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Soft-Decision Decoding of RS Codes

Jorn Justesen
COM, Technical University of Denmark
DK 2800 Kgs Lyngby , Denmark
Email: jju@com.dtu.dk

Abstract— By introducing a few simplifying assumptions we
derive a simple condition for successful decoding using the
Koetter-Vardy algorithm for soft-decision decoding of RS codes.
We show that the algorithm has a significant advantage over hard
decision decoding when the code rate is low, when two or more
sets of received symbols have substantially different reliabilities,
or when the number of alternative transmitted symbols is very
small.

I. INTRODUCTION

In [1] Koetter and Vardy studied an extension of the Sudan-
Guruswami algorithm [2] where the interpolating polynomial
is required to have certain multiplicities of zeros for several
likely symbols in each position. In particular they analyzed the
case where the multiplicities are chosen to be approximately
proportional to the conditional probabilities of the symbol
values. In general it is difficult to interpret the condition for
successful decoding in a simple way. However, by introducing
a few simplifying assumptions we derive a much simpler
condition for decoding, and in this way we obtain bounds
on the performance of the Koetter-Vardy (KV) algorithm. We
show that the algorithm has a significant advantage over hard
decision decoding when the code rate is low, when two or
more sets of received symbols have substantially different
reliabilities, or when the correct symbol is on a small list of
possible transmitted symbols.

II. THE CONDITION FOR SUCCESSFUL LIST DECODING

We consider decoding of an (N, K') RS code over the field
F(q). The list decoding algorithm developed in [2] is based
on a two-variable interpolating polynomial with the received
symbol values as roots of a given multiplicity. In the KV
algorithm, the concept is extended by allowing a list of input
symbols corresponding to roots of variable multiplicity. When
the sum of the multiplicities for each position is upper bounded
by a constant, the result of the KV algorithm is a list such
that the size is polynomial in N. Decoding is considered
to be successful if the transmitted codeword is on the list,
and thus all codewords satisfying the condition for successful
decoding are found on the list. List decoding allows more
than (N — K)/2 errors to be decoded, even though the result
is not always unique. On the other hand list decoding with a
polynomial list is only possible within the Hamming bound,
and in most cases the list contains only a single word.

In [1] the input to the decoder is a ¢ by /N matrix, II, called
the reliability matrix, which has entries

mij = Pla; | yj]

where a; is a symbol from the code alphabet, A, and y; is the
received symbol, which may belong to a larger alphabet, B.
The multiplicities of the zeros corresponding to the input lists
are entries in the multiplicity matrix, a ¢ by /N matrix, M =
[m;]. As discussed in [1], the integer entries in M should be
chosen to approximate II after a suitable normalization.

If the transmitted word is ¢ = [c(j)], where we let ¢(j) =i
indicate that the transmitted symbol is a;, the condition for
successful decoding is

25 Me(i).i
\/Zi,j mij(mi; + 1)

The authors argue that a suitable choice of the multiplicities
can be obtained by approximating the conditional probabilities
for the ¢ symbols given the received value by a vector of
integers. We shall simplify this condition by assuming that
the integer entries of M are large enough to allow an accurate
approximation to these probabilities, and also neglect smaller
terms. Thus by normalizing the multiplicities, we obtain a set
of weights, w;; ~ m;;, and the condition can be expressed in
terms of these weights as

Zﬁi@%>¢? 2)
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For each column index, j, the sum of the probabilities is
1, but we allow the normalized sum of the multiplicities to

be less than one, since it may be preferable to replace small
entries with 0.

> VK -1 (1)

III. QUANTIZED SYMBOLS AND TYPICAL ERROR
PATTERNS

We assume that the received symbols belong to a finite
alphabet, B, which may be larger than the code alphabet, A.
The received symbols would typically be obtained by filtering,
sampling, and quantizing a noisy analogue signal, but the
exact mechanism is immaterial. Assuming that the transmitted
symbols a; are equally likely, the conditional distribution given
a particular received symbol b; may be written as

Pla; | bj] = kPbj | ai]/ P[by]

For each transmitted symbol we assume that there is a
unique received symbol, a; € B’ C B, which maximizes
Plb; | a;], and that these symbols are distinct. Often these
symbols may be interpreted as noiseless versions of the
transmitted symbols. For each received symbol, w;; assumes a
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finite set of values, and the condition (2) depends on only this
set, the number of times each value occurs, and the weight
of the transmitted symbol. Thus for this discussion we can
assume that the weights are listed in decreasing order, and
we do not need to distinguish symbols with the same list of
weights. We are interested in the situation where these lists
have few nonzero entries and where the number of distinct
distributions is much smaller than the length of the code. The
exact probabilities may be approximated to reduce the number
of distinct lists, and in particular we assign a probability of
zero to all events that have very small probability. The use
of such approximated values is justified in part by the need
to keep the sum of the multiplicities limited, but also by the
observation that the performance of the algorithm is rather
insensitive to small changes in the weights.

