the following each of these observations are re-
ferred to as Q1,l. The probability of q1,s = q1,1 + · · ·+q1,Nl

is [20], [21], [23], [24]:

pq1,s|H1(Q1,s|H1) =

1
π(E + N0)Nl

exp
(

− |Q1,s(vp)|2
(E + N0)Nl

)
, (10)

where N0 is the energy of the noise. The probability den-
sity of q1,s under H0 is:

pq1,s|H0(Q1,s|H0) =
1

πN0Nl
exp

(
−|Q1,s(vp)|2

N0Nl

)
.
(11)

As the probability density of q1,s is known under H0 and
H1, the likelihood ratio can be derived:

LR(Q1,s(vp)) =
pq1,s|H1(Q1,s|H1)
pq1,s|H0(Q1,s|H0)

=
(π(E + N0)Nl)−1 exp

(
− |Q1,s(vp)|2

(E+N0)Nl

)
(πN0Nl)−1 exp

(
− |Q1,s(vp)|2

N0Nl

) .(12)

By taking the logarithm and rearranging the terms, the
following relation is obtained:

ln(LR(Q1,s(vp))) = ln
(

N0

E + N0

)

+
E

(E + N0)N0Nl
|Q1,s(vp)|2. (13)

The parameters N0, E, and Nl are constants. They only
contribute with an offset value and a scaling of |Q1,s(vp)|2,
so |Q1,s(vp)|2 represents the sufficient statistic (the mea-
sure) that is needed to perform an estimation of vp. If
|Q1,s(vp)|2 is computed [using (9) and summing the Nl val-
ues] for the range of velocities, the maximum of |Q1,s(vp)|2
gives the estimate of the (average) velocity for a group of
scatterers in the segment under investigation:

v̂(l, s, f) = argmax
vp

(|Q1,s(vp)|2). (14)

This estimator represents the approach of the wide-
band maximum likelihood estimator by Ferrara and Algazi
(1991) [10], [11]. The term wideband refers to the emis-
sion of a wideband excitation pulse, which will improve
the basis for the correlation analysis. In the following this
estimator will be referred to as the MLE.

B. Extended Maximum Likelihood Estimator

In the above estimator, the a priori knowledge of the
spatial and temporal correlation on the velocity is not in-
corporated. The a priori knowledge can be included by
expanding the density under H1 with pa and thereby gen-
erating the joint probability density:

p(q1, vp(l, s, f)) = pa(vp(l, s, f))pq1|H1 . (15)

By inserting (2) and (10) into this equation the probability
density under H1 becomes:

pq1,s|H1(Q1,s, vp|H1) =

1
Z

1
π(E + N0)Nl

exp
(

−ζ1D1(l, s, f)
σ2

1
− ζ2D2(l, s, f)

σ2
2

)
.

exp
(

− |Q1,s(vp)|2
(E + N0)Nl

)
. (16)

The probability density of q1,s under H0 is unchanged:

pq1,s|H0(Q1,s, vp|H0) =
1

πN0Nl
exp

(
−|Q1,s(vp)|2

N0Nl

)
.
(17)

According to the discussion in Section III-A, an estima-
tor can be obtained by determining the likelihood ratio.
When both the a priori and the signal specific information
are included, the likelihood ratio takes the form shown in
(18) (see next page). If all the exponentials are combined
into one, and the logarithm of LR is computed, the follow-
ing relation is obtained:

ln(LR(Q1,s, vp)) = ln
(

N0

Z(E + N0)

)

− ζ1D1(l, s, f)
σ2

1
− ζ2D2(l, s, f)

σ2
2

− |Q1,s(vp)|2
1
Nl

(
1

E + N0
− 1

N0

)(19)

= ln
(

N0

Z(E + N0)

)
− ζ1D1(l, s, f)

σ2
1

− ζ2D2(l, s, f)
σ2

2

+
1
Nl

E

(E + N0)N0
|Q1,s(vp)|2.

