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Fluid lipid bilayers: Intermonolayer coupling and its thermodynamic manifestations

Per Lyngs Hansen,* Ling Miao, and John Hjort Ipsen
Department of Chemistry, Building 207, The Technical University of Denmark, DK-2800 Lyngby, Denmark

~Received 8 December 1997!

A fluid membrane of lipid bilayer consists of two individual molecular monolayers physically opposed to
each other. This unique molecular architecture naturally necessitates the need to treat a lipid-bilayer membrane
as one entity of twocoupled two-dimensional systems~monolayers!, each of which possesses ‘‘in-plane’’
degrees of freedom that characterize its physical or chemical state. Thermally excitable deformations of a lipid
bilayer in its geometrical conformation further impart to it ‘‘out-of-plane’’ degrees of freedom. In this paper we
discuss the issue ofintermonolayer couplingin terms of a phenomenological model that describes the neces-
sary types of degrees of freedom and their interplay, which reflects different modes of intermonolayer cou-
pling. Furthermore, we investigate, based on the phenomenological model, the manifestations of the inter-
monolayer coupling both in the lateral ordering processes of the ‘‘in-plane’’ degrees of freedom and in the
conformational behavior of the bilayer membrane.@S1063-651X~98!05508-1#

PACS number~s!: 87.22.Bt, 68.10.2m, 82.65.Dp, 87.22.As

I. INTRODUCTION

One structural element universal in all biological mem-
branes is a bilayer entity, consisting of two individual mono-
layers that are composed of an astonishingly large number of
types of amphiphilic lipid molecules. Artificial lipid bilayers
may form spontaneously when one or several types of am-
phiphilic lipid molecules, native to biomembranes or artifi-
cially synthesized, are dispersed in an aqueous environment
under a wide range of physicochemical conditions. They are
the simplest model systems of biomembranes, which can
both mimic, at different levels, the molecular complexity and
retain some of the essential physical properties of biological
lipid bilayers @1#. Our study deals with such model lipid-
bilayer membranes.

One of the most recognized properties of model lipid bi-
layers is the following: Under typical laboratory conditions,
model lipid bilayers often appearfluid, as their biological
counterparts do, lacking any lateral positional ordering of
lipid molecules; also, they areflexible, easily~at the impact
of typical thermal fluctuations! changing their surface con-
figurations. A phenomenological model, containing an im-
portant notion ofbending rigidity, was proposed by Canham
@2# and Helfrich@3# to describe this property or the physics
governing ‘‘external’’ degrees of freedom. The model treats
a fluid lipid bilayer as asingle incompressible surface with
the elastic free energy

Hel5s0A1E dAFk2 ~H2H0!21k̄gKG . ~1!

A represents the total area of the bilayer surface and is pro-
portional to the total number of lipid molecules composing
the bilayer. Thus, if the bilayer is in equilibrium with an
external lipid reservoir,s0, being conjugate toA, is propor-

tional to the chemical potential of the reservoir. The free
energy also involves local surface invariants up to the second
derivatives of the surface: the mean curvatureH51/R1

11/R2 and the Gaussian curvatureK51/R1R2, where R1

andR2 are the two principal radii of curvature of the surface.
One of the physical parameters in the modelk measures the
degree of the membrane flexibility and is called bending ri-

gidity. k̄g is another bending rigidity, which becomes irrel-
evant when the surface topology of the membrane is fixed as
is often the case. The bilayer aspect is accounted for only by
the constantH0, termed ‘‘bilayer spontaneous curvature,’’
which allows for asymmetry~difference! in either the chemi-
cal or the physical nature of the two constituting monolayers.
For a single-component lipid bilayer immersed in a homoge-
neous environment,H0 is assumed to be zero. Many studies
based on this model have provided a great deal of insight
into the conformational aspect of the thermodynamic behav-
ior of fluid lipid bilayers @1,4#.

Apparently, this model neglects the effects of the different
types of ‘‘in-plane’’ degrees of freedom that pertain to a lipid
bilayer: translationaldegrees of freedom to describe the po-
sitions of lipid molecules within each monolayer,conforma-
tional degrees of freedom to describe the large number of
conformations each lipid chain can assume, and finally,com-
positional degrees of freedom to describe the molecular
compositions of each monolayer. On the other hand, it may
be expected that under changes of thermodynamic~and
chemical! conditions these different types of degrees of free-
dom will undergo changes in their collective behavior or
lateral ordering processes and that large fluctuations associ-
ated with these degrees of freedom may arise naturally in the
ordering processes, leading to in-plane heterogeneity. In-
deed, biophysical studies of model lipid bilayers have been
providing mounting evidence for this@1,5#. For example, a
study of lipid bilayers of a binary mixture of dimyris-
toylphosphatidylcholine~DMPC! and distearoylphosphatidyl-
choline (DSd54PC) based on a small-angle neutron-scattering
technique@6# clearly revealed the presence of coherent do-
mains rich in DSPC, a signature of the ordering in
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the compositional degrees of freedom. Furthermore, the criti-
cal nature of the ordering in systems of equimolar mixture of
the two lipids was indicated by the divergence of a coherence
length as a particular temperature was approached. Similar
critical demixing processes also take place in PC-cholesterol
mixtures, which are of particular interest to membrane phys-
ics @5,7#. Another important type of lateral ordering pro-
cesses, known as the ‘‘main transition’’ or the ‘‘chain-
melting transition,’’ involve the conformational degrees of
freedom and can occur even in single-component lipid bilay-
ers. During these transitions, hydrocarbon chains of lipid
molecules collectively undergo a change between a~high-
temperature! disordered state, characterized by a large num-
ber of conformations, and a~low-temperature! ordered state,
characterized largely by thetrans conformation. It has also
been demonstrated that such chain-melting processes in most
model systems of lipid~with the PC headgroup and saturated
acyl chains! bilayers studied appear pseudocritical, involving
large fluctuations in the molecular densities in the two mono-
layers. Clearly, these cases necessitate the need to deal with
the in-plane degrees of freedom.

Any modeling of a fluid lipid bilayer has to reflect its
unique molecular architecture and properties. A lipid bilayer
actually consists of two two-dimensional systems~monolay-
ers!, each of which possesses a distinct set of ‘‘internal’’
degrees of freedom. While the internal degrees of freedom in
one monolayer can in principle behave differently from those
in the other, there exists coupling between them: The fact
that the two monolayers have to follow the same geometry
~for surface deformations on length scales larger than the
bilayer thickness! imposes one form of coupling; direct mo-
lecular interactions, which may depend on the states of the
two individual sets of internal degrees of freedom, constitute
another. Finally, the geometry of the bilayer surface, or the
‘‘external’’ degrees of freedom, is thermodynamically rel-
evant due to the flexibility of the bilayer. Thus the thermo-
dynamic behavior of systems of fluid lipid bilayers will be
the result of a complex interplay between lateral ordering
processes of relevant internal degrees of freedom and the
conformations of membrane surfaces. It is the theme of our
paper both to discuss, in terms of a phenomenological model,
the issue ofintermonolayer couplingby examining the pos-
sible modes of the coupling and to investigate, on the basis
of the model, some specific manifestations of the coupling in
both lateral ordering phenomena and in conformational be-
havior of bilayers.