Definition: An error type associated with a pair of transmit-
ted and received symbols, a; and b;, is a list of weights, and
an indication of the weight of the symbol actually transmitted.

For binary transmitted symbols and either the binary sym-
metric channel or a quantized Gaussian channel, this definition
agrees with the usual concept of errors. For larger transmitted
alphabets there are more error types, and a particular error
type can occur only for certain transmitted/received symbols.
Nevertheless, our assumption that there are relatively few error
types is consistent with typical situations involving modulation
formats or inner codes.

As a simple case, let the received alphabet equal the code
alphabet. Thus for a given channel, the probability distribution
given a received symbol describes the probability that the
transmitted symbol is at a certain distance from the one
transmitted. If the set of transmitted signals has sufficient
symmetry, this distribution may be the same for all symbols,
but for modulation formats like QAM, certain symbols have
fewer neighbors, and thus there are a number of different
probability distributions. Similarly the received symbols can
often be divided into a small number of classes, where each
class is associated with certain error types.

On the average each symbol appears NP[b;] times in a
received block, and of these cases the transmitted symbols
was a; in NP[b;]P[a; | b;] instances. Both of these averages
are less than one, but our assumption is that a summation
over equivalent symbols gives a moderate value. For (2) to be
satisfied in this case we must have

Zi,j NP[bj]wfj

> VK 3)
Zi,j Np[bj]wzzj
or
> NP[blw}; > K/N 4)
]

We can interpret (4) as indicating that the rate of the code
must be low enough to allow the condition for decoding to
be satisfied for a typical distribution of errors. Based on this
observation and the simplified expression, we derive bounds
on the performance of the KV algorithm in the next section.

IV. A BOUND ON CORRECTABLE ERRORS

In this section we derive bounds on performnance of the KV
algorithm using (4) as the limiting situation. We then specialize
the bounds to some cases that are particularly important in
applications. Let r; be the number of received symbols in a
block that belong to a certain class. We can then collect the
terms in (2) to obtain the square of the denominator

Zi, T wiZj

This quantity is independent of which symbols were actually
transmitted. Thus if (3) is satisfied, and the number of errors
of the type characterized by (a;,b;) is less than or equal to
rjw;; for all a; such that w;; < max;{P[a; | b;]}, the block is
correctly decoded, since the numerator is at least as large as in
(3). Thus, for a received word with a given symbol distribution,
we can interpret (4) as an upper bound on the number of errors
of various type that the algorithm will correct. However, in
general it is difficult to obtain a bound that does not depend
on the composition of the particular received word. Even in
the case of only two types of received symbols, the left side
of (2) is not always a monotone function of r;.

In order to get a more useful bound we need the assumption
that if (2) is satisfied, it will always remain satisfied if a
received symbol is replaced by the corresponding ’correct’
symbol a;. When a symbol is corrected, the denominator
usually also increases, but for most cases of interest, it is clear
that the value of the fraction increases. With this assumption
let the set of numbers r;- be chosen such that

/!
jr]-—N

Zi,j r}wij > K/N

We then have the following condition for correct decoding
of the received block:

Theorem I: If the number of received symbols of each type
bj & B"is rj <}, and the number of errors of each type is
at most

rﬁP[aZ | b]]

list decoding by the KV algorithm succeeds.

Proof: Under these assumptions, the left side of (2) is lower
bounded by the fraction where r; is replaced by r;, since some
correct symbols are replaced by less reliable values. We can
then use the argument from the beginning of the section, since
the composition of the codeword is fixed, and the number of
errors is bounded.

In this bound we neglect cases where more errors of one
type can be decoded because there are fewer errors of other
types. However, if the number of error types increases slowly
with the block length, as for example a power of log(q), we
get a tight bound for large V.

