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Recent double-slit interference experiments@Schusteret al., Nature~London! 385, 417 ~1997!# have dem-
onstrated the possibility of probing the phase of the complex transmission coefficient of a quantum dot via the
Aharonov-Bohm effect. We propose an extension of these experiments: an ac voltage imposed on the side gate
with the concomitant photonic sidebands leads to additional structure both in the amplitude and in the phase of
the Aharonov-Bohm signal. Observation of these effects would be a definitive proof of coherent absorption and
reemission of photons from the ac source.@S0163-1829~98!08736-0#

Phase coherence is the hallmark of all mesoscopic trans-
port phenomena. Yet normal transport measurements yield
information only about the magnitude of the transmission
amplitude, and not its phase. In a groundbreaking set of ex-
periments, Yacobyet al.1 and Schusteret al.2 recently dem-
onstrated that a phase measurement is nevertheless possible
in a mesoscopic double-slit geometry. Their experimental
protocol can be summarized as follows: A magnetotransport
measurement is performed on an Aharonov-Bohm ring with
a quantum dot fabricated in one of its arms. If the quantum
dot supports coherent transport, the transmission amplitudes
through the two arms interfere. A magnetic field induces a
relative phase change 2pF/F0 between the two transmis-
sion amplitudest0 and t̃ QD , leading to an oscillatory com-
ponent to the conductanceg(B)5(e2/h)T(B), with

T~B!5T ~0!12 Re$t0* t̃ QDe2p iF/F0%1¯ , ~1!

whereF is the flux threading the ring,F05hc/e is the flux
quantum, and where the ellipsis represents higher harmonics
due to multiple reflections. The amplitudest0 and t̃ QD give
thecoherentparts of the two sets of paths joining the emitter
and the collector; the incoherent components lead to a struc-
tureless background signal, which can be neglected in the
forthcoming analysis. In the experiments, an oscillatory com-
ponent in magnetoconductance of this form was clearly ob-
served thus demonstrating coherent transmission through the
arm with the dot.1,2 In the experiment of Yacobyet al.,1 the
Aharonov-Bohm phase could take on only two values 0 and
p as a consequence of microreversibility in a two-terminal
geometry.3,4 The second generation of experiments,2 in a
four-terminal geometry, allowed a determination of the con-
tinuous phase shift of the transmission amplitude through the
dot. The success of these experiments gave rise to a number
of other works which concentrated on refining the interpre-
tation of the experimental results.3–6 Yet, the experiments
also suggest application to other phase-coherent transport
processes. One particular example, which has been of con-
siderable recent interest both experimentally7–11 and
theoretically,12–17 is photon-assisted tunneling. While

photon-assisted tunneling~PAT! is intrinsically a coherent
phenomenon, existing measurements of PAT are insensitive
to the phase of the transmitted electrons, and do not directly
demonstrate coherence in the presence of the time-dependent
field. Here we propose a measurement of photon-assisted
tunneling through a quantum dot in the mesoscopic double-
slit geometry described above~see Fig. 1!. In essence, we
propose a combination of the experiments of Kouwenhoven
and co-workers,8,11 where a microwave-modulated side-gate

FIG. 1. Schematic layout of the proposed multiterminal double-
slit interference experiment. The device consists of an Aharonov-
Bohm ring with a quantum dot~QD! in one arm, defined with
metallic gates~shaded areas! on the 2D electron gas. Electron paths
~shown as dashed lines! originating from the emitter (E) interfere at
the collector (C). A time-dependent voltageV(t) is applied to the
quantum dot via a side gate. The reflector gatesR1¯4 , shown as
white areas, direct multiply reflected paths to the common base
(B), thus preventing them from contributing to the interference
signal, in accordance with Eq.~1!.
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voltage gave rise to photon-assisted tunneling through a
quantum dot, and the interference experiments of Refs. 1 and
2.

For an experiment of this type, we calculate the coherent
transmission amplitude through the quantum dot in the pres-
ence of an arbitrarily strong ac potential applied to the side
gate. Our theoretical results indicate that phase-coherent ab-
sorption and reemission of photons can be unambiguously
demonstrated via phase measurements at the sidebands of the
main transmission resonance. In addition, for large driving
amplitudes the phase shift associated with the main transmis-
sion resonance can be reversed from its usual behavior, pro-
viding a direct demonstration of coherence in a strong ac
potential.

We focus on transport in the neighborhood of a single
Coulomb oscillation peak associated with a single nondegen-
erate electronic level of the quantum dot.18 The effect of the
ac side-gate voltage is described entirely through the time-
dependent energy of this level,

e~ t !5e0~Vs!1Vac cosvt, ~2!

where the static energy of the levele0 depends on the dc
side-gate voltageVs . All other levels on the dot can be ne-
glected provided the ac amplitudeVac and the photon energy,
\v are small compared to the level spacing on the dot.

The energy dependence of the coherent part of the trans-
mission amplitudet̃ QD(e) through the arm containing the
quantum dot is determined by the transmission amplitude
tQD(e) through the dot,t̃ QD(e)}tQD(e). In the absence of
an ac potential, a suitable model for the dot transmission
amplitude is the Breit-Wigner form

tQD~e!5
2 iAGLGR

e2e0~Vs!1 iG/2
, ~3!

whereG5GL1GR is the full width at half maximum of the
resonance on the dot due to tunneling to the left and right
leads. Equation~3! implies a continuous phase accumulation
of p in the transmission amplitude as the Coulomb blockade
peak is traversed.~Note that the Breit-Wigner form is exact
for a noninteracting system withG independent of energy.!

