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The field dependence of the ac susceptibility of a concentrated frozen ferrofluid containing ultrafine
Fe-C particles of monodisperse nature has been analyzed using static scaling. For the first time, a
divergent behavior of the nonlinear susceptibility of a dipole-dipole interacting system is demonstrated.
From the analysis, the critical exponentsg  4.0 6 0.2 andb  1.2 6 0.1 were extracted. The results
support the existence of a low temperature spin-glass-like phase in interacting magnetic nanoparticle
systems. [S0031-9007(98)07527-9]

PACS numbers: 75.50.Lk, 75.50.Mm, 75.50.Tt

The dynamics of systems of magnetic nanoparticles
has been a subject of considerable interest during the
last decades [1,2] and different, often conflicting, models
have been proposed to explain the observations [3,4].
In one model the interparticle interactions are accounted
for by a change of the energy barriers of the isolated
particles, and this model excludes collective magnetic
behavior of the particles [2,3]. Collective phenomena,
however, play a key role in another model [4]. Hence,
the possible existence of collective behavior and the
existence of a low temperature spin-glass-like phase has
been the subject of much controversy [2–9]. The main
argument for suggesting the existence of a spin-glass
phase is that properties such as frustration and randomness
characterizing a spin glass are also found in dipole-dipole
interacting magnetic particle systems. However, there are
some dissimilarities between these systems: For a spin
glass the flip time of the individual magnetic moments
is of the order of10213 s and independent of temperature
while it can vary from nanoseconds to geological time
scales in a magnetic particle system according tot 
t0 expsKVykBT d, wheret0 , 10212 1029 s, KV is the
anisotropy energy, andkBT is the thermal energy. Since
all particle systems are more or less polydisperse, the
subsequent distribution of anisotropy energies inevitably
implies a distribution of flip times of the individual
magnetic moments. Furthermore, the interaction between
magnetic moments in spin glasses is mostly of short-
range exchange or long-range RKKY type whereas it is
of long-range dipole-dipole type in a magnetic particle
system. Despite these differences it has been shown
by Djurberg et al. [7] that the dynamics of a magnetic
nanoparticle sample containing 5 vol % of amorphous
Fe12xCx (x ø 0.22) particles and an estimated dipole-
dipole interaction strength ofEd2dykB  44 K exhibits a
spin-glass-like critical slowing down close to the extracted
phase transition temperature,Tg  40 6 2 K. These
particles have a nearly spherical shape with a median

diameter of 4.7 nm, and the volume distribution is well
described by a log-normal distribution withsV  0.22
[10]. In the critical region and for the experimentally
accessible time scales this extraordinarily narrow size
distribution implies that the characteristic time scale
corresponding to the inverse of the transition rate for
the largest individual particles is always shorter than the
shortest measurable relaxation time caused by collective
effects [7]. This is a necessary condition for probing
magnetic response governed by a spin-glass-like fixed
point [6,7]. For more details about the sample and the
sample preparation see Refs. [7,10].

In this Letter the same sample as used by Djurberg
et al. [7] for the dynamic study is used to perform a
static scaling analysis of its magnetic response. From
the analysis the transition temperature,Tg, and the critical
exponentsg andb are determined. Values of other critical
exponents are extracted using standard scaling laws.

The appropriate quantity to study in a static scaling
analysis is the order parameter susceptibility,x, which
diverges at the phase transition temperature according to

x ~

√
T
Tg

2 1

!
2g

 e2g , T . Tg . (1)

For spin glasses it can be shown [11,12] that the order pa-
rameter susceptibility can be obtained from measurements
of the nonlinear susceptibility,xnl  x0 2 myH, where
x0 is the zero field susceptibility and the magnetization,
m, is written as

m  x0H 1 x2H3 1 x4H5 1 · · · . (2)

In this studyH is composed of an ac field with angular
frequencyv and amplitudeh superimposed on a dc field,
H0; i.e.,Hstd  H0 1 h sinsvtd. Forh ø H0 the lowest
order terms of the nonlinear susceptibility become

xnl  23x2H2
0 2 5x4H4

0 2 · · · . (3)
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Suzuki has suggested the following general scaling law
for the nonlinear susceptibility of spin glasses:

xnl  ebG

√
H2

eg1b

!
, (4)

whereGsxd is a scaling function [12]. An expansion of
Gsxd in powers ofx yields

xnl  a1e2gH2 1 a2e2s2g1bdH4 1 · · · , (5)

and from a comparison to Eq. (3) it is seen that2x2
diverges likee2g in the critical region. Geschwindet al.
have later rewritten Eq. (4) in the form

xnl  H2bysg1bdG̃

µ
e

H2ysg1bd

∂
, (6)

whereG̃sxd is another scaling function with an argument
linear ine [13].

A noncommercial carefully shielded SQUID magne-
tometer was used for the magnetic measurements [14].
The ac field had the amplitudeh  4 Aym while the su-
perimposed dc field was stepwise increased in logarithmic
intervals from typically 10 to 1900 Aym using a long so-
lenoid working in persistent mode to ensure a good field
stability. The temperature was controlled with an accu-
racy better than 1 mK.

