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Carsten Fritsche and Viktor Krozer
Technical University of Denmark, Oersted•DTU, Department of Electromagnetic Systems,

Oersteds Plads 348, 2800 Kgs. Lyngby, Denmark, Phone:+45-45253769, E-mail:vk@oersted.dtu.dk
and Center for Applied Technology and Electronics ATHENE e.V., Darmstadt, Germany

Abstract— A large-signal model for PIN photodetector is
presented, which can be applied to ultra-fast photodetection
and THz signal generation. The model takes into account
the tunnelling and avalanche breakdown, which is important
for avalanche photodiodes. The model is applied to ultra/fast
superlattice photodiodes for THz signal generation. Results
show that the output power at THz frequencies is in the
order of tens of µW. The embedding impedances are found
to be as low as 13Ω.

I. INTRODUCTION

A large amount of literature exists on the performance
and circuit modelling of PIN diodes both for electrical and
optical applications. A number of models exist for the PIN
photodiode, which are in general small-signal models,
including the models for travelling-wave structures [1],
[2], [3], [4]. Most models do net lend themselves to im-
plementation in a circuit simulator, because they are either
based on numerical techniques [5] or are based on black-
box models extracted from small-signal measurements.
Parasitics modelling of fast PIN photodiodes has been
presented by Wang et al .

A PIN photodiode model suitable for circuit simula-
tions has been presented in [6] for avalanche photodiodes
and for reverse bias only. This model has been used as
a basis for the development of the large-signal model for
standard PIN and superlattice PIN photodiodes and has
been employed for the implementation into the circuit
simulator.

This paper gives details on the model and com-
pares results from measurements with simulations. Both
avalanche InGaAs photodiodes as well as GaAs PIN
THz photodiodes are considered in the discussion. To
our knowledge we demonstrate for the first time a PIN
device large-signal model suitable up to THz frequencies
implemented into a commercial CAD tool. The model
is then used for the prediction of the signal output
from the photodetector up to THz frequencies and the
determination of the embedding impedances.

II. PIN PHOTODIODE LARGE-SIGNAL MODEL

The PIN model is based on the drift-diffusion model
with a modified velocity versus field characteristic and
takes into account the rate equations. The following
assumptions are made, which are generally valid for high
speed devices:

1) The depletion width in the n+ and p+ regions is
negligible compared to that in the I-region.

2) The electric field is uniform in the I-region.
3) The electric field is negligible in the n+ and p+

regions.

4) In real devices the I-region contains residual dop-
ing, which is used as a parameter in the model.

The model equations can be divided into those describing
the optical performance and those determining the electri-
cal performance of the device, respectively. Illumination
is currently assumed from the n+ side, but can be changed
to illumination from the p+ side by interchanging the
parameters of the n+-region with those of the p+-region.
A diffusion current conduction is assumed for the highly
doped regions and drift conduction in the I-region. The
rate equations can be given in the following form for the
n+-region:
n-region:

dPn

dt
= PG − Pn

τp
− Ip

q
(1)

i-region: for electrons

dNi

dt
= NGi + vnζnNi + vpζpPi − Ni

τnr
− Ni

τnt
+

In

q
(2)

p-region:
dNp

dt
= NG − Np

τn
− In

q
(3)

where the Pn and Np are the total excess holes and
electrons in the n- and p-regions, Ni are the total excess
electrons in the i-region, q the electron charge, PG and
NG are electron-hole pair generation rates in the n- and
p-regions by incident light, NGi(=PGi) is the generation
rate in the i-region, τp and τn are the hole and electron
life-time in the n- and p-regions, τnr and τpr are the
recombination life-time of electron and hole in the i-
region, τnt and τpt are the electron and hole transit-time
through the i-region, Ip and In are the hole and electron
diffusion current in the n- and p-regions, vn and vp are
the electron and hole drift velocities in the i-region, and
ζn and ζp are the electron and hole impact ionization rates
in the i-region. The schematic structure of a PIN is shown
in fig. 1. The solution of the above equations determines
the charge flow in the device and its frequency and
voltage dependent performance. The solution is found by
applying the according boundary conditions as outlined
in [6]. The electron-hole pair generation rate is given

G(x) = Φ0α exp (−αx) (4)

where Φ0 is the incident photon flux per unit area given
by Pin(1 − R)/Ahν, where R is the facet reflectivity of
the n-region, hν is the photon energy and A is the device
area, and α is the absorption coefficient for the individual
semiconductor layer.
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Fig. 1. Schematic illustration of carrier flow in a PIN diode.

The proposed equivalent circuit has the structure as
shown in Fig. 2. It contains an optical part and an
electronic part. These two are coupled via controlled
current and voltage sources. In the case of multi-section
devices the equivalent circuit is being connected is series
on both the electrical and optical ports. The resistor Ruu

is then employed only once in the circuit, because it
represents the optical power delivered to the substrate.
Adding mirrors can be taken into account by appropriate
manipulation of additional absorption terms. Therefore,
it is believed that the equivalent circuit is rather complete
including the dominant physical phenomena. The optical
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Fig. 2. Electrical and optical equivalent circuit for the PIN photode-
tector.

input power Pin is represented by the equivalent voltage
source. The power Pop represents the amount of the
power Pin that will be dissipated on the resistance Rop

due to generation of electron-hole pairs in the n-layer.
The power Poi is that part of the total power Pin that
will be dissipated on the resistance Roi. Photons that
will be absorbed in the i-layer and generate electron-hole
pairs are represented by the power Pon and its resistance
Ron. The photons that will not be absorbed in the APD
can be represented by the amount of power Puu that is
dissipated on the resistance Ruu.