(20)

The variables ζ1 and ζ2 are related to the energy content
in the RF-signals and will be defined as:

ζ1 = κ1
E(E + N0)

N0
,

ζ2 = κ2
E(E + N0)

N0
,

(21)

where κ1 and κ2 are a new set of scale factors. These def-
initions are introduced in (19). By rearranging terms, ig-
noring the first term and common constants for the last
terms, the sufficient statistic in the form of the likelihood
ratio (LRS) can be expressed as:

ln(LRS(Q1,s, vp)) =
1

Nl(E + N0)2
|Q1,s(vp)|2

− κ1D1(l, s, f)
σ2

1
− κ2D2(l, s, f)

σ2
2

. (22)

The values of the variables κ1, κ2, σ2
1 , and σ2

2 should be
determined and are dependent on the spatial and temporal
resolution. The exact values for the individual variables
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LR(Q1,s, vp) =
pq1,s|H1(Q1,s|H1)
pq1,s|H0(Q1,s|H0)

=
(Zπ(E + N0)Nl)−1 exp

(
− ζ1D1(l,s,f)

σ2
1

− ζ2D2(l,s,f)
σ2
2

)
exp

(
− |Q1,s(vp)|2

(E+N0)Nl

)
(πN0Nl)−1 exp

(
− |Q1,s(vp)|2

N0Nl

) .

(18)

Fig. 4. Flow chart showing the steps to be performed for each segment
to obtain a velocity estimate.

will not be considered in this context. Instead the variables
are combined as:

Γ1 = κ1/σ2
1,

Γ2 = κ2/σ2
2.

(23)

The mathematical relation describing the estimator
based on maximum likelihood theory, which includes the
spatial and temporal correlation among the velocities in a
bounded region, is:

v̂(l, s, f) = arg max
vp

(ln(LRS(Q1,s, vp)))

= arg max
vp

(
1

Nl(E + N0)2
|Q1,s(vp)|2

− Γ1D1(l, s, f) − Γ2D2(l, s, f)

)
.

(24)

The equation consists of three terms. The first term
describes the correlation analysis between signal segments
and a normalization with signal energy. The last two terms
handle the similarity investigation in time and space. The
processing involved in the estimation proceeds in two steps
as shown in Fig. 4. The variable v represents the set
of p discrete velocity values being investigated. Step A,
therefore, is repeated p times before the velocity estimate
v̂(l, s, f) can be determined in Step B. The processing has
to be performed for each segment in the acquired RF-signal
to determine the velocity distribution throughout the re-
gion scanned and for a range of velocities. The estimator,
thereby, becomes computationally demanding compared

to the simple autocorrelation estimator, but the limita-
tions on the maximum velocity detectable should be elim-
inated and the physics of the in vivo situation has been
accounted for in the estimation. The latter should improve
the estimation, as it becomes possible to express a mea-
sure of belief in an estimate as part of the estimation. For
most other estimators, the variance of the estimate can be
determined, but it is not possible to use it and thereby
benefit from this knowledge in the estimation.

An estimator, which is based on maximum likelihood
theory and incorporates the temporal and spatial correla-
tion between the blood velocities, has been derived in the
above. It will be named the CMLE, where the C refers
to incorporation of the correlation property. The perfor-
mance of the estimator is influenced by decorrelation of the
patterns in successive RF-signals and the accuracy on the
neighboring velocity estimates. The latter influences the
terms D1 and D2. The decorrelation arises, as the individ-
ual scatterers move at different velocities, so the distance
traveled between two acquisitions will be different. The
summed reflected responses, therefore, will not give iden-
tical patterns in two consecutive lines. Within the time
frame of a few milliseconds this effect is less dominant,
and the estimator described can perform blood velocity
estimation. The estimator is expected to perform best on
wideband excitation pulses, as these give the best basis for
the cross-correlation analysis. The performance evaluation
on the simulated data uses this, whereas the performance
on in vivo data is performed on narrow band pulses. The
latter is due to the settings of the B-K 2102 Medical A/S
(Herlev, Denmark) scanner used.

IV. Data

The ability of the two maximum likelihood estimators
to perform blood velocity estimation has been investigated
on simulated and in vivo data. An exhaustive evaluation
of performance for all possible scenarios with respect to
blood flow profile, signal-to-noise (SNR) ratios, image size
and resolution, etc. is out of the scope for this paper. The
main purpose is to show that the correlation property is
of importance in blood velocity estimation and can be im-
plemented in an estimator.