Recently, a number of theoretical studies@8–17# have
modeled the intermonolayer coupling with a simple form of
bilinear coupling between bilayer local geometry~specifi-
cally, local curvatures! and a local difference in the two in-
dividual in-plane density or concentration fields characteriz-
ing, respectively, the physical or chemical state of the two
monolayers and have further explored some of the thermo-
dynamic consequences of this particular form of coupling. In
some studies@10–12,14# care has been taken to explicitly
deal with the possibility that both of the monolayers may
undergo ordering processes. However, any form of inter-
monolayer coupling arising from direct molecular interac-
tions has been neglected, presumably based on the assertion
that direct interactions may have only aweakdependence on
specific states of the in-plane fields and therefore are irrel-

evant to a first approximation@12#. In this paper we will
explicitly take into account contributions of direct interac-
tions to intermonolayer coupling and will argue, based on
our calculations, that such contributions, even when they are
weak, are relevant in determining the thermodynamic behav-
ior of lipid bilayers.

One of the major predictions given by those studies men-
tioned above is that in lipid bilayers under one form or an-
other of mechanical constraints, lateral ordering processes
may often be characterized by the appearance of modulated
structures. In these modulated structures, domains with both
distinctly different degrees of ordering in the in-plane fields
and distinctly different curvatures appear in well-defined
sizes and in a spatially alternating fashion. The well-defined
sizes and surface corrugations of ordered domains find no
analog in lateral ordering processes in ordinary~simple! flu-
ids and have been used to interpret ripple phases and other
ordered-domain phenomena@9,14#. In our work we have
made efforts to further the characterization of the modulated
structures. In this paper we will demonstrate that, under dif-
ferent thermodynamic conditions, modulated structures of
different characteristics may exist and that, depending on
thermodynamic control parameters, the change from one
type of modulated structure to another in principle may or
may not correspond to thermodynamic transitions.

The studies and the results described so far are all based
on mean-field analyses of the models, in which effects of
thermal fluctuations both in the in-plane degrees of freedom
and in the geometrical conformation of a membrane are ne-
glected. The mean-field approximation concerning mem-
brane conformation is certainly valid in situations where me-
chanical constraints are imposed on a bilayer membrane to
suppress its strong conformational fluctuations. However, we
have also been particularly interested in understanding how
the intermonolayer coupling may manifest itself in the con-
formational behavior of fluid lipid-bilayer membranes when
strong fluctuations in both the internal and the external de-
grees of freedom are present, a question that has not been
seriously addressed before. To this end we have considered
situations where the effect of mechanical constraints be-
comes vanishingly small and have necessarily extended our
study beyond the scope of the mean-field approximation. In
this paper we will also describe a simplified analysis based
on a field-theory approach, which we have carried out to deal
with fluctuation effects, and present the result of the analysis.
Previously, it has already been demonstrated that a fluid lipid
bilayer under no mechanical constraints will display at~often
extremely! large length scales a conformational instability
towards branched-polymer configurations@18#, even if the
effect of in-plane fluctuations is neglected. One may thus
intuitively expect that strong fluctuations in in-plane degrees
of freedom will only promote this conformational instability.
Indeed, our analysis shows that strong in-plane fluctuations
reinforce shape fluctuations and that consequently, the con-
formational instability sets in on much, much shorter~there-
fore, perhaps experimentally accessible! length scales.

II. PHENOMENOLOGICAL MODEL

In this section we describe a phenomenological model for
fluid lipid bilayers and discuss its physical significance. The
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model emphasizes the fact that a fluid lipid bilayer is an
entity of two coupledmonolayers that always assume~ap-
proximately! the same geometrical conformations, but that
can display different behavior as far as the in-plane degrees
of freedom are concerned. As is implicitly assumed in a phe-
nomenological description of a physical system, specific mi-
croscopic details can largely be neglected and the large num-
ber of any relevant degrees of freedom and the physics
governing them may be ‘‘coarse grained’’ into a few local
~spatially varying! fields and a small number of phenomeno-
logical parameters, respectively. Particularly in our model of
a fluid lipid bilayer, Eq.~1! is taken as the basic description
of the external degrees of freedom in terms of local surface
curvatures, the bending rigidity, and the bilayer spontaneous
curvature. Similarly, in-plane degrees of freedom within
each of the two monolayers~labeled, arbitrarily, as 1 and 2!

are represented by a local scalar field on the surfacef i(xW )
and the essence of the physical mechanisms underlying their
ordering processes is captured in a few physical parameters.
Explicitly, the total free energy of a bilayer is given as

Fbilayer5E dAH s01
k

2
H22

kC̄0

2
~f12f2!H1

g12

4
f1f2

1
1

2F c

2
~¹W f1!21

t

2
f1

21
g

4!
f1

42mf11
c

2
~¹W f2!2

1
t

2
f2

21
g

4!
f2

42mf2G J . ~2!

In defining the local principal curvatures, we adopt the fol-
lowing sign convention: Once the two monolayers are la-
beled as 1 and 2, the surface normal is then chosen to point
from monolayer 2 to 1;Ri ( i 51,2 here denotes the two local
principal directions, respectively! is defined to be positive
~negative! if the corresponding local principal curve is con-
cave~convex! with respect to the chosen surface normal.

As is apparent in Eq.~2!, we have employed a canonical
model, the Landau-Ginzburgf4 theory @19#,

Fi5
1

2E dAH c

2
~¹W f i !

21
t

2
f i

21
g

4!
f i

42mf i J , i 51,2,

~3!

as a generic description of any in-plane degrees of freedom
under consideration@20#. The bilayer nature of the system is
reflected by the possibility that each monolayer can undergo
an ordering process governed by the Landau free energyFi .
It is worth emphasizing that the physical parameters in Eq.
~3! should be defined as those that characterize the ordering
process that takes place when the bilayer is mechanically
constrained to beflat.

We have in mind specifically two types of ordering pro-
cesses, to which this generic phenomenological description
applies, although the description may also be relevant to
other classes of phenomena such as adsorptions to mem-
branes of small molecules~sterols, anesthetics, etc.! @21#.
One type is a phase separation process in a binary mixture of
lipids, in which case the following correspondance can be
made:

f i5
r i2rc

rc
, t}

T2Tc

Tc
, ~4!

wherer i is the local composition field andrc andTc are the
composition and temperature, respectively, characterizing
the critical demixing that takes place in a flat monolayer.m
is in effect the chemical potential regulating the composition
andm50 corresponds to the situation where the composition
is set at the critical value. The other type of ordering pro-
cesses is the chain-melting processes in single-component
lipid bilayers, as described in the Introduction. Since the
chain conformational change involved in the chain melting is
also manifested in a corresponding change in the molecular
densityr i , we choose the density field as the representative.
The chain melting can then be approximately described by
Eq. ~3! also, with

f i5~r i2r0!/r0 , m}~T2Tm!, ~5!

and t,0. Herer0 is a properly chosen average of the two
densities corresponding to the chain-ordered and the chain-
disordered states andTm is the chain-melting temperature
@5,22#.

