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Maximum supercurrent in two Josephson-junction stacks: Theory and experiment
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The interaction between two long Josephson junctions in a stack is investigated experimentally in the
absence of applied magnetic field. Mutual interaction is observed when both junctions or only one junction in
the stack is in the zero voltage state. To account for the observed phenomena we propose a model that takes
into account the nonuniform self-fields generated by the bias currents.@S0163-1829~98!02834-3#

INTRODUCTION

In recent years the double-barrier stacked structure in
which two Josephson junctions have in common the middle
electrode has received much attention. This structure is re-
garded as the basic block of some layered high-Tc supercon-
ducting materials~Bi-Sr-Ca-Cu-O family!, so stimulating a
strong theoretical interest. However, for the variety of new
physical phenomena exhibited by the double-barrier stack, it
is also regarded as an interesting device with potential appli-
cation in superconducting electronics, principally as a three-
terminal device. In fact, in the three-terminal configuration
the device is shown to support a variety of flux motion syn-
chronization phenomena, useful to the improvement of the
existing fluxon oscillators. Moreover, the nonequilibrium
phenomena that can occur in the structure might also be con-
sidered for applications. For example, by polarizing one of
the two junctions of the stack~generator junction! at a volt-
age larger than the gap sum voltage we can inject quasipar-
ticles in the intermediate~common! electrode, causing a qua-
siparticle excess in the same electrode. Some of these excess
quasiparticles can tunnel the barrier of the second junction
~detector junction! with a modification of the quasiparticle
curve ~rise of the subgap current and depression of the gap
voltage!. Such a behavior could be attractive for the imple-
mentation of a transistorlike device. So far, there are some
open questions concerning the dominant mechanism of inter-
layer coupling in this system. Nonequilibrium injection of
quasiparticles and suppression of the order parameter might
play an important role in the case of a very thin middle
electrode~thinner than the coherence lengthj), very high
Josephson current density, and very small junctions. The in-
ductive~or magnetic! coupling, which is due to the screening
currents in the common electrode when its thickness is about
equal or smaller than the London penetration depthlL , is
regarded as the dominant one, especially when the physical
dimensions of the junctions are larger than the Josephson
penetration lengthlJ . In fact such a coupling, which has
been elegantly formalized in a model1 for the multilayered
structures, accounts for many dynamical phenomena in long

stacked junctions, including synchronization of fluxon mo-
tion. If we remain in the limit of the inductive coupling, we
expect that for a full description of a three-terminal device
we have to take care of the geometrical factors, i.e., we must
include in a realistic model the effects due to the boundary
conditions that add up to the bulk magnetic interaction. In
other words, due the magnetic nature of the coupling, the
self-fields generated by the currents feeding the device must
be taken into account.

The above considerations concerning the dominant
mechanism for the interaction are suggested by the experi-
mental evidence that the maximum supercurrent in one junc-
tion of the stack depends on the value of the bias current and
of the voltage across the other junction. In this paper we
report on the measurements of the maximum supercurrent in
three terminal devices consisting of two long stacked Joseph-
son junctions with adouble overlapgeometry. We also de-
scribe a theoretical procedure to include the geometrical ef-
fects in three terminal devices and compare the experimental
data with the prediction of the model. The paper is organized
as follows. In Sec. I we present the general two-dimensional
inductive model for a two junction stack and its application
to the special case of thedouble overlapgeometry. In the
one-dimensional approximation for this geometry we show
how the self-fields generated by the bias currents translate
into the model of coupled sine-Gordon equations. The real-
istic situation of nonuniform self-fields is considered as well
as the classic uniform approximation. In Sec. II we present
experimental results demonstrating static interactions be-
tween junctions in the stack. We discuss the possible mecha-
nisms that could be causing the observed interactions and we
show that the dominant one is the nonuniform current distri-
bution of the bias currents. Experimental results are then
compared with the numerical results of the proposed model.