A. Simulated Data

Simulated data resembling RF-data acquired from the
carotid artery have been generated with Field II [25],
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TABLE I
Choice of Parameters for the Simulated Data Used in the

Performance Evaluation of the Blood Velocity Estimators.

Parameter Symbol Value

Center frequency of pulse f0 5.0 MHz
No. of elements N 128
No. of active elements Na 32
Pulse length (in cycles) Pl 1.5
Geometric focus Fg 17 mm
Pulse repetition frequency fprf 4 kHz
Sampling frequency fs 40 MHz
Sound velocity c 1540 m/s
Radius of vessel Rv 3 mm
Angle between vessel
and acoustical axis θ 55◦

[26]. Any transducer array, any focusing and apodization
scheme, and any excitation pulse can be handled with the
program. The program simulates the linear propagation,
and the Born approximation excluding multiple scatter-
ing is applied. A focusing and apodization scheme match-
ing the setup of a B-K Medical A/S (Herlev, Denmark)
3535 scanner, which was connected to a linear array, has
been implemented. A wideband excitation pulse (a Han-
ning weighted sinusoidal pulse of 1.5 cycles) was used.
Womersley’s blood flow model [19] was used to model the
motion of the blood scatterers. Tissue motion due to the
pulsation of the vessel walls has been incorporated to ob-
tain data, which resembles the in vivo situation [22], [27].
The parameters for the current simulation are listed in Ta-
ble I. One cardiac cycle (one second) has been simulated.
The pulsing strategy alternates between acquiring one RF-
line for the B-mode image, then 8 RF-lines for the blood
velocity estimation. The lateral extent of the CFM image
equals half the imaging range of the transducer, so a frame
rate of 10 frames/s is obtained for the CFM-mode image.
The low frame rate is of no concern in the current study,
as the aim is to evaluate the estimation abilities of the
estimators rather than displaying many images. Gaussian
noise is present in the data. Two data sets were generated
with SNR ratios of 10 and 20 dB, respectively.

B. In Vivo Data

The in vivo RF-data were acquired with a dedicated
ultrasound sampling system [28] interfaced to a B-K Med-
ical A/S (Herlev, Denmark) 2102 scanner. The focusing
and apodization scheme along with the excitation pulse
was controlled by the 2102 scanner. A linear array trans-
ducer was used, and a narrow band excitation pulse with a
center frequency of 5 MHz was emitted. The beamformed
RF-signals were acquired by the sampling system, which
works at a sampling frequency of 40 MHz and a 12 bits
resolution. Ten seconds of CFM data were acquired, cor-
responding to several cardiac cycles. Nine RF-signals are
acquired along each line in the CFM image. The focus was
at 1.8 cm, and the frame rate was equal to 16 frames/s.

TABLE II
Performance Measures as a Function of Γ1 and Γ2.

RMS Γ1
0 1 2 3 4 5

0 6.86 7.03 7.04 7.05 7.04 6.97
1 7.05 7.05 7.04 7.07 7.04 7.01
2 7.06 7.06 7.07 7.05 7.03 7.01

Γ2 3 7.07 7.08 7.07 7.08 7.03 7.02
4 7.1 7.08 7.08 7.07 7.02 7.01
5 7.12 7.08 7.07 7.08 7.03 7.02

Outliers Γ1
0 1 2 3 4 5

0 3.61 0.4 0.12 0.09 0.09 0.12
1 0.64 0.12 0.06 0 0.06 0.09
2 0.15 0.06 0 0 0.03 0.06

Γ2 3 0.09 0 0 0 0.03 0.06
4 0.06 0 0 0 0 0.06
5 0.03 0 0 0 0 0

Velocity search range, 50 cm/s. Top, RMS error ([cm/s]). The er-
ror on the first frame was excluded, as the estimates were obtained
with the MLE. Bottom, number of estimates (%) outside the velocity
range from −10 cm/s to 60 cm/s.