The main theme of our paper,intermonolayer coupling, is
specifically represented by the last two terms in the first line
of Eq. ~2!. The first form2kC̄0(f12f2)H/2 is an explicit
model expression of the notion ofbilayer spontaneous cur-
vature and is based on the following reasoning. In general,
any two opposing local elements of the two monolayers can
be different in their chemical or physical states, represented
by f1(xW ) and f2(xW ). It is thought that the different local
fields imply the preferences of the two monolayers for dif-
ferent local mean curvatures@12,14,23#. Hence the constraint
that the two monolayers must conform to the same local
mean curvatures simply means that the different preferences
of the two monolayers cannot be satisfied simultaneously,
leaving either one monolayer or both frustrated. However,
the degree of the frustration due to such local transverse
asymmetry can be minimized if a particular local mean cur-
vature is assumed. This particular value is the localbilayer

spontaneous curvatureand is approximated byC̄0(f1

2f2)/2, whereC̄0, having the physical dimension of the
inverse length, is a phenomenological constant that depends
on the material properties of the bilayer. This form of cou-
pling is precisely the bilinear coupling that has been pro-
posed in models similar to Eq.~2! to model the interplay
between in-plane degrees of freedom and membrane confor-
mations@8–17#.

The second form of intermonolayer couplingg12f1f2 is
introduced to describe the possibility that direct intermono-
layer interactions may also depend on the physical or chemi-
cal states of the monolayers and give contributions to the
total free energy of a bilayer. Molecular interactions of dif-
ferent origins may be responsible for this effect. For ex-
ample, lipid molecules residing separately in the two mono-
layers interact via van der Waals interactions that depend
both on the chain-conformational states and on the spatial
packing of the interacting molecules and in turn on the local
lateral densities of the two monolayersf1 andf2. The con-
tribution from the cohesive part of van der Waals interac-
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tions may be modeled, to a first approximation, by the pro-
posedg12f1f2, where g12 takes on negative values. In a
bilayer containing charged lipids, electrostatic interaction
may lead to coupling between the two constituent monolay-
ers, in situations where ionic concentrations of the aqueous
solutions surrounding the bilayer are very low so that the
hydrocarbon interior of the bilayer appears ‘‘transparent’’ to
electrostatic fields@24#. In this case,f1 andf2 may repre-
sent, respectively, the densities or concentrations of the
charged lipids in the two monolayers andg12 can be either
positive or negative if the charged lipids in the two mono-
layers carry electric charges of either the same or opposite
signs, respectively. There is experimental evidence that in-
termonolayer coupling of this nature is relevant in bilayers
formed from lipids with charged head groups@25#. Thus, for
a given system of lipid bilayer, the phenomenological param-
eterg12 will contain contributions from the different sources
and its specific value will depend both on molecular details
and packing properties of the consitituent lipids and on so-
lution properties of the aqueous environment surrounding the
bilayer. Conventional approximations have so far neglected
this form of direct interactions between monolayers@12,14#,
based on the argument that such direct interactions may not
be significant in their strength compared to other relevant
effects such as bending and that neglecting them will not
therefore lead to qualitative changes in our understanding of
the systems@12#. However, we will demonstrate with our
study that this coupling, even when it is weak, plays a non-
trivial role in determining the characteristics of in-plane or-
dering processes in a bilayer.

The last physical parameter in Eq.~2! to comment on is
s0. It has the physical dimension of energy per unit area, that
of surface tension, i.e., it measures the energy cost of in-
creasing somearea of a bilayer. Its definition and physical
interpretation depend on whatarea is being considered. If
the area refers to the total area of a lipid bilayer in equilib-
rium with some external reservoir of the lipid molecules,s0
is simply proportional to the chemical potential of the reser-
voir. However, only when the bilayer is subject to mechani-
cal constraints@26# doess0 become a relevant parameter in
determining the thermodynamic behavior of the bilayer: It
has been understood that no matter whats0 is, a freely sus-
pended~i.e., under no mechanical constraints! fluid mem-
brane always appears crumpled on large length scales@27–
29#. When mechanical constraints are present,s0 may be
related to the strength of the mechanical force needed to
enforce the constraints. There are different ways of imple-
menting mechanical constraints on a fluctuating fluid bilayer,
such as those discussed in@26# or that of confining the bi-
layer between two walls@12#. In this paper we choose, for
the sake of simplicity, to represent mechanical constraints
with a planar frame of a total areaAp , which the bilayer
spans, and we carry out our calculations in this representa-
tion. It turns out that ifs0 exceeds some threshold value
~which depends on other physical parameters such as tem-
peraturek, etc.!, the mechanical constraint can be applied
with a finite mechanical force~see below! and the bilayer in
its thermodynamic equilibrium state assumes a certain ex-
tended, instead of ‘‘crumpled’’ mean conformation. The area
of this mean conformationAm may be different fromAp , but
scales with itlinearly, and it is also different from the mean

value of the total area of the bilayer^A& as a consequence of
thermal fluctuations of the bilayer surface about the mean
conformation. The mechanical forcet can be related to the
amount of mechanical worktDAp required to change the
frame area byDAp ~in turn, changeAm) and is often called
frame tension@26,30#. Its magnitude must be larger thans0

in the presence of surface fluctuations and also has a specific
dependence ons0 @31#. Equivalently, an effective tension
may be associated with the area of the mean bilayer confor-
mation Am , which is also related to the ‘‘bare’’s0. Since
most of our work only concerns the determination of mean
bilayer conformations and does not explicitly treat the ther-
mal fluctuations of the bilayer surface, the ‘‘surface tension’’
that we will refer to should be thought of as the effective

tension, denoted bys̄0, that is conjugate to the area of the
mean equilibrium conformation. When in-plane fields and
their ordering become relevant, such an effective tension
contains also contributions from the ordering of the in-plane
fields. To make the contributions of the in-plane fields ex-
plicit, we defines̄0 to be the effective tension in a bilayer
state where the in-plane fields are disordered. It is important
to keep in mind that this effective tension contains the en-
tropic contributions from all the degrees of freedom associ-
ated with the membrane surface and therefore depends on
temperature and the bare physical parameters controlling
those degrees of freedom.

Our last remark on the phenomenological model~2! con-
cerns the different types of symmetry it possesses. First of
all, the physics of a bilayer must be invariant under transla-
tions and rotations in the three-dimensional Euclidean em-
bedding space. This symmetry is reflected in the fact that the
surface-related quantities present in the model are invariants
such as the total surface area and the mean surface curvature.
Second, Eq.~2! is invariant under the ‘‘relabeling’’ or ‘‘in-
version’’ of the two monolayers, which is formulated as
$f1↔f2 ,H→2H% and will be referred to asO1 hence-
forth. This symmetry is simply a formal expression of the
statement that the two monolayers composing the bilayer are
considered to be subject to identical macroscopic physical
and chemical conditions and that their phenomenological
physical properties are considered identical as well. Situa-
tions where this symmetry is absent have been considered in
other studies@9,32#, but are outside the scope of the present
paper. One of the most interesting thermodynamic conse-
quences of the model~2! concerns this symmetry: Under
certain conditions the two monolayers actually acquiredif-
ferent macroscopic states, despite the symmetry of the free
energy. In other words, the symmetry may be spontaneously
broken.

In addition to the above two types of principal symmetry,
the phenomenological model~2! also possesses various ad-
ditional types of invariances, which hold as different physi-
cal parameters are set to zero. Whenm is zero, the ‘‘re-
duced’’ form of Eq.~2! is invariant under an operationO2,
defined as$f1→2f1 ,f2→2f2 ,H→2H%. The origin of
this invariance lies partly in the formal symmetry of the
Landau-Ginzburg free energy@Eq. ~3!# with respect to trans-
formation$f i→2f i% whenm50. This formal symmetry is,
within the framework of thef4 theory, a statement about the
fact that there are two coexisting phases below a critical
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point. O2, together withO1, forms another operationO3
5O1O25O2O15$f1→2f2 ,f2→2f1 ,H→H%, which
also leaves Eq.~2! invariant whenm is set to zero@33#.