I. TWO-DIMENSIONAL INDUCTIVE MODEL
FOR A TWO JUNCTION STACK

We are considering the stack configuration and orienta-
tion shown in Fig. 1; the bottom and the top junctions will be
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named, respectively,A andB. For the sake of simplicity we
shall assume that the external electrodes are much thicker
than the London penetration depthlL ; this assumption, of
course, does not apply to the middle electrode. Moreover, we
are also assuming~but this assumption can be easily re-
lieved! that the two junctions are identical. The basic steps of
this derivation closely follow the classical approach for
single junctions ~see, e.g., Ref. 2!. We start from the
Ginzburg-Landau equation

¹u5
2p

F0
S A1

4p

c
lL

2JD ~1!

that we shall integrate along the path shown in the figure. We
first focus the attention on the junction defined by the elec-
trodes 2 and 1 in the figure. Integrating Eq.~1! along the path
CA2 in the middle electrode to the barrier we obtain

u2~x1dx!2u2~x!5
2p

F0
S E

CA2

A•dl1
4p

c
lL

2Jx~0!dxD .

Integrating Eq.~1! along the pathCA1 in the bottom elec-
trode we have, instead,

2u1~x1dx!1u1~x!5
2p

F0
S E

CA1

A•dlD
as we may choose the side of the path parallel to thex axis to
make negligibleJx . Adding these two equations and defin-
ing w[u22u1 we get

w~x1dx!2w~x!5
2p

F0
S R A•dl1

4p

c
lL

2Jx~0!dxD ,

where the barrier thickness has been neglected. The last
equation can be rewritten as

dw5
2p

F0
S FA~Hy!1

4p

c
lL

2Jx~0!dxD ,

whereFA (Hy) is the flux of they component of the mag-
netic field threading the integration path for junctionA.

Following the same procedure, we will get an analogous
equation for the other junction:

dc5
2p

F0
S FB~Hy!2

4p

c
lL

2Jx~0!dxD ,

wherec[u32u2 .
Dividing the last two equations bydx we may write

wx5
2p

F0
S FA~Hy!

dx
1

4p

c
lL

2Jx~0! D , ~2a!

cx5
2p

F0
S FB~Hy!

dx
2

4p

c
lL

2Jx~0! D . ~2b!

For a generic orientation of the magnetic field in the plane of
junctions, we have to take into account thex component of
the field. Applying the same procedure to a path in thez-y
plane and taking care of the fact that the sign of the integra-
tion path is determined by sign ofHx , we find similar equa-
tions, but with opposite sign:

wy52
2p

F0
S FA~Hx!

dy
1

4p

c
lL

2Jy~0! D , ~3a!

cy52
2p

F0
S FB~Hx!

dy
2

4p

c
lL

2Jy~0! D . ~3b!

To evaluate terms in Eqs.~2! and~3! we need an expression
for H(z) and forJ(z).

An expression for the fieldH(z)5@Hx(z),Hy(z),0# can
be obtained from London equation

]2H

]z2
5

1

lL
2

H ~4!

with the proper boundary conditions~b.c.!. If H1 andH2 are
the magnetic fields in the junction barriers, the solutions of
Eq. ~4! will decrease exponentially in electrodes 1 and 3,
while in the middle electrode we get

H~z!5
H11H2

2

cosh~z/lL!

cosh~d/2lL!
1

H22H1

2

sinh~z/lL!

sinh~d/2lL!
.

From this equation we may now also calculate the screening
current Jx(0) in the middle electrode~for the other elec-
trodes we already know that it will be exponentially decreas-
ing as we move from the internal surface to the outside!.
From Maxwell equation

¹3H5
4p

c
J, ~5!

we obtain

Jx~0!52
c

4plL
S H2y2H1y

2

1

sinh~d/2lL! D ,

Jy~0!52
c

4plL
S H2x2H1x

2

1

sinh~d/2lL! D .

From this, we may write our fundamental equations~2!
and ~3! as

FIG. 1. Sketch of the stack geometry.
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wx5
2p

F0
d8~H1y1«H2y!, ~6a!

cx5
2p

F0
d8~H2y1«H1y!, ~6b!

wy52
2p

F0
d8~H1x1«H2x!, ~6c!

cy52
2p

F0
d8~H2x1«H1x!, ~6d!

where we have defined

d8[t1lL1lLcothS d

lL
D

and

«[2
lL

sinh~d/lL!

1

@ t1lL1lLcoth~d/lL!#
. ~7!

If d/lL→` ~very thick intermediate electrode!, «
→0, d85t12lL , as we should expect in the limit of non-
interacting junctions. In a more compact form, the obtained
phase-field relations are

¹x,yw5
2p

F0
d8~H11«H2!3 ẑ, ~8a!

¹x,yc5
2p

F0
d8~H21«H1!3 ẑ. ~8b!

We have now to combine the Maxwell equations with the
Josephson relations. Thez component of Eq.~5! in the two
barriers is written as

]H1y

]x
2

]H1x

]y
5

4p

c
J1z , ~9a!