The rate equations can be transformed to current equa-
tions by multiplying each equation with the electron
charge q. In order to improve numerical accuracy, a
constant Cno is introduced, which can be thought as a
capacitance. Defining the following equivalent voltages

Vp =
qPn

Cno
Vn =

qNp

Cno
Vi =

qNi

Cno
(5)

the rate equations (1),(3) and (??) can be written as

Pop

Vopt
= Cno

dVp

dt
+

Vp

Rp
+ Ip (6)

Pon

Vopt
= Cno

dVn

dt
+

Vn

Rn
+ In (7)

Poi

Vopt
= Cno

dVi

dt
+

Vi

Rnr
+

Vi

Rnt
− Ia − In (8)

where

Rp =
τp

Cno
; Rn =

τn

Cno
; Rnt =

τnt

Cno
;Rnr =

τnr

Cno
;

Ii =
Vi

Rnt
; Ia = CnoVi(vnζn + vpζp) (9)

The diffusion currents can be found solving the continuity
equations for the steady state and applying the appropri-
ate boundary conditions [6]. The steady-state diffusion
currents then are given by

In =
Vn

Rnd
+ βnPin − Idn (10)

Ip =
Vp

Rpd
+ βpPin − Idp (11)

The current through the photodetector is the sum of the
hole diffusion current in the n-region, the current through
the i-region, that includes the electron diffusion current
in the p-region, the displacement current and tunnelling
and parasitic currents

IJ = Ip + Ii + CT
dVJ

dt
+ Ipar (12)

where VJ is the junction voltage, CT = Cs+CJ , Cs is the
parasitic capacitance and CJ is the junction capacitance
and Ipar represents the tunnelling and parasitic current
contributions.

III. IMPLEMENTATION OF THE LARGE-SIGNAL PIN
MODEL

The implementation of the above model has been
pursued with the help of the so called symbolic defined
device (SDD), which is able to model linear and nonlinear
devices and can be used in harmonic-balance simulations.
The SDD model is defined through relations for the
terminal currents and voltages. The major task here is
the appropriate formulation of the individual elements of
the equivalent circuits in order to achieve convergence.
The implemented SDD in Agilent ADS2003C is provided
in fig.3. The model includes bandgap engineering and
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Fig. 3. Equivalent circuit for light input

is currently being extended to super-lattice structures.
The possibility of built-in fields is also considered as
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a function of the bandgap in the individual layers. The
full model is capable of simulations of travelling-wave
structures. It employs a coupled line model for the electri-
cal signal and an optical waveguide. The travelling-wave
model will be subject of another paper.

IV. RESULTS

This circuit has been verified with data available for
an APD and an ultra-fast photodetector. The results for
the DC characteristics for two diodes are provided in
fig. 5. In fig. 5a) a comparison between measured and
simulated results is shown for an avalanche photo diode
(APD) as reported in [6]. The other diode in fig. 5b) has
been developed at the University of Erlangen [] and is part
of a super-lattice nipnip THz photo-diode, which utilizes
several cascaded PIN integrated diodes together with the
according recombination diodes. The DC photocurrent are
according to the expected characterstics. The performance

a)

b)

Fig. 4. Comparison of simulated and measured I/V characteristics of
an APD diode [6] and an ultra-fast PIN diode fabricated by the Univ.
of Erlangen [7].

of the diodes of fig. 5 under illumination is illustrated in
fig. 4. The DC photocurrent is shown in this figure for a
number of optical powers. In the case of the APD diode
only the reverse characteristics are shown in the figure.

Large-signal harmonic-balance analysis can then be
used for the determination of the embedding impedances
for ultra-fast photodiodes. The photodetector has been
simulated in a setup with two laser colors, resulting in a

a)

b)

Fig. 5. Simulated I/V characteristics of an APD diode [6] and an ultra-
fast PIN diode fabricated by the Univ. of Erlangen [7] under illumination
with different optical power levels.

beat frequency, which has been varied from 100 GHz up
to 1000 GHz. The output power versus the beat frequency
for the ultra-fast PIN diode from fig. 5 is provided in
fig. 6 together with the embedding impedances. It can
be verified that the output power drops with frequency
according to 1/f4 which indicates that the diode suffers
from transit time and RC time constant limitations.

The real part of the impedance is relatively low and
equal to RPIN ≈ 13Ω. This indicates that relatively low
impedance embedding circuits or antennas have to be used
in order to match the diode.

V. CONCLUSIONS

The paper presents a large-signal model for PIN diodes
applicable up to THz frequencies. Comparison between
measured and simulated DC and AC characteristics show
excellent agreement. The model can also be used for
travelling-wave photodiodes and the implementation of
the travelling-wave structure into the CAD environment
is currently under way and will be shown during the
conference.
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