Finally, another observation concerning symmetry may
help us understand the role of the parameterg12, which
characterizes the strength of direct intermonolayer interac-
tions. It is easy to see that for a bilayer constrained to be in
theflat configuration~conforming to the frame!, the two con-
stituting monolayers become independent of each other when
g1250. Consequently, whenm50, the effective (H50)
free energy respects the symmetry of each of the monolayer
free energies with respect to$f i→2f i%, i.e., is invariant
under the following two transformations:$f1→2f1 ,f2
→f2 ,% and $f1→f1 ,f2→2f2 ,%. A nonzerog12 explic-
itly breaks this symmetry. We will elaborate on the point in
more detail when we present and discuss our results.

We end this section of description of our phenomenologi-
cal model with an alternative expression of Eq.~2!, which
will be more convenient to use in our calculations and is
written in terms off[(f12f2)/2 andc[(f11f2)/2:

Fbilayer5E dAH s01
k

2
~H222C̄0fH !1

c

2
~¹W f!21

tD

2
f2

1
g

4!
f41

c

2
~¹W c!21

tD1g12

2
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1
g

4!
c41

g

4
f2c22mcJ , ~6!

wheretD[t2g12/2. We will sometimes refer tof andc as
the ‘‘difference field’’ and the ‘‘average field,’’ respectively.

III. MEAN-FIELD CALCULATIONS: LATERAL
ORDERING IN FLUID LIPID BILAYERS

In this section we focus on one aspect of the thermody-
namic behavior of a fluid lipid bilayer~lateral ordering pro-
cesses! to elucidate some of the thermodynamic conse-
quences of the intermonolayer coupling mechanisms
discussed in the preceding section. Our calculations are
based on ‘‘mean-field’’ considerations, which assume that
the thermodynamic state of a bilayer is determined by mini-
mizing the free energy given in Eq.~6! with respect to both
the external and the in-plane fields. In other words, we not
only neglect the effects of strong in-plane fluctuations, but
also do not explicitly treat the conformational fluctuations of
the bilayer. Furthermore, we mostly consider situations in
which the mean equilibrium geometrical conformation of the
bilayer is, if it is indeed not flat, not too far from the flat
configuration. These considerations about the external de-
grees of freedom are valid whens̄0 is sufficiently large.

There are a number of physical parameters in the model
@Eq. ~6!# to be dealt with:s̄0, tD , g12, g, andm, which all
have the physical dimension of surface energy density;k and
c, which have the unit of energy; andC̄0, the inverse of
which sets a length scale in the problem. It turns out that the
precise values ofc and g do not influence the qualitative
features of the thermodynamic behavior of the model.
Hence, for computational convenience, they are set to 1. Fol-

lowing this convention,Ac/g, having the physical dimension
of length, then becomes the normalization unit for all length
scales in the problem. This implies that henceforth, all physi-
cal parameters should be considered dimensionless, normal-
ized by the chosen energy unitc and the length unitAc/g. k

and C̄0 are considered to take on some fixed values, from
which we obtain a~normalized! length scalelsc, where
lsc

22[kC̄0
2 . The inverse oflsc may then be thought of as an

effective bilayer spontaneous curvature. We will thus con-
sider situations wheretD , g12, m, and s̄0 are the relevant
control parameters.

Specifically, we have in mind a bilayer membrane that
spans a flat frame of areaAp and assumes a nearly flat equi-
librium configuration. Hence the external degrees of freedom
can be formulated precisely in terms of

RW 5„x,y,Z~x,y!…5„xW ,Z~xW !…, ~7!

wherexW5(x,y) are coordinates designated to the flat frame
andZ(x,y) is the deviation from the flat configuration. Both
the surface area and the mean curvature of the bilayer can
then be expressed in terms of the first and second derivatives
of Z and expanded in a power series ordered byZ. Z(x,y) is
considered small enough~for nearly flat configurations! so
that in the following calculations aharmonic approximation
will be used in treatingZ(x,y), in which the surface-related
terms in the free energy are approximated only by terms that
are quadratic inZ.

The minimization of the free energy~6! can be performed
conveniently in the Fourier space where all the fields are
expressed in terms of their Fourier components

Z~xW !5E d2q

~2p!2
Z~qW !eiqW •xW,

f~xW !5E d2q

~2p!2
f~qW !eiqW •xW,

c~xW !5E d2q

~2p!2
c~qW !eiqW •xW. ~8!

Minimization with respect toZ(qW ) leads straightforwardly to
the relationship between the equilibrium bilayer deformation
and the equilibrium configuration of the in-plane difference
field f,

Z~qW !5
2kC̄0

kq21s̄0

f~qW !. ~9!

Substituting this relationship into the free energy~6! yields

Fbilayer5s̄0Ap1 f effAp , ~10!

where f eff is an effective free energy density associated with
the in-plane fieldsf(qW ) andc(qW ), given by
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f effAp5
1

2E d2q

~2p!2
@pf~qW !f~qW !f~2qW !

1pc~qW !c~qW !c~2qW !#

1E dx dyF 1

4!
f41

1

4!
c41

1

4
f2c22mc G .

~11!

pf(qW ) andpc(qW ) have the expressions, respectively,

pf~qW !5tD1q22
lsc

22q2

q21jc
22

, pc~qW !5tD1g121q2,

~12!

wherejc5Ak/s̄0 is a length scale determined by two com-
peting physical effects, the bending rigidity and the surface
tension.

Equation~11! shows that in the presence of the bilinear
coupling term, removing the ‘‘out-of-plane’’ degrees of free-
dom introduces an extra contribution topf(qW ), as expressed
by the last term inpf(qW ). One of the most important conse-
quences of this effect is that, when the lateral ordering pro-
cess, for example, the phase separation, takes place, the or-
dered phases are often not macroscopically homogeneous,
but rather appear to be spatially modulated, i.e., consisting of
domains that alternate between the two coexisting ordered
states and have characteristic sizes. The mechanism underly-
ing this appearance of specific length scales in lateral order-
ing processes can be revealed by analyzing both Eqs.~11!
and ~12! ~for the case ofm50, for simplicity!. Mean-field
solutions for the two fieldsf andc are given by minimizing
f eff with respect to both of the fields and the signs ofpf(qW )
and pc(qW ) primarily determine whether nonzero solutions
for f or c exist. Sincepf(qW ) andpc(qW ) are proportional to
the reduced temperaturet;T2Tc when other parameters
lsc, jc , and g12 are held fixed, reducing the temperature
amounts to decreasingpf(qW ) and pc(qW ). At high tempera-
tures, bothpf(qW ) andpc(qW ) are positive; consequently, both
f andc are zero, corresponding to a flat, completely disor-
dered (D) state. As the temperature is lowered, the minimum
of either pf(qW ) or pc(qW ) reaches zero first at a particular
temperature and then becomes negative, leading to nonzero
solutions of the corresponding field. This particular tempera-
ture marks the onset of instability of the flat and disordered
state of the bilayer with respect to the ordering of either the
f field or the c field. The presence of the extra term in
pf(qW ) imparts a nontrivial characteristics to the ordering of
f field: In a weak-tensionregime, wherejc

2/lsc
2 .1 or

0,s̄0,s̄0* where

s̄0* 5k2C̄0
2 , ~13!

the minimum ofpf(qW ) occurs at anonzero q0 given by

q0
25jc

22~Ajc/lsc21!. ~14!