]H2y

]x
2

]H2x

]y
5

4p

c
J2z , ~9b!

where

J1z5J0sin~w!1C
]V1

]t
1

V1

R
,

J2z5J0sin~c!1C
]V2

]t
1

V2

R
,

C5
e r

4pt
; V15

\

2e
w t ; V25

\

2e
c t .

Substituting into Eqs.~9!, taking into account Eqs.~8!, we
obtain the two equations

wxx1wyy2
1

c̄2
w tt5

1

l j
2
sin~w!1āw t1«~cxx1cyy!,

~10a!

cxx1cyy2
1

c̄2
c tt5

1

l j
2
sin~c!1āc t1«~wxx1wyy!.

~10b!

were we have introduced the Swihart velocity

c̄5cA t

e rd8~12«2!
, ~11!

the Josephson penetration depth

lJ5A \c2

8ped8~12«2!J0

, ~12!

and the~dimensional! loss parameter

ā5
d8~12«2!4p

c2R
. ~13!

So far no direct reference to the geometry of the stack has
been necessary. Geometric considerations enter, of course,
through the boundary conditions. The appropriate b.c.~Neu-
mann type! require specification of normals components of
¹w and¹c at the junctions boundaryC1 andC2 . By Eqs.
~8! we have

¹w•n1̂uC1
5

2p

F0
d8~H11«H2!3 ẑ•n1̂uC1

, ~14a!

¹c•n2̂uC2
5

2p

F0
d8~H21«H1!3 ẑ•n2̂uC2

, ~14b!

wheren1̂ andn2̂ are the unit normal vector of contoursC1
and C2 , respectively. In the special case of rectangular ge-
ometry (0<x<L; 0<y<W) these b.c. became

wxu0,L5
2p

F0
d8~H1y1«H2y!u0,L , ~15a!

cxu0,L5
2p

F0
d8~H2y1«H1y!u0,L , ~15b!

wyu0,W52
2p

F0
d8~H1x1«H2x!u0,W , ~15c!

cyu0,W52
2p

F0
d8~H2x1«H1x!u0,W ~15d!

where the fields include both self-fields~generated by the
bias currents! and externally applied fields.

A. One-dimensional approximation
for the double overlapgeometry

We will consider the special case of the one-dimensional
approximation for thedouble overlapgeometry~see Fig. 2!,
that has been extensively investigated experimentally and
has demonstrated very rich dynamics, also without applied
magnetic field.3,4 In this geometry the two junctions can be
biased independently. To make our approximation to the
one-dimensional case we will proceed as for the single junc-
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tion. SinceW!l j we expect the phases and fields to depend
very weakly~the phases at most quadratically5 and the field
at most linearly! on y. To the first order inW, integrating
Eqs.~10! alongy, betweeny50 andy5W, and using Eqs.
~15! we have

wxx2
1

c̄2
w tt5

1

l j
2
sin~w!1āw t1«cxx1GA~x!, ~16a!

cxx2
1

c̄2
c tt5

1

l j
2
sin~c!1āc t1«wxx1GB~x!, ~16b!

where

GA~x!5
c

4plJ
2J0W

@H1x~x,W!2H1x~x,0!#, ~17a!

GB~x!5
c

4plJ
2J0W

@H2x~x,W!2H2x~x,0!#. ~17b!

As the bias currents flow in they direction ~see Fig. 2!,
the magnetic field in this same direction will be negligible,
so for this geometry self-fields do not enter in the boundary
conditions of the one-dimensional approximation. Evaluation
of bias-dependent termsGA andGB depends on the assump-
tions made for the currents distributions into the electrodes.
Here we will consider the classical assumption of uniform
current distribution and the case of nonuniform current dis-
tribution.

1. Uniform current distribution

If the bias current distribution into the elecrodes is as-
sumed uniform, then the fields of interest are

H1x~0!5
2p

c

1

L
~ I A2I B!, ~18a!

H1x~W!52
2p

c

1

L
~ I A1I B!, ~18b!

H2x~0!5
2p

c

1

L
~ I B2I A!, ~18c!

H2x~W!52
2p

c

1

L
~ I A1I B!. ~18d!

From Eqs.~17! we have

GA~x!52
I A

LlJ
2J0W

52
1

lJ
2

I A

I 0
[2

1

lJ
2
gA , ~19a!