Under the same assumptions we have

Theorem 2: For the set of error patterns specified in Theorem
1, (4) is an upper bound on the rate of a code that can be
decoded by the KV algorithm.
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We shall now consider some special cases of Theorems 1
and 2. If » symbols are erased, we simply assign a weight of
0 to all of them. Clearly one value is correct, but for a large
alphabet 1/q is too small to make a difference. Thus from (4)
we find

N—-—r>Korr<N-K

which just serves as a check on this approach. If a list of
n possibilities is given, n << ¢, and each is assigned a
probability of 1/n, we find

N—-r4+r/n>Korr(n—1)/n<N—-K

We may interpret this result as saying that a list of two
values counts as half of an erasure, a list of three as 2/3,
etc. Thus very small lists offer an advantage compared to
erasures, whereas longer lists are of negligible value. From
an information theory point of view we would expect the cost
of a binary list to be one bit, but the algorithm is far from this
limit. The result can be easily extended to include unequal
probabilities for the alternatives.

Consider the case where for a set of received symbols
the probability of error is known, but other values each
have probabilities that are too small to give a significant
contribution. Again as a check, let us first assume that all
symbols have error probability p:

N(1-p?>Korp<l1l-—+/K/N

which is the well-known bound for the Sudan-Guruswami
algorithm. If several sets of symbols have different error
probabilities, we get from (4)

>ri(l=p)* > K

In particular if r symbols have a low reliability while the
rest are more reliable we have

(1—7r/N)Y(1—p1)?+7r(l—p2)?/N>K/N

Thus if we find the rates on the square root bound for the
two error probabilities, the rate for a code correcting a mixture
of the two probabilities is on a straight line connecting these
points. Clearly this means that more errors are corrected than
in the case where the average error probability applies to all
positions. However, there is only a significant difference if the
higher error probability is large.

V. APPLICATIONS

In this section we consider two typical applications, QAM
modulation with a large alphabet and concatenated codes with
a binary inner code.

Example 1: QAM can serve as an example of a channel
with a large alphabet, but only a small number of likely errors.
We consider the simplest case: The alphabet is so large that
we can neglect the influence of extreme symbols with fewer
neighbors, and the receiver uses hard decisions. If p is the

probability of error in one dimension, the probabilities of
the 8 closest neighbors are

p — 2p? and p?
We neglect other errors. From (4) we get
1—8p+28p? —...> K/N
where as the standard decoding algorithm gives
1—-8p+8p*>K/N

Thus for p = 1/16 the rate is improved from 17/32 to 39/64.

Example 2: In a concatenated code with an inner block code,
the basic RS decoding algorithm requires that the number of
errors, ¢, and the number of erasers, e, from the inner decoder
satisfy 2t + e < (N — K). Generalized minimum distance
decoding ensures that all error patterns of weight less than half
the product of the distances are decoded, but this algorithm
does not improve the performance much. To get an estimate
of the performance of the KV algorithm we consider the PG
code (21,12,6) for which the necessary details can readily
be worked out. Let the average number of bit errors in an
inner codeword be 2. It follows from the binomial distribution
that the probability of 0 or 1 error in a block is 0.39, and in
this case the decision has a high reliability. Two errors are
corrected, but the probability of decoding error (if 4 errors
actually occur) is 0.12. A small fraction of weight 3 error
patterns are uniquely decoded, and for simplicity we merge
this set with the double errors. The remaining 1120 weight 3
error patterns are in cosets which give a list of 4 possibilities.
The remaining errors of weight 4 are treated as erasures, and
in our estimate we neglect the contributions from weight 5
errors. In this way we can apply (4) to get

K/N < 0.39 +0.32(1 — 0.12)? + 0.16/4 = 0.68

Thus compared to standard errors-and-erasures decoding of the
outer code, there is a gain from the small list size of weight
3 errors and also a small gain associated with distinguishing
the different reliabilities.

VI. CONCLUSION

Using a simplified expression for the decoding criterion we
have derived a bound on the error patterns that can be decoded
by the Koetter-Vardy list decoding algorithm. As demonstrated
in several specific examples, the improvements are significant
only for fairly low rates and short lists of input symbols with
high conditional probabilities.

REFERENCES

[1] R. Koetter and A. Vardy, “Algebraic soft-decision decoding of Reed-
Solomon codes,” IEEE Trans. Inform. Theory, vol. 49, pp. 2809-2825,
Nov. 2003.

[2] V. Guruswami and M. Sudan, “Improved decoding of Reed-Solomon
and algebraic-geometric codes,” IEEE Trans. Inform. Theory, vol. 45,
pp. 1757-1767, Sept. 1999.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on January 22, 2010 at 07:15 from IEEE Xplore. Restrictions apply.