Hence a specific length scale 1/q0 is associated with the ap-
pearance of nonzero solutions off. In other words, the or-
dering off proceeds through the appearance of ordered do-
mains of particular size 1/q0.

The basic physical forces driving this appearance of or-
dered domains of well-controlled sizes are also apparent to
see. The length scalejc defined above is in fact a length
scale for crossover: The bending rigidityk, whenf becomes
ordered ~nonzero!, tends to bend the bilayer towards the
nonzero spontaneous curvature (C̄0f) in order to minimize
the bending energy and is more effective on short length
scales, whiles̄0 more effectively controls deformations of
long wavelengths and tends to keep the bilayer flat on large
length scales.jc separates these two different regimes of
length scales. The compromise between these two competing
effects leads to the selection of the specific length scale 1/q0.
Similar mechanisms have been discussed in other studies
@9,12,14#.

In the actual determination of the phase diagrams, we
focus on four types of principal states that are obvious to
consider:~i! the flat, disordered~D! state, characterized by
f50 andc50; ~ii ! a flat, homogeneously ordered~HO1!
state, represented by

f50, c5constÞ0, ~15!

where there isno bilayer transverse asymmetry, i.e., where
the two monolayers are in exactly the same ordered state;
~iii ! a flat, homogeneously ordered~HO2! state, represented
by

f5constÞ0, c5const, ~16!

in which the two monolayers actually assume different states
as a nonzero value of thef field indicates; in other words,
the bilayer develops aglobal transverse asymmetry; and~iv!
curved, spatially modulated~M! states, described by

f5f~1! cos~ q̄0x!, c5c~0!1c~2! cos~2q̄0x!, ~17!

where the bilayer acquires alocal transverse asymmetry, in
contrast with the HO2 state.

The description of the field configurations in the modu-
lated states given in Eq.~17! is an ansatz. The basic reason
for using this ansatz lies in the length-scale selection associ-
ated with the ordering of thef field. The part of the ansatz
for thec field follows from an observation of the nonlinear-
ity of the effective free energy~11! or, more specifically, of
the termf2c2 in Eq. ~11!. If the sum fieldc were expressed
in terms of the cosine series of periodq̄0, f2c2 would yield
a nontrivial term involving the lowest modes
(f (1))2c (0)c (2). It is not difficult to see that whenf (1) be-
comes nonzero, having nonzeroc (0) and c (2) of opposite
signs may lead to lower free energy. Thus we propose the
ansatz to include this possibility. The numerical evidence
presented in Ref.@14# also supports this ansatz. Another re-
lated point is that in our ansatz the wave number of the
modulation q̄0 is also considered as a variational variable,
along with all the relevant amplitudes. Finally, our ansatz
implies that the domains in the modulated states appear in
the form of stripes. In other words, we do not expect hex-
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agonal or circular domains to appear. Such modulated phases
were predicted in both Refs.@9# and @32# only for bilayer
systems where thermodynamic or chemical conditions ex-
plicitly impose a bilayer transverse asymmetry; in other
words, the phenomenological free energies for those systems
will no longer have the symmetry under the bilayer inversion
(O1). Such cases are not considered in this paper.

The relative energetics of the types of principal states de-
scribed above are then calculated, numerically and analyti-
cally whenever possible, as different control parameters are
varied. The results of the calculations are summarized in the
following series of two-dimensional phase diagrams where
two specific physical parameters are chosen as the control
parameters@34#. Analytical expressions that can be obtained
for certain phase boundaries and special points are relegated
to the Appendix.

Figure 1 is a phase diagram illustrated in the parameter
space spanned bytD and g12, but for a fixed value oflsc

22

51 and a fixed value ofjc
22[s̄0 /k50.04 @36# and for the

special value ofm50. This phase diagram serves to illus-
trate the basic predictions from our study of the phenomeno-
logical model~6!. All the principal states under our consid-
erations appear in this phase diagram as equilibrium phases.
The physics underlying the appearance of these different
phases in different regions of the parameter space can largely
be understood intuitively. The flat, disordered~D! phase ap-
pears in the high-temperature region. The low-temperature
HO1 phase, where the two monolayers are in an identical
ordered state, shows up in the region where the direct inter-

monolayer interaction is attractive (g12,0) and relatively
strong, for such an interaction favors commensuration of the
two monolayers. As this direct interaction becomes less at-
tractive and then repulsive, the energetic requirement for one
monolayer to behave commensurately with the other be-
comes less stringent; consequently, either a modulated M
phase, where the bilayer develops a local transverse asym-
metry, or the HO2 phase, where the bilayer acquires a global
transverse asymmetry, becomes the equilibrium phase, de-
pending on both the interaction and the temperature.

The presence and the relative energetics of the D, M, and
HO1 states have already been largely understood for the spe-
cial case whereg1250, due to the previous studies reported
in Refs.@12# and @14#. However, our study reveals two new
results. First, there can exist more than one type of modu-
lated bilayer structures as distinct thermodynamic phases and
thermodynamic singularities may arise, associated with the
transitions between the different modulated structures. In
particular, by adopting the ansatz given in Eq.~17!, we have
discovered that, for a range of values of 0,jc

22,jc,M
22 ~see

the Appendix for the definition ofjc,M
22 ), a line of second-

order transitions~ending at two critical end points,Pce,1 and
Pce,2) exists, separating two distinct types of modulated
structures: a M1 structure, wheref (1) is nonzero, butc50,
i.e., where the modulation is solely associated with the dif-
ference field, and a M2 structure, where the average fieldc
also becomes nonzero and modulated~at half of the wave-
length forf), with nonvanishing amplitudes ofc (0) andc (2)

@37#. Schematic representations of the surface conformation
and the in-plane states of a bilayer in these two types of
modulated phases are given in Fig. 2. Forjc

22.jc,M
22 , the

region of the M2 structure disappears and the two critical end
points merge with the multiple-phase coexistence pointPm .

Second,g12, representing somedirect intermonolayer in-
teractions, plays a relevant role, even when it is small, in
determining the thermodynamic behavior of a bilayer. As
Fig. 1 shows, in the low-temperature region,g1250 is actu-
ally a line of coexistence of four degenerate phases, the two
HO1 phases and the two HO2 phases, as a result of the last
type of additional symmetry discussed in Sec. II. A nonzero
g12, however small, performs the role of a ‘‘symmetry-
breaking field’’ and removes this degeneracy: Wheng12,0,
the HO1 phases are the equilibrium phases; wheng12.0, the
HO2 phases become the equilibrium phases, where the bi-
layer transverse symmetry is spontaneously broken.

Similarly, both the second-order D-M1 and M1-M2 tran-
sitions can be put in the context of symmetry~see Sec. II!. It
is easy to see that, at the D-M1 transitions, the symmetry of
the free energy~6! under the operations represented byO1
andO2 is spontaneously broken, while the symmetry under
the operation ofO3 is still respected by the M1 structure.
The second-order transition between the M1 and the M2
structures finally breaks theO3-associated symmetry.