GB~x!52
I B

LlJ
2J0W

52
1

lJ
2

I B

I 0
[2

1

lJ
2
gB . ~19b!

Inserting the last two equations in Eqs.~17!, normalizing the
lengths with respect tol j and the time to the inverse ofv j

5 c̄/l j , we finally find

wxx2w tt5sin~w!1aw t1«cxx2gA , ~20a!

cxx2c tt5sin~c!1ac t1«wxx2gB , ~20b!

wx~0!5wx~ l !5h~11«!, ~20c!

cx~0!5cx~ l !5h~11«!, ~20d!

with l 5L/lJ anda5(1/R)A\/(2eCJ0). Theh term in the
boundary conditions accounts for an external magnetic field
~e.g., given by a coil! parallel to they direction, normalized
with respect tol j (12«2)(4p/c)J0 .

2. Nonuniform current distribution

It is well known6,7 that the current distribution in a long
and thin strip is highly nonuniform across its widthL. In the
past, this fact has been considered for explanation8–10 of de-
viation from ideal behavior of the singleoverlap junctions.
In fact, these junctions consist of an interruption by an oxide
layer of a long superconducting strip and, according to the
shortening principle,11 the real current distribution is as the
current distribution in the strip.

When the film thicknessd is comparable with the penetra-
tion depthlL and the widthL is much greater thanlL , so
that Ld@lL

2 , a good approximation for the linear current
density in an isolated long strip is:6,7,12,13

J~x!5
I

pL

L

Ax~L2x!
. ~21!

Near the edges of the strip the distribution~21! has an expo-
nential correction that, extending over a length approxi-
mately equal tolL , prevents from singularities atx50 and
x5L and sets a relation between the current density at the
edges and that at the center13

J~0!

J~L/2!
5

1.165

lL
ALd

a
, ~22!

wherea is a constant near unity.
In our geometry~see Fig. 2! the distribution Eq.~21! is

appropriate for the middle electrode. For the outer electrodes
we also expect a nonuniform current distribution, but much
less drastic. For the current component whose magnitude is
the same in both electrodes but whose flow~relative to they
direction! is opposite, we can expect a current distribution

FIG. 2. Double overlap geometry.
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almost uniform because the separation between them is very
small ~typically of order of d'lL). From the geometrical
symmetry, it may also be assumed that the current coming
from the middle electrode is divided equally into the two
outer electrodes. This gives rise to a current component in
the outer electrodes having the same magnitude and polarity.
When we expressI A and 2I B as I A5(I A1I B)/21(I A
2I B)/2 and2I B52(I A1I B)/21(I A2I B)/2, their first and
second terms correspond to the opposite and equal polarity
components, respectively. For the calculation inH1x(W) and
H2x(W), the contributions from the second terms in the two
equations are canceled when summed. For what concern the
first terms, we can assume a uniform current distribution as
described above. By these considerations the fields of inter-
est are

H1x~0!5
2p

c

1

L
~ I A2I B!

L

pAx~L2x!
, ~23a!

H1x~W!52
2p

c

1

L
~ I A1I B!, ~23b!

H2x~0!5
2p

c

1

L
~ I B2I A!

L

pAx~L2x!
, ~23c!

H2x~W!52
2p

c

1

L
~ I A1I B!, ~23d!

that we can insert in Eqs.~17! to have

GA~x!52
1

lJ
2S gA1gB

2
1

gA2gB

2

L

pAx~L2x!
D ,

~24a!

GB~x!52
1

lJ
2S gA1gB

2
1

gB2gA

2

L

pAx~L2x!
D ,

~24b!

wheregA5I A /J0WL, gB5I B /J0WL. From this, by using
Eqs.~16! and normalizing as in the uniform current case, we
finally find

wxx2w tt5sin~w!1aw t1«cxx2hA~x!, ~25a!

cxx2c tt5sin~c!1ac t1«wxx2hB~x!, ~25b!

wx~0!5wx~ l !5h~11«!, ~25c!

cx~0!5cx~ l !5h~11«!, ~25d!

where

hA~x!5
gA1gB

2
1

gA2gB

2

l

pAx~ l 2x!
, ~26a!

hB~x!5
gA1gB

2
1

gB2gA

2

l

pAx~ l 2x!
, ~26b!

and the other symbols have the same meaning of the uniform
current model. The above equations could also be derived
using the approach of Ref. 1.