V. Results

Prior to the blood velocity estimation, the RF-signals
(both simulated and in vivo data sets) were matched fil-
tered [1] to minimize the noise content, and stationary echo
canceling was performed with a second order high-pass fil-
ter [1]. The resolution on the discrete velocity search was
set to 1 cm/s. The basis for determining a large range of
velocities (e.g., low velocity at vessel wall and in tissue,
and a high velocity in center of vessel) is then given.

A. Determination of Estimator Parameters

The scale parameters Γ1 and Γ2 have to be assigned
a value prior to using the CMLE for estimation. A per-
formance evaluation for a range of scale values was carried
out on the simulated data. This is possible, as the true 2-D
velocity image is known for every frame and, thereby, can
be compared to the estimated 2-D velocity profile. Two
performance parameters have been defined for the evalu-
ation. The true velocities span the range from 0 cm/s to
50 cm/s, and estimates outside the range −10 cm/s and
60 cm/s are considered outliers. The total number of these
summed over the full velocity image and the number of
frames available are used as the first performance mea-
sure. The RMS error on the velocity estimates inside the
true velocity range is used as the second measure. The
mean operation is performed over all frames. The perfor-
mance measures are listed in Table II. The RMS error has
not been normalized with the peak velocity of 0.49 m/s in
the systole. The RMS error does not vary much over the
range of Γ1 and Γ2. The influence of the choice of the scale
parameters show on the number of outliers. For a narrow
range of values, no outliers are produced with the CMLE,
and in the following Γ1 and Γ2 will both be set equal to 2.
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Fig. 5. Performance of the cross-correlation estimator (black), the
MLE (gray), and the CMLE (white) on the simulated data resem-
bling the carotid artery as a function of three velocity search ranges
in the correlation computation. SNR is 20 dB.

B. Performance on Simulated Data

As mentioned in the introduction, estimators based on
cross-correlation usually are limited in the velocity search
range. Multiple peaks in the cross-correlation function will
occur at temporal shifts in the RF-signal, which equal
one period of the oscillation: 1/f0. Therefore, the up-
per bound on the velocity search range is usually set
equal to half a period, which equals the maximum de-
tectable velocity vmax with the autocorrelation estimator:
vmax = cfprf/4f0 = 31 cm/s. The new estimator contains a
cross-correlation analysis but additionally a term, which is
related to the fluid properties. The question is, if the incor-
poration of the fluid properties can overcome the limitation
on the velocity search range. The performance of the cross-
correlation estimator, the MLE, and the CMLE have been
investigated for three different values of the search range,
which are integer multiply of vmax. The RMS error and the
number of outliers were determined for each estimator for
the three search ranges, and Fig. 5 shows the results for a
SNR of 20 dB. The peak velocity in the systole is 0.49 m/s,
which results in relative RMS errors in the range from 8 to
15%. The estimates in the first image frame, and the first
and last line in the subsequent image frames, have been ex-
cluded in the computation of the performance measures, as
a full neighborhood does not exist and the CMLE cannot
carry out the estimation here. In these locations the MLE
is used instead. The lowest RMS error is obtained with
the cross-correlation estimator for any value of the search
range. Unfortunately, the number of outliers increases sig-
nificantly as soon as the search range is above vmax. The
MLE has the same problem with respect to the increas-
ing number of outliers for increasing search range. The
CMLE overcomes this problem completely. No estimates
are outside the range −10 cm/s to 60 cm/s; therefore, the

Fig. 6. The likelihood ratios for the MLE (top) and CMLE (bottom)
for a range of velocities. The true velocity is 12.6 cm/s for the spatial
position (0.5, 3) cm, and the scaling parameters Γ1 and Γ2 are equal
to (2,2). Velocity search range: 2 ∗ vmax.