Situations where the ‘‘chemical potential’’m is nonzero
are perhaps more often encountered than the special case of
m50. In Fig. 3 we display a collection of six phase diagrams
illustrated in the parameter space spanned bytD andm, for
six different values ofg12, respectively. The values oflsc

22

andjc
2 are the same as those used for obtaining Fig. 1. Each

FIG. 1. Mean-field phase diagram in the parameter space
spanned bytD andg12, for jc

22[s0 /k50.04,lsc
2251, andm50.

The labeling of the phases is the same as defined in the text. Note
that the M1 region is actually a region of two-phase coexistence, the
M2 region that of four-phase coexistence, the HO1 region that of
two-phase coexistence, and the HO2 region also that of two-phase
coexistence. Dashed lines represent lines of second-order phase
transitions; solid lines represent lines of first-order transitions, in
particular, the line ofg1250 is a line of four-phase~illustrated in
the cartons where solid lines and dashed lines represent the two
degenerate states each of the two monolayer fields can assume!
coexistence. Open circles denote critical points~a Lifshitz point
PL , two critical end pointsPce,1 and Pce,2); filled circles denote
points of multiple-phase coexistence (Pm). Analytical expressions
for some of the transition lines are available and are given in the
Appendix, as well as the coordinates of the special points.
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of these phase diagrams has its distinct topology and a
change in the value ofg12 may lead to the evolution of the
topology of thetD-m phase diagram from one type to an-
other. This figure again demonstrates the relevance of the
direct intermonolayer interactions. Several characteristic fea-
tures of thetD-m phase diagrams can be related to the phase
diagram in Fig. 1. In most of the six phase diagrams, the
second-order transition from the flat, disordered D to the
modulated M phases persists over a range of small values of
m and can be seen as the evolution of the second-order D-M1
transition in Fig. 1 asm becomes nonzero. The HO1-M tran-
sition becomes first order at the two tricritical pointsPce,1
and Pce,2. This mechanism is the same as that discussed in
Ref. @12#. The critical pointPc,M terminating a line of two-
M2-phase coexistence directly corresponds to the second-
order M1-M2 transition line in Fig. 1. Finally, the lines of
coexistence between the HO1 and HO2 phases in the phase
diagrams shown in Figs. 3~e! and 3~f! are also the direct
consequence of the four-phase coexistence line in Fig. 1@as
also shown in Fig. 3~d!#.

The phase diagram@Fig. 3~d!# for the special case where
g1250 deserves further comments on its relation to the
phase diagrams obtained in some of the previous works
@12,14#, which deal with only the situation ofg1250. The
gross topology of the phase diagram in Fig. 3~d! is similar to
those of the previously obtained phase diagrams. However,
two specific features can be distinguished in Fig. 3~d!: First,
there exists a line of the first-order transitions between two

modulated phases~of the M2 nature! that ends in a critical
point Pc,M; second, below the point of multiple-phase coex-
istencePm two HO2 phases also exist on them50 line, in
addition to the two HO1 phases that have already been pre-
dicted @12#.

What is also clear from Fig. 3 is that the M2 structure is
the more prevalent form of modulation predicted by the
model, occupying considerable regions in the parameter
space. One characteristic of this structure is that the wave-
length of modulation 1/q̄0 varies with the control parameters,
in contrast to the M1 structure, in whichq̄0 remains fixed at
the value given by Eq.~14!.

Of course, the phase diagrams presented above donot
imply theabsolutethermodynamic stability of the considered
principal phases. In other words, there may exist in some
regions of the parameter space other types of phases that may
have lower free energy than those we have considered. One
likely candidate of such other phases would be a phase of
‘‘vesicle chains’’ ~if the bilayer surface is thought to keep its
topology of a single connected surface!. It could be imagined
that this phase may have lower free energy in regions of low
temperatures and low effective surface tensions, than the
HO1 and the HO2 phase, for example. In fact, the relative
thermodynamic stability of lamellar phases~HO1-like! to
vesicle phases has been explored in Ref.@11#.

At the outset of this section we pointed out that our mean-
field calculations are only valid when a ‘‘sufficiently large’’
s̄0 is present. We end this section with a remark on the
breakdown of the mean-field considerations. Our mean-field
calculations state that the free energy density of an equilib-
rium state is given by@see Eq.~10!#

f bilayer[
Fbilayer

Ap
5s̄01 f eff~ s̄0 /k,lsc

22,tD ,g12,m!, ~18!

where f eff is the equilibrium contribution from the in-plane
fields and is always negative~the disordered phase corre-
sponds to the zero value!. Hence there will be loci in the
parameter space wheref bilayer becomes zero. For example,
we may imagine a situation in which all parameters buttD

are fixed. ReducingtD leads to more and more negative val-
ues of f eff , and at some particular value oftD , the negative
contribution from the in-plane fields cancels outs̄0. Hence
the mean-field theory itself suggests that below this point the
mean-field state is no longer thermodynamically stable. It is
certain, therefore, that in the absence of mechanical con-
straints the mean-field approach does not apply.

IV. FIELD-THEORY CALCULATION:
CONFORMATIONAL INSTABILITY

The purpose of this section is again to demonstrate the
importance of theintermonolayer coupling, in particular, the
aspect represented by the bilinear coupling between mem-
brane conformation and the in-plane difference field, by ex-
amining the manifestation of the coupling in the conforma-
tional behavior of fluid lipid bilayers. The mean-field
calculations presented in the preceding section require that
there should be sufficiently strong mechanical force or ‘‘suf-
ficiently large’’ s̄0 to suppress strong conformational fluc-

FIG. 2. Schematic illustration of the corresponding surface con-
formation (Z) and individual profiles of the two in-plane fields (f1

andf2) of a bilayer in~a! the M1 structure and~b! the M2 struc-
ture. The local bilayer transverse asymmetry is indicated by the
phase shift in the profiles off1 andf2.
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tuations of a fluid membrane and keep it in a nearly flat
equilibrium configuration. In that case, the conformational
behavior of the membrane appears ‘‘trivial.’’ In this section
we extend our analysis beyond the scope of the mean-field
theory and consider limit situations whens̄0 approaches 0,
i.e., when mechanical constraints are no longer enforced.

Such situations are particularly interesting. As we have
already~briefly! mentioned~see Sec. II!, a fluid membrane
under no mechanical constraints does not maintain extended
conformations, or rather, appears crumpled, on large length
scales even when the in-plane degrees of freedom are not
relevant. In fact, there exists a specific length scalejp , the
persistence length, beyond which the bilayer surface loses
correlation in its local orientations@38#. In other words,jp
separates two distinct regimes of length scales (l ), corre-
sponding to two types of membrane conformational behav-

ior: ~a! On small length scalesl<jp , the bending rigidity is
in control and the membrane appears flat~if H050) and is
stable against thermal fluctuations and~b! on large length
scales l @jp , conformational entropy dominates and the
membrane surface collapses into a large collection of
strongly fluctuating ‘‘branched-polymer’’-like configurations
@18#.