Note that here we have maximum nonuniformity for equal
and opposite physical bias currents (I A52I B). Perfect uni-
formity is obtained for equal bias currents (I A5I B), but we
remark that this is a result of the assumption of uniform
current distribution made for the outer electrodes. How good
it is this approximation can be established only by compari-
son with the experimental results, that we will present in the
next section. Figure 3 shows a sketch of distribution of the
normalized current densitieshA(x) andhB(x) for the cases
I A52I B andI A5I B . For other cases the current distribution
is somewhere in between Figs. 3~a! and 3~b!. A particular
interesting case is that for which only one junction is biased,
e.g.,I B50. In this case@Fig. 3~c!#, there is a nonzero current
distribution in junctionB, such that current flows in two
opposite directions. However, net current flow through junc-
tion B is, consistently, zero, as can be easily checked calcu-
lating *0

l hB(x) from Eq. ~26! for gB50. From the under-
standing of the behavior of two junction stacks with the
geometry of Fig. 2, it is easy to generalize to more junctions
with different variations of the geometry of Fig. 2.

FIG. 3. The current distributionshA and hB , calculated from
Eqs. ~26! for a junction of lengthl 510, are plotted assuming
ugA,Bu51 ~singularities at the edges have been eliminated!. ~a! The
nonuniformity is the largest, the two distributions mirror each other;
for sake of comparison, the uniform distributionuhA,B51u is also
plotted.~b! The currents in the two juctions are equal and uniform.
~c! The nonuniform current inA ~continuous line! induces a non-
uniform current inB ~dashed line!; the net current inB, however, is
null.
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II. EXPERIMENTAL RESULTS

A. The samples

We have fabricated and tested Nb/AlOx /Nb/AlOx /Nb
stacks with electrodes patterned in thedouble overlapgeom-
etry shown in Fig. 2. In all of tested samples the intermediate
electrode was thinner than the London penetration depthlL

while the external electrodes were quite larger thanlL . Due
to the fabrication process,lL in our Nb films is rather large,
about 100 nm. The physical dimensions of the junctions in
the stacks wereL3W5(600320) mm2 and a typical Jo-
sephson penetration depthlJ was greater than 40mm, so
that we have long and narrow junctions. In the two represen-
tative samples on which we report here, the magnetic cou-
pling constant was«520.56 and «520.89, respect-
ively. These values are calculated by Eq.~7! and agree with
those extimated by the procedure based on the splitting of
voltage spacing of Fiske steps.14 In the stack with«5
20.56 the two junctions have very similar critical current
densities~evaluated by the current rise in theI -V character-
istic at the gap sum voltage! JA576 A/cm2, JB
580 A/cm2, and normalized lengthl A' l B513. In the other
stack («520.89) the critical current densities are slightly
different, JA566 A/cm2, JB560 A/cm2, and the normal-
ized lengths arel A; l B510.

B. Measurements

The experiments were performed at 4.2 K with a cry-
operm shielded sample holder and in zero applied magnetic
field. We carefully avoided trapped flux and checked that
there was no crosstalk between the biasing circuits.

The measurements concern how the stability of the zero
voltage state of one junction is influenced by the state of the
other junction in the same stack. In other words we have
measured the critical current of one junction as a function of
the bias current in the other junction, in both possible voltage
configurations for the second junction: zero voltage state or
McCumber state. Typical experimental results are summa-
rized in Fig. 4. Figure 4~a! shows the stability boundary of
the zero voltage state in the stack, i.e., in the region between
the two curves in the planeI cA2I cB is VA5VB50. To ob-
tain this stability boundary we start with both junctions in the
zero voltage state, then we fix the bias of one junction and
we change the current in the other junction until it switches
to a resistive state. Equivalently, we can start with both junc-
tions in the zero voltage state~at I A5I B50) and then
change both bias currents simultaneously until one junction
undergoes a transition to the dynamical state. In Fig. 4~b! we
show the dependence of the positive and negative critical
current of junctionA as a function of the current in junction
B biased on the McCumber curve. Similar results are ob-
tained inverting the role of the junctions. We notice absence
of experimental points aroundI B50. This is because for
small values of current in junctionB we are in the instability
region of the McCumber curve. Finally, we note that in the
range of currents inB where a comparison is possible, the
critical current in junctionA depends on the voltage state of
the junctionB, as shown in an expanded scale in Fig. 4~c!.