In the dynamic case, the simple Breit-Wigner description
must be generalized, and the object to evaluate is the
S-matrix element.19,20 Provided interactions in the leads can
be neglected, the elastic transmission amplitudetQD(e) can
be written as the energy-conserving part of theS matrix be-
tween the left and right leads,

lim
e8→e

^e8,RuSue,L&5d~e82e!tQD~e!. ~4!

TheS matrix is simply related to the retarded Green function
of the level on the dot, including both tunneling to the leads
and the ac potential,19

^e8,RuSue,L&52 i
AGLGR

2p E E dt dt1ei ~e8t2et1!Gr~ t,t1!.

~5!

Combining Eqs.~4! and ~5! allows us to write

tQD~e!52 iAGLGR^A~e,t !& t , ~6!

where the brackets denote a time average, and where

A~e,t !5E dt1ei e~ t2t1!Gr~ t,t1!. ~7!

For the time-dependent energy level given by Eq.~2!, we
find20

Gr~ t,t1!52 iu~ t2t1!expF2
G

2
~ t2t1!2 i E

t1

t

dt8e~ t8!G ,
~8!

so that

^A~e,t !& t5 (
k52`

` Jk
2~Vac/\v!

e2e0~Vs!2k\v1 iG/2
. ~9!

A combination of Eqs.~6! and~9!, evaluated at the Fermi
energy, gives the relevant transmission amplitude, and hence
the amplitude of the Aharonov-Bohm oscillations atT
50 K. At finite temperatures one must computetQD5*de
(2] f 0 /]e)tQD(e), where f 0(e) is the Fermi function, and
the final result is

tQD5S 2
G

4pTD (
k52`

`

Jk
2~Vac/\v!

3c8F1

2
2

i

2pT S m2e0~Vs!2k\v1 i
G

2 D G , ~10!

wherec8 is the derivative of the digamma function, andm is
the chemical potential in the leads.

Equation~10! is the main result of this paper, and in what
follows we shall evaluate it in several cases of interest. We
emphasize that a conventional conductance measurement
would yield information only about the time average ofthe
squareof the transmission amplitude, and the double-slit ge-
ometry is necessary in order to probe the phase. Figure 2
shows the computed magnitude oftQD ~bottom! and its

FIG. 2. Temperature dependence of the phase shiftDf ~top
panel! and the square of the amplitude~bottom! of tQD . The level
width is G/250.1, in terms of which the other parameters areVac

51.0, v51.0, andT50 ~solid line!, 0.1 ~dashed line!, and 0.5
~dash-dotted line!. For comparison, theT50 time-independent re-
sults are shown as dots, cf. Eq.~3!.
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phase~top!, as a function of the level energye0(Vs). As
compared to the time-independent case~shown as a dotted
line!, several features are noteworthy. The magnitude oftQD

shows photonic sidebands, reminiscent of those seen in
transmission through a microwave modulated quantum dot.8

However, there is an important difference from the usual
case of photon-assisted tunneling. The amplitude of the
Aharonov-Bohm oscillation is sensitive only to the time av-
erage of the transmission amplitudetQD . Hence only elastic
transmission through the dot contributes, i.e., the net number
of photons absorbed from the ac field must be zero. The
sideband at, say,e5e0(Vs)2\v corresponds to a process in
which an electron first absorbs a photon to become resonant
at energye0(Vs), and subsequently reemits the photon to
return to its original energy.

Perhaps most interesting are the features appearing in the
phase: the phase shift shows a nonmonotonic behavior, with
pronounced resonances located at the energies corresponding
to the photonic sidebands. The strengths of these phase reso-
nances are strongly dependent on the ac amplitudeVac, and
in Fig. 3 we show the computed signal as a function of both
e0(Vs) and the amplitude of modulation. In Fig. 4 we high-
light another interesting consequence of Eq.~10!: it is pos-

FIG. 3. The phase shiftp2Df ~top panel! and the square of the amplitude~bottom! for v51.0, G/250.1, andT50. The energy axis
corresponds toe0(Vs) with m50.

FIG. 4. Temperature dependence of the phase shift~top panel!
and the amplitude~bottom! of tQD , for Vac52.405, v51.0, G/2
50.1, andT50, 0.1, and 0.5, with line types as in Fig. 2. Note the
qualitative differences as compared to Fig. 2: suppression of the
main transmission peak, and the negative slope of the phase shift at
e050.
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sible to quenchthe main transmission peak~bottom panel!
entirely,21 or change the signof the slope of the phase at
resonance by adjusting the ratioVac/\v to coincide with a
zero of the Bessel functionJ0 ~top!. This phenomenon is
mathematically analogous to the recently observed absolute
negative conductivity in THz-irradiated superlattices;9 in our
case, however, it is thephaserather than the current that
displays this behavior.

In summary, we have proposed an experiment to probe
phase coherence in a quantum dot driven by a strong ac

potential. The phase measurement relies on the mesoscopic
double-slit geometry pioneered in Refs. 1 and 2. The ampli-
tude of Aharonov-Bohm oscillations reflects the amplitude
for coherent transmission through the dot with zero net ab-
sorption of photons. We find that coherent absorption and
reemission of photons can be unambiguously detected via
phase measurement at sidebands of the main transmission
resonance through the quantum dot.

The authors acknowledge useful comments from Karsten
Flensberg, Ben Yu-Kuang Hu, and Andreas Wacker.
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