The physical mechanism underlying the crumpling of a
fluid membrane is purely entropic and lies in the nonlinearity
inherent in the bending elastic energy in Eq.~1!, which leads
to interactions between bending modes of different wave-
lengths. The consequence of such interactions is that theef-
fective bending rigidity governing a long-wavelength (l )
bending mode is actually smaller than that controlling a
shorter-wavelength (l 0) bending mode. In other words, the
membrane appears ‘‘softer’’ on large length scales. Statisti-

FIG. 3. Collection of six phase diagrams in
the parameter space spanned bytD andm, calcu-
lated correspondingly for six different values of
g12: ~a! g12520.75, ~b! g12520.5, ~c! g125
20.25, ~d! g1250, ~e! g1250.25, and~f! g12

50.5. jc
2250.04 andlsc

2251 are again fixed, as
in Fig. 1. The conventions for labeling the
phases, phase boundaries, and special points are
the same as those used in Fig. 1. In addition,
dotted lines are used to indicate the loci in the
parameter space where the corresponding modu-
lated structures are of the M1 type, although
these loci are not phase boundaries. Three types
of critical points appear in these phase diagrams:
two tricritcal points Ptc,1 and Ptc,2, a critical
point terminating the line of coexistence between
two HO1 statesPc,HO , and a critical point termi-
nating the line of coexistence between two M2
states. Points of multiple-phase coexistence are
Pm , Pm,1 , and Pm,2 . Analytical expressions for
the two tricritical points are given in the Appen-
dix. Note that only the M2 and the HO2 regions
in these phase diagrams are regions of~two-
phase! coexistence, corresponding to the degen-
eracy of the states inf and 2f. Note also the
difference between the scale of them axes used
in ~a!–~c! and that used in~d!–~f!.
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cal mechanical analysis of Eq.~1! has provided a quantita-
tive expression of this entropic effect@27,28#:

ke,0~ l !5k~ l 0!2
3kBT

4p
lnS l

l 0
D . ~19!

An estimate of the persistence length, which has been con-
firmed by computer-simulation studies@39#, follows imme-
diately from Eq.~19!,

jp. l 0expS 4pk~ l 0!

3kBT D , ~20!

corresponding to the length scale at whichke,0 becomes
zero. Model systems of lipid bilayers that are commonly
used in laboratory studies do not exceed micrometer-range
sizes; also, they typically havek( l 0);10kBTroom, wherel 0
.10 nm. A quick calculation based on Eq.~20! reveals that
jp for these systems is far larger than their sizes. Hence the
conformational stability of these systems is ensured in prin-
ciple, as is often the case. However, we will argue with our
results that such statements may no longer hold when in-
plane fields and their thermal fluctuations become relevant.

It is intuitively easy to anticipate that the effects of ther-
mal fluctuations of in-plane fields, specifically, the difference
field f, would be enhancing conformational fluctuations of
the membrane surface. In fact, the mean-field theory already
points towards such effects. For simplicity, we will only con-
sider situations where the physical parameterm is zero and
the generalization to cases wherem is nonzero is fairly
straightforward. The mean-field theory, which neglects the
nonlinearity of the bending energy, then makes the following
prediction for the height-height (Z-Z) correlation function
G0(qW ) in the high-temperature region where the in-plane
fields are disordered:

1

G0~qW !
5

kq4

kBTF12
lsc

22

j̄f
221lsc

221q2G , ~21!

wherej̄f , defined byj̄f
22[tD2lsc

22 , may be considered as
an effective correlation length for the in-plane difference
field. Hencej̄f increases as the temperature is reduced. The
effective bending rigidityke , identified as the coefficient of
theq4 term in the small-q expansion@40# of 1/G0(qW ), is then
given by

ke5kS 12
lsc

22

j̄f
221lsc

22D . ~22!

The effect that the fluctuations in thef field have in reduc-
ing the bending rigidity is made apparent by the mean-field
correction to the bending rigidity. Furthermore, Eq.~22!,
which predicts the onset of strong surface fluctuations asj̄f
becomes divergingly large, itself signals the breakdown of
the mean-field theory when the membrane is no longer sub-
ject to mechanical constraints.

Taking into consideration the nonlinearity of the bending
energy, therefore, becomes necessary in dealing with the
presence of strong surface fluctuations. To this end, we ex-
pand our model free energy~6! in terms of the power series

in Z(x,y) and include anharmonic terms up to the quartic
power in Z ~while retaining only quadratic terms in the in-
plane difference field! and perform a simplified analysis of
the free energy based on a field-theory approach@41#. In this
analysis, the renormalization of the physical parameters
other thank is neglected, an approximation that does not
affect our principal conclusions~a more systematic analysis
based on renormalization-group theories is presented else-
where @42#!. The present analysis yields a ‘‘renormalized’’
height-height correlation functionG(qW ) that contains nonlin-
ear corrections calculated to one-loop order and the effective
bending rigidity is again obtained as the coefficient of theq4

term in the small-q expansion of@G(qW )#21. An inspection of
the expanded elastic free energy@28# shows that only two
Feynman~self-energy! diagrams contribute to theq4 term of
the renormalized@G(qW )#21. These diagrams have the same
topologies as those involved in the calculation that led to the
renormalized bending rigidity given in Eq.~20! @27#; the
only difference is in the expression for the linear~harmonic!-
order correlation functionG0(qW ), which in our calculations
is given by Eq. ~21!. Furthermore, the nonlinear~anhar-
monic! contribution arising from the bilinear coupling be-
tweenf and the mean curvature generates only vertices that
make no contributions at the one-loop level. Summing over
the two diagrams thus gives the renormalized@G(qW )#21 ~in
the form of a Dyson equation!

1

G~qW !
5

1

G0~qW !
2kBTS 11

1

2D F E
p0

L

p2G0~pW !Gkq4, ~23!

where p051/l and L51/a0 represent the long- and short-
wavelength cutoffs, respectively.

An expression for the effective bending rigidity follows
from the evaluation of the integral in Eq.~23!:

k̄e~ l !5k~a0!S 12
lsc

22

j̄f
221lsc

22D
2

3kBT

4p F ln~L l !1
1

2

j̄f
2

lsc
2

lnS 11 l 2j̄f
22

11L22j̄f
22D G .

~24!

The first term is the result from the harmonic approximation,
which we have already encountered in Eq.~22!. The second
term arises from the one-loop correction and consists of two
parts: The first is the same nonlinear contribution given in
Eq. ~19! and the second is a nontrivial nonlinear contribution
from the bilinear coupling, which, to our knowledge, has not
been reported and considered before.

From Eq.~24! an effective persistence lengthj̄p , ‘‘renor-
malized’’ by the fluctuations of the in-plane~difference!
field, can be derived as a function of the effective in-plane
correlation lengthj̄f by settingk̄e( l )50 and replacingl by
j̄p in the equation.j̄p decreases as the in-plane correlation
length increases at lowering the temperature. To illustrate
semi-quantitatively the extent of the reduction in the mem-
brane persistence length due to the in-plane fluctuations, we
consider a particular situation where the persistence length
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coincides with the in-plane correlation length. The order of
magnitude of the persistence length then depends onk(a0)
and lsc. A numerical investigation shows that, with a rea-
sonable estimate oflsc5O(10)a0 and k(a0)510kBT, the
persistence length will be of the orderj̄p5 j̄f5O(102)a0.
By comparing this witha0exp@4pk(a0)/3kBT#, the ‘‘bare’’
persistence length, it is easy to see that the reduction in the
magnitude of the persistence length is rather striking. Fur-
thermore, this remarkable extent of the reduction is very ro-
bust, not significantly influenced by the precise value of the
cutoff.