The results shown in Fig. 4 are obtained without a ground
plane. Stability boundaries of the zero voltage state in the
same stack with and without a ground plane are compared in
Fig. 5~a!. From this figure is evident that the influence of a
ground plane is relevant only in the region around the line
I A52I B . We remark that the ground plane was spaced
about 1mm, the thickness of the substrate, from the stack, so
its function was quite weak.

Nevertheless, Fig. 5~a! suggests that some nonuniformity
in current distribution is working, especially whenI A'
2I B . Nonuniformity should create some appreciable second
spatial derivative of the phases and consequently an increas-
ing of ~static! interaction between junctions for increasing
inductive coupling constant«. In Fig. 5~b! is shown the sta-
bility range of the zero voltage state for stacks with two
different «. To allow comparison, in this plot we have nor-
malized, in each of the stacks, the currents to the value of the
critical current of junctionA for junction B unbiased. Be-
sides the deformation of the stability range, due to the dif-
ference between critical currents of the junctions in the stack
with «520.89, we note that increasing of the inductive cou-
pling effectively reduces the stability range~i.e., increases
static interaction between junctions!, again principally
aroundI A52I B .

FIG. 4. ~a! Stability boundary of the zero voltage state in the
stack.~b! Critical current of junctionA versus current in junctionB
on the McCumber curve.~c! Critical current of junctionA versus
current in junctionB polarized in the zero voltage state~circles! or
in the McCumber state~squares!.
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C. Discussion

In the uniform model Eqs.~20! interaction between the
junctions takes place only whenwxx or cxx are different from
zero. If, as in our experiments, we have not trapped flux in
the films, we have not applied magnetic field and we are not
in some solitonic zero-field step~ZFS! regime,wxx andcxx
should be zero and consequently the boundary of stability in
Fig. 4~a! should be a square and the dependence in Fig. 4~b!
a constant. So, the uniform model Eqs.~20! cannot explain
our experimental results.

Below we consider several possible mechanisms that may
modify the predictions of the uniform junction model. The
interaction in the zero voltage state looks similar to earlier
experimental observations15 in closely coupled microbridges
that was explained in terms of current-induced order-
parameter depression in the region between the bridges.15,16

Nevertheless, in Ref. 15 the current in a weak link was al-
ways depressing the critical current in the other, while in our
results the depression is obtained only for opposed currents,
in agreement with results of Ref. 17 that were explained with
a Cooper pair coupling between the outer electrodes of the
two weak links.17,18 Both the quoted experimental results
were obtained near the critical temperature of the supercon-
ductors, to have a coherence length quite larger than the
spacing between weak links. This is not the case for most of

our stacks in which we observe interaction. However, we
notice that our stacks are double-barrier tunnel devices,
qualitatively different from the coupled microbridges where
the above-mentioned interaction was investigated. In our
case, the Cooper pair tunneling between outer electrodes~if
any! should be of the order of the single electron resonant
tunneling19 between the same electrodes. Such a tunneling
should be appreciable in the limit of extremely thin~i.e., few
nanometers! intermediate electrode. Due to the macroscopic
thickness of our intermediate electrodes, we can rule out the
presence of such a coupling in our experimental results.
Also, we notice that induced gap suppression is too small,
lower than 2% for typical used current values, to account for
the observed large variations of critical currents. This, to-
gether with the too small quasiparticle curve modification,
also weakens the hypotheses that some nonequilibrium pro-
cess of quasiparticle injection is causing the results of Fig. 4.

The results of Fig. 5 suggest that we should look for the
predominant mechanism in some spatial nonuniformity. The
results in Fig. 5~a! rule out the possibility of a spatially de-
pendent critical current density. In fact, such a critical cur-
rent density should be caused by a shaped barrier thickness,
that should not depend on a ground plane action. Absence of
defects or pinning centers in the barriers has been demon-
stated by dedicated measurements~diffraction patterns in
magnetic field! performed on single junctions fabricated with
the same fabrication process as the stacks. Finally, we have
carefully avoided misalignments of the electrodes forming
the junctions in the stack to reduce in-line current compo-
nents.

From all this, we conclude that the most effective mecha-
nism is the nonuniformity and this nonuniformity is due to
the bias currents. So we will describe our experimental re-
sults with the model Eqs.~25!.

D. Numerical simulations

We have integrated the model Eqs.~25! without applied
magnetic field:

wxx2w tt5sin~w!1aw t1«cxx2hA~x!, ~27a!

cxx2c tt5sin~c!1ac t1«wxx2hB~x!, ~27b!

wx~0!5wx~ l !50, ~27c!

cx~0!5cx~ l !50. ~27d!