problem of incorrect estimates due to the multiple peaks
in the cross-correlation function does not occur. This is
verified through inspection of the value of the likelihood
ratio in (24) as a function of vp as shown in Fig. 6 for
a given spatial position—in this case the position 0.5 cm
laterally and 3 cm axially in the eighth image frame of
10. With the MLE two peaks separated by 2vmax occur at
−50 cm/s and 11 cm/s. The maximum of the likelihood ra-
tio is at −50 cm/s. An incorrect estimate of the velocity is
produced, as the true velocity is 12.6 cm/s. The CMLE has
only one peak at 11 cm/s, and therefore produces the most
correct estimate of the two estimators. The reason is that
the velocity −50 cm/s is far from the values of the neigh-
boring velocities; therefore, the a priori density assigns a
low probability to this velocity. This causes the value of
the LRS to decrease, as the terms Γ1D1 and Γ2D2 take
high values and therefore contribute to the sum in (24).
The shape of the peak with the CMLE is less sharp than
the peak obtained with the MLE, but it still stands out
from the rest of the likelihood values, and it gives the basis
for determining the estimate. The RMS error varies less
than 1% for the three different search ranges. The same
trends on the number of outliers show when the SNR in
the simulation is lowered to 10 dB. In this situation, the
lowest RMS error is obtained with the CMLE independent
of the choice of velocity search range, and the level is on
the same order as seen in the 20 dB situation. The RMS
error increases for both the cross-correlation estimator and
the MLE. Therefore, the CMLE is capable of overcoming
the limitations on the maximum detectable velocity as ex-
perienced with the autocorrelation, the cross-correlation,
and the maximum likelihood estimators.

A typical example of the estimated velocity profiles is
presented in Fig. 7 along with the true velocity profile.
The plot corresponds to a color flow map on a scanner, in
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Fig. 7. Estimated (top) and true (bottom) velocity profile. Estima-
tion performed with the CMLE on the simulated data, in which the
SNR is 20 dB. Data are from the systole of the cardiac cycle. Velocity
search range: 2 ∗ vmax.

which the gray-tone B-mode image has been left out. The
usual color-coding has been replaced by actual velocity
values. In Fig. 8 one line in the image has been plotted as
a function of depth. The two plots in the top show the true
velocity (solid), and the estimates with the MLE (dashed)
and the CMLE (dotted), when the velocity search range
equals 1∗vmax (a) and 2∗vmax (b), respectively. The vessel
lies in the depth range between 1.48 cm to 2.35 cm. The
limitation on search range for the MLE is clearly visible.
A comparison between the true and the estimated profiles
reveal that the velocities at the vessel border are overesti-
mated, and a more flat profile is obtained in the center of
the vessel. But the velocity range of the estimates comes
close to the true values. This result represents the perfor-
mance generally seen for all frames throughout the car-
diac cycle. Inspection of the computed estimates outside
the vessel reveals a second advantage of the CMLE. More
estimates are computed, which take values close to 0 cm/s.
This effect is most pronounced in the systolic phase of the
cardiac cycle, in which some tissue motion occurs due to
the pulsation of the vessel walls. The level of motion is low

Fig. 8. The velocity estimates with the MLE (dashed), CMLE (dot-
ted), and the true velocities (solid) as a function of depth, when the
velocity search range used was: (a) 1 ∗ vmax, and (b) 2 ∗ vmax. The
bottom plot (c) show both the estimates inside and outside the vessel
as a function of depth. Estimation performed on the simulated data
with a SNR of 20 dB. Data are from the systole of the cardiac cycle.

[22], [27], and the velocity is close to zero. Thereby, the
CMLE is capable of estimating even very small velocity
levels. Again, this is a result of the similarity investiga-
tion, which captures the correlation properties among the
velocities in a neighborhood and uses this in the estima-
tion. This is beneficial in the subsequent processing, where
it is determined which estimates should be superimposed
on the gray-tone B-mode image.

C. Performance on In Vivo Data

The investigations on the simulated data reveal that the
incorporation of the correlation property in the estimation
is beneficial in both the estimation of the blood and the
tissue velocities. A verification hereof on in vivo data has
been carried out. Fig. 9 shows a typical example of the es-
timated velocity profiles for a healthy carotid artery with
the CMLE (top) and MLE (bottom). As specified in Sec-
tion IV, the temporal and spatial resolution is different
from the simulated data, and the parameters Γ1 and Γ2
both take the value 100 in this case. Only the velocities
inside the vessel are plotted, but the CMLE still outper-
forms the MLE by being able to produce almost nonzero
estimates more often in the area outside the vessel. The
advantage of the correlation property in the blood veloc-
ity estimation is demonstrated by the elimination of the
outliers in the velocity profile. For the in vivo data one
should be aware that the emitted pulse is narrow band.
Usually estimators based on cross-correlation perform best
on wideband pulses, but the results show that this is not
a limitation with the CMLE in the current situation.
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Fig. 9. Velocity estimates on in vivo data from the carotid artery
with the CMLE (top) and MLE (bottom).