One property of a magnetic particle system that can
render this kind of study more difficult is the nonlinear
response of the isolated particles. It is therefore an ad-
vantage if the nonlinear susceptibility of the isolated par-
ticles is small enough to be negligible compared to the
collective nonlinear response. The response of the iso-
lated particles was checked using a dilute sample (15 3

1023 vol %) where the mean interaction strength between
particles is very weak. The magnetization of the dilute
sample is plotted vsH0yT in Fig. 1 for the temperatures
T  55 and 80 K and fields up to 6.4 kAym (80 Oe).
The corresponding data for the concentrated sample
is plotted for comparison. As expected for a collec-
tion of randomly distributed noninteracting particles, the
magnetization data corresponding to different tempera-
tures and fields collapse onto one curve when plotted
vs the scaling variableH0yT [15] and, more important,
no significant effect of nonlinearity can be observed for
H0yT up to80 Am21 K21. Since all measurements of the
nonlinear susceptibility of the concentrated sample were
made below 1.9 kAym (24 Oe) and for temperatures be-
tween 55 and 80 K, the nonlinear susceptibility of the iso-
lated particles can safely be neglected in this study.

Another complication that may arise in dipole-dipole
interacting systems regards finding the local mean field
acting on the individual magnetic dipole moments for
a given sample shape. This problem has at present
no generally accepted solution [2,16]. Moreover, even
if such a model did exist, the actual sample shape
is unknown if it changes when going from the liquid
state at room temperature to the solid state at the
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FIG. 1. The magnetization vsH0yT for the dilute sample
(squares) and the concentrated sample (circles) for the tem-
peratures 55 and 80 K (filled and open symbols, respectively)
and fields up to 6.4 kAym (80 Oe). The data on the dilute
sample were normalized to the concentration of the concen-
trated sample. The straight lines are included for visual clarity.

measuring temperatures. However, provided that certain
conditions prevail, the existing models do not exclude
the possibility of a local mean field acting on the
individual dipoles being equal to the applied field. The
effect of the demagnetization field has been checked by
measuring the spontaneous magnetic fluctuations in zero
field. The imaginary part of the susceptibility,x 00sv, T d,
can be calculated from the magnetic noise power spectra,
Psv, T d, using the fluctuation dissipation theorem [17]:

Psv, T d  2kBT
x 00sv, T d

v
. (7)

From a comparison of the calculated and measured
x 00sv, T d curves it is then possible to find the mean lo-
cal field acting on the individual magnetic dipole mo-
ments. A large number of time traces of the magnetic
noise were recorded at different temperatures and subse-
quently Fourier transformed to obtain noise power spec-
tra in the frequency range 10 mHz–1 kHz. An accurate
value of the calibration constant used in the calculation of
x 00sv, T d was obtained by comparing calculated and mea-
suredx 00 at 40 K and at low frequencies where the noise
power spectrum is large in magnitude. The tempera-
ture dependence of the measured imaginary part of the ac
susceptibility is displayed in Fig. 2 together with the cor-
responding results calculated from noise measurements.
The measuredx 00sv, T d was plotted without correcting
for demagnetizing and Lorentz cavity fields and, since the
agreement between the measured and calculated curves is
good, the mean local field acting on the individual dipole
moments can be set equal to the applied field.

The imaginary part of the ac susceptibility is shown in
the inset of Fig. 2 for the frequenciesvy2p  10 mHz
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FIG. 2. x 00sv, T d vs temperature for the concentrated sample.
The frequencies are from left to rightvy2p  17 mHz,
170 mHz, 1.7 Hz, 17 Hz, and 170 Hz (full lines). The symbols
showx 00sv, Td calculated from noise measurements. The inset
shows x 00sv, T d vs temperature forH0  0 (open symbols)
and 400 Aym (5 Oe) (filled symbols) and the frequencies
vy2p  10 mHz (circles) and 1.7 Hz (squares).

and 1.7 Hz and the dc fieldsH0  0 and 400 Aym.
When a dc field is applied, the magnitude of the suscepti-
bility is suppressed compared to the zero field susceptibil-
ity. Moreover, the temperature corresponding to the onset
of a nonzerox 00 decreases with increasing field implying
that the temperature at which the magnetic response falls
out of equilibrium decreases with increasing field. In a
static scaling analysis it is crucial to use nonlinear suscep-
tibility data corresponding to thermodynamic equilibrium,
and therefore the frequencyvy2p  1.7 Hz is used in
this study to probe the equilibrium magnetic response
down toT  64 K, and the frequencyvy2p  10 mHz
is used for lower temperatures down toT  55 K.