To remove singularities at edges in the forcing termshA(x)
andhB(x), we have used the relation Eq.~22!. Another pos-
sibility is to choose values at the edges such that the physical
relation ~charge conservation!

gA,B5
1

l E0

l

hA,B~x!dx ~28!

is numerically satisfied, as it is analytically. Numerically, we
have found no significant differences between these two
methods.

The values of the parameters in the simulation are chosen
equal to the experimental ones, so that a direct comparison
can be made. Experimental and numerical results for«5
20.56 are shown in Fig. 6. Globally, we found the agree-

FIG. 5. ~a! Stability boundary of the zero voltage state without a
ground plane~open circles! and its modification caused by a remote
ground plane~solid circles!. ~b! Range of existence of the zero
voltage state in a stack with«520.56~crosses! and in a stack with
«520.89 ~open squares!. In both curves, the currents are normal-
ized to I cA(I B50).
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ment quite satisfactory. In Fig. 6~b! a significant deviation is
evident forugBu.1.3 where mechanisms other than nonuni-
form current distribution, possibly quasiparticle injection,
play a role. A small deviation is evident in Fig. 6~a!, around
the line gA5gB where the experimental points seem not to
point to the valuesgcA5gcB561. This means, by consid-
erations of the previous section, that bias current distribution
in the outer electrodes is not perfectly uniform. Nevertheless,
we found that the deviation is small enough to exempt us
from a further correction to the model.

In Fig. 7, numerical and experimental results are com-
pared for the stack with«520.89. In the simulations, the
relatively small difference between critical current densities
of the junctions has been accounted for introducing only one
parameter in the model. In fact, if the difference is not so
large, we can account for it by introducing only the ratioj
5JB /JA to multiply the sin(c) term in Eqs.~27!. The result
in Fig. 7, obtained withj 50.85, shows that this is enough to
reproduce quite well the deformation of the stability bound-
ary of the zero voltage state observed when the critical cur-
rents are different.

In Fig. 8 we show the spatial phase distribution for some
selected states of the stack. In Fig. 8~a!, the phase of junc-
tionsA andB are recorded just before and just after junction
A undergoes the transition to the dynamical state, while junc-
tion B is unbiased. Here we can note that the transition of

junction A is caused by the formation of a fluxon and an
antifluxon at the opposite edges of the junction, and that the
phase of the unbiased junction is spatially modulated mirror-
ing ~because of the inductive coupling! the phase of the bi-
ased junction. In Figs. 8~b! and 8~c! is shown the phase dis-
tribution of junctionA ~in the zero voltage state!, while B is

FIG. 6. Experimental results~solid circles! of Fig. 4 compared
with the numerical results~open squares! of the nonuniform model.
Both in the experiment and in the simulation was«520.56, lA
5lB513, a50.1, h50.

FIG. 7. Experimental results for the stack with slightly different
critical current densities (JB /JA50.9) compared with the numerical
results. In the simulation wasl A5 l B510 andj 5JB /JA50.85.

FIG. 8. ~a! Phase of junctionA @w(x)# and junctionB @c(x)#
for junction B unbiased and junctionA biased with a current
slightly lesser or slightly greater than its critical currentgcA . ~b!
Phase of junctionA in the zero voltage for junctionB also in the
zero voltage state~dashed line! or on the McCumber curve~solid
line!. ~c! Same as that in~b!, but here the bias currents have oppo-
site polarities.
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biased atVB50 or VBÞ0, in two configurations of relative
current polarities. Here, beside the different degree of non-
uniformity caused by the termhA(x), we can notice the
small modulation induced on the phase distribution when
VBÞ0. This modulation is observed also in the phase distri-
bution of junctionB and results from possibile excitation of
self-resonances in theI -V characteristic.

CONCLUSIONS

We have discussed the results obtained in the stationary
state of stacked long Josephson junctions, but, obviously, the
model can account for deviation from the ideal uniform
model also in the dynamical state. However, because of the
very slow dependence from the junction length, we expect

that the interaction due to the bias currents should not be
negligible in three-terminal devices with double overlap ge-
ometry also in the limit of small junctions. The geometry
discussed here is a special one, but the results presented in
this paper indicate that the geometrical factors should not be
overlooked for a full description of the three-terminal de-
vices.
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