VI. Discussion

In the derivation of the new maximum likelihood esti-
mator, only non-turbulent flow conditions have been con-
sidered. Of course, this is a limitation, as turbulence and
flow jets are seen in the heart at bifurcations and at the
edges of a stenosis. This problem is encountered with most
estimators as the emitted pulse interacts with scatterers at
a range of velocities, and averaging over several samples
are performed in the estimation. Still the aspect should
be considered, and through simulations the capabilities of
the estimator under these conditions must be determined.
Part of this investigation involves a study of the best choice
of number of correlation terms, Dj, and the values of the
scaling parameters.

The blood flow profiles in the cardiovascular system dif-
fer for the different arteries and veins. For the femoral
artery, both positive and negative velocities are present
throughout the cardiac cycle. This will decrease the cor-
relation between estimates in successive frames, and the
level of correlation will depend on frame rate. These issues
should be addressed through incorporation of information
on frame rate, heart beat frequency, and similar variables
in the computation of the scaling parameters multiplied

onto the terms Dj (j = 1, 2, . . . ). Increased frame rate
is desirable as the velocity changes between frames will
become smaller, the correlation between velocities will in-
crease, and it will be easier to track the changes in ve-
locities and use them in the estimator. New techniques to
increase frame rate in color flow imaging [29] would be
interesting to combine with this new estimator.

In the current study, the new maximum likelihood es-
timator was compared to two estimators also based on a
cross-correlation analysis of the RF-data. Most commer-
cial ultrasound scanners use the autocorrelation estima-
tor, as it is computationally simple. The autocorrelation
estimator, unfortunately, has an upper bound on the max-
imum velocity detectable, which is inversely proportional
to the time between successively transmitted pulses along
the same image direction. An increase in the maximum de-
tectable velocity is at the expense of an undesirable lower-
ing of the frame rate. This has been the impetus of the re-
search into cross-correlation based estimators as discussed
in Section I. A performance comparison of the autocorre-
lation estimator (AE) and the new estimator shows that
the RMS will be slightly lower with the AE. Unfortunately,
the detectable velocity range is lowered and the low ampli-
tude tissue motion is not detected. The two latter features
of the CMLE is desirable and encourage further research
into use of the correlation property among the blood veloc-
ities in an estimator. With the advances within electronics,
the increased number of computations required with the
CMLE are of less concern.

VII. Conclusions

A new estimator, which incorporates the features of
fluid flow, has been derived and evaluated in this study.
The aspect of correlation between blood velocities in time
and space has been investigated, quantified, and incorpo-
rated. The new estimator (CMLE) is based on maximum
likelihood theory. In its current form the CMLE uses the
acquired RF-signals on complex form in the estimator. A
performance evaluation on simulated and in vivo data from
the carotid artery showed that the estimator is capable of
performing blood velocity estimation and used the corre-
lation property inherited from flow physics to improve on
the estimation. For the current data sets the RMS errors
were on the same order for the CC, MLE, and the CMLE
estimators; but the use of a cross-correlation analysis alone
puts an upper bound on the maximum detectable veloc-
ity with the CC and the MLE. This problem is circum-
vented with the CMLE; additionally, the estimator is ca-
pable of determining tissue motion at low velocities. The
latter improves the basis for deciding which estimates to
overlay onto the B-mode image. Thereby, the new esti-
mator represents a promising estimator for blood velocity
estimation in medical ultrasound imaging. In future inves-
tigations into its usability under turbulent flow conditions
must be performed along with investigations of the influ-
ence of the settings of the spatial and temporal resolution.
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