Since the time scale of the experiments is at most 4
orders of magnitude larger than the individual particle
relaxation time in the temperature range used for the
scaling analysis [7], the temperature range, where the
static susceptibility can be observed, is restricted to a
region relatively far fromTg and corrections to scaling
might therefore be important. The situation is reminiscent
to Monte Carlo (MC) simulations of model spin glasses
where the time scale of the experiment is typically only
4–7 orders of magnitude larger than the individual spin
flip time. Ogielski [18] performed MC simulations of
a three-dimensional short-range Ising spin glass on a
special purpose computer and found that the temperature
dependence of the correlation time followed a critical
behavior up to the reduced temperaturee ø 0.55. At
higher temperatures a considerable deviation from critical
behavior was observed because the correlation length at
these high temperatures extends only over a few lattice
spacings. In the present study the nonlinear susceptibility
was measured up toT  80 K corresponding to a reduced

temperature of order unity. A crossover to a noncritical
behavior at the highest measuring temperatures may
therefore be expected.

The nonlinear susceptibility,xnl, is presented vs field
in a log-log plot in Fig. 3(a) for some temperatures
between 55 and 78 K. As expected from Eq. (5) the
low-field behavior of xnl is proportional to H2 and,
hence,x2sT d can be determined. The extracted values of
x2sT d are shown vs the reduced temperature in Fig. 3(b)
for temperatures between 55 and 80 K. A best power-
law fit to Eq. (1) using temperatures belowT  69 K
(e ø 0.77) is shown as the full line in Fig. 3(b) and yields
Tg  39 6 1 K and g  4.0 6 0.2. By also including
thex2sT d data obtained at higher temperatures a deviation
from a straight line is observed which drivesTg to
a higher value and subsequentlyg to a lower value.
Accordingly, a best fit using data in the temperature
range 55–80 K yieldsTg  42 6 2 K and g  3.5 6

0.4. The upward deviation of the experimentalx2sT d data
from the extrapolated power-law fit (dotted line) at higher
temperatures in Fig. 3(b) is as expected for a crossover
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FIG. 3. (a)xnlsT , H0d vs H0 for the temperatures 55, 57, 59,
61, 64, 67, 70, 74, and 78 K (from left to right). (b)2x2sTd
vs the reduced temperature,e  sTyTg 2 1d, with Tg  39 K.
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FIG. 4. Scaling plot of the nonlinear ac susceptibility for
the temperatures 55, 56,. . . , 69 K, and dcfields between 10
and 1900 Aym. The inset shows a magnified part of the
scaling plot.

to noncritical behavior [18]. The present extracted value
of Tg is within the rangeTg  40 6 2 K, previously
estimated using a dynamic scaling analysis [7].

In order to also extract the exponentb, an overall
scaling of the measured nonlinear susceptibility data has
been performed using the equation of state [Eq. (6)].
The data are plotted accordingly in Fig. 4 using the
extractedTg  39 6 1 K and g  4.0 6 0.2. The best
data collapse is obtained withb  1.2 6 0.1. It is
now possible to derive other critical exponents from
scaling laws. The exponent for the specific heat is
a  2 2 2b 2 g  24.4 6 0.4, and the exponentn
describing the divergence of the correlation length,j, as
j ~ e2n is determined from the hyperscaling law,n 
s2 2 adyd  2.15 6 0.15, where d denotes the spatial
dimension. By adopting the transition temperature found
in this study, a reanalysis of the data used for the dynamic
scaling analysis in Ref. [7] giveszn  12.5 6 1.5. The
exponent, z, relating the correlation time,t, to the
correlation length ast ~ jz is thenz  5.9 6 0.4. This
value is similar to estimates from MC simulations on
model spin glasses wherez  5.0 6 0.7 [18,19].

In conclusion, the critical exponents in a dipole-dipole
interacting magnetic nanoparticle system have been deter-
mined for the first time using static scaling analysis of the
nonlinear susceptibility. The inherent properties of a mag-
netic particle system imply that the scaling analysis must
be performed at comparably large reduced temperatures
which may yield higher apparent values of the critical ex-
ponents [20]. However, according to extensive MC simu-
lations on an Ising spin-glass system, the critical region
is found to extend up to reduced temperaturese ø 0.55
[18]. In the present analysis this is supported by the ob-
servation of corrections to scaling at reduced temperatures,
e * 0.77. From the analysis, the critical temperature

Tg  39 6 1 K and the critical exponentsg  4.0 6 0.2
andb  1.2 6 0.1 were extracted. Corresponding values
for short-range Ising and Heisenberg spin glasses fall in the
rangeg  4.0 6 0.5 andb  0.6 6 0.1 [13,19,21–23].
The larger value ofb obtained for the magnetic nanopar-
ticle system may indicate a system closer to its lower criti-
cal dimension sinceb is predicted to diverge at its lower
critical dimension [24]. It could also be that a system
with long-range dipole-dipole interaction is better com-
pared with RKKY spin glasses. Unfortunately, there is
a large diversity in the reported values for the critical ex-
ponents for metallic spin glasses which makes such a com-
parison unreliable [21].
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