V. DISCUSSION

We have presented a phenomenological model for fluid
lipid bilayers, which focuses particularly on the interplay be-
tween monolayer cooperative phenomena and intermono-
layer coupling within a bilayer. One basic aspect of inter-
monolayer coupling, which has its origin in both the bilayer
architecture and the flexibility typical of a fluid bilayer, has
been described in many previous studies of lipid bilayers in
terms of a bilinear coupling between local transverse asym-
metry ~represented by the difference in the local order-
parameter fieldsf1 andf2 of the two monolayers! and local
mean curvature of the bilayer. However, we have included in
our model another aspect of intermonolayer coupling, which
arises from direct interactions between monolayers and have
modeled it in terms of the simplest phenomenological form
g12f1f2. Furthermore, we have modeled with a planar
physical frame and an effective physical tensions̄0 the ef-
fects of mechanical constraints that stabilize bilayer confor-
mations.

Our study of the phenomenological model has largely
been based on a mean-field analysis, in which neither the
thermal fluctuations in the in-plane fields nor those in the
bilayer conformation are explicitly dealt with. The main re-
sults of the analysis are summarized in Figs. 1–3 in terms of
a series of phase diagrams illustrating both the equilibrium
phases, a flat, disordered~D! phase, a flat, homogeneously
ordered~HO1! phase with no bilayer transverse asymmetry,
another flat, homogeneously ordered~HO2! phase, but with
bilayer transverse asymmetry, and finally, phases of modu-
lated~M1 and M2! structures and thermodynamic transitions
between the different phases.

Similar types of mean-field calculations have been per-
formed in other studies of phenomenological models of lipid
bilayers and modulated phases have also been predicted
@9,12,14#. Our analysis has not only been more systematic
and extensive in exploring the effects of different phenom-
enological parameters, but more importantly has also re-
vealed two new results. First, we have shown that, in differ-
ent regions of the parameter space, modulated structures of
different characteristics, specifically M1 and M2, can exist
and changes from one structure to another can involve ther-
modynamic singularities~phase transitions!. Second, we
have demonstrated the nontrivial role of the direct inter-
monolayer interaction~as represented byg12), even when it
is weak. Explicitly, we have shown that an attractive inter-
monolayer interaction (g12,0) tends to reduce the region of
stability of the modulated phases in the parameter space,
while a repulsive interaction (g12.0) always favors phases

where the bilayer transverse symmetry is spontaneously bro-
ken, either locally~as in the modulated phases! or globally
~as in the HO2 phase!. Moreover, we have pointed out the
effect of ~even weak! g12 as a ‘‘symmetry-breaking’’ field,
which in the low-temperature region of the parameter space
selects the HO1 phases while attractive and selects the HO2
phases while repulsive.

The model we have presented and studied is only a phe-
nomenological one and even at this level only a minimal one.
We have no concrete knowledge on how to establish a spe-
cific, quantitative link between some of the model param-
eters and a given experimental system of lipid bilayers. For
example, the parameterC̄0 has not been quantitatively and
systematically analyzed and determined; we have introduced
an effective tensions̄0 to model the effects of mechanical
constraints, while in experiments mechanical constraints are
often imposed in the form of confinement~as in large mul-
tilamellar vesicles!, a fixed area-volume ratio~as in the case
of single large unilamellar vesicles!, etc. Also the model,
being phenomenological, inevitably misses some specific de-
tails of complicated interactions at work in an experimental
system, as well as some other degrees of freedom present in
a lipid bilayer, e.g., the molecular-tilt degrees of freedom.
However, we still believe that the predictions of this model
are useful as guidelines to systematically study and assess
through experiments the complexity of the ordering phenom-
ena in a fluid bilayer. First of all, a very crude estimate based
on the order-of-magnitude values of some of the relevant
physical parameters shows that the predicted domain sizes in
the modulated phases@see Eq.~14!# fall into the range of
length scales that are experimentally accessible or encoun-
tered. Typical values of the effective surface tension (s̄0) in
giant vesicles have been measured@30#, which span the
range from e27 ~0.001! to e21 ~0.4! dyn/cm. The often
quoted value of the bending rigidityk is 5310213 ergs
;10kBTroom. If c is chosen to be comparable tokBTroom and
C̄0

21 is taken to be in the range of tens of nanometers, then it
is straightforward to see that the period of modulation is
predicted to lie in the range of several hundreds to thousands
of angstroms. Moreover, the phase diagrams we have pre-
sented constitute a generic picture of the complexity that
might be encountered in experiments. As the lipid species
composing a bilayer are varied~which a varyingg12 may
represent!, as the molecular composition of a lipid mixture is
changed~which may amount to changingm), or as the area-
volume ratio is tuned~which may result in a change ins̄0),
individual sequences of equilibrium phases and thermody-
namic transitions observed may resemble or differ from one
another. At the same time, however, the phenomenological
theory also indicates the possibility of ‘‘simple’’ mecha-
nisms underlying complex phenomena.

Some of the characteristic features of the predicted phase
behavior may have already been observed in certain experi-
mental systems. For lipid bilayers of PC near their main
~chain-melting! transitions, the relevance of the coupling be-
tween bilayer deformations and the monolayer density fields
~or chain conformational states! has been supported by ex-
periments@17#. Thus, in the presence of a nonzero surface
tension or, equivalently, a nonzero osmotic pressure differ-
ence across a bilayer or a confinement potential, one might
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expect that the main phase transition is accompanied by an
approximately sinusoidal modulation of the bilayer confor-
mation as well as a periodical modulation of the density or
thickness profile characteristic of the M2 structure, as the
corresponding Landau-Ginzburg description involves a non-
zero ordering fieldm}T2Tm @see Eq.~5!#. Recent experi-
ments @43# in fact show that upon cooling from the high-
temperature fluid phase, PC lipid bilayers transform into a
metastable ‘‘ripple phase’’Pb8(m), which is stable for hours
@44#. This phase is characteristically different from the well-
known primary ripple phase, with a larger periodicity
~around 270 Å, compared to a typical 130 Å of the primary
ripple!, a symmetric profile of the ripple~contrasting the
asymmetric profile of the primary ripple phase!, and an ap-
preciable lateral variation in the bilayer thickness@43#. This
Pb8(m) may turn out to be the same as a so-calledL-Pb8
phase observed in earlier freeze-fracture studies@45#. The
bilayer structure in theL-Pb8 phase also has a symmetric
profile of modulation and sometimes characteristic grooves
are found on the ridges of the ripples. Analysis of the lateral
defects suggests that there is no acyl-chain tilt with respect to
the overall bilayer plane@46#. These properties would be the
characteristics expected of the predicted M2 structure of our
model should the thickness of each monolayer be thought to
depend on the corresponding in-plane fieldf i @5#. Moreover,
upon further cooling, thePb8(m) phase becomes unstable
with respect to a nonmodulatedLb8 phase@43#. This se-
quence of phase transitions and the characteristic phases in-
volved overall seem to be qualitatively consistent with the
predicted cooling scenarios that involve modulated structures
~see the phase diagrams in Fig. 3!. This rather plausible in-
terpretation of thePb8(m) would imply that the ripple phase
involves alternating domains where lipid chains appear either
ordered or disordered. In fact, this idea has been advocated
by several other studies@47,48# and is supported by the ex-
perimental finding that more than 20% of the lipids in this
particular ripple phase appear in a state more characteristic
of the fluid phase of lipid bilayers@49#.

Another class of lipid systems that display phenomena of
length-scale selection are systems of lipid mixtures. Bilayer
surface modulations of very long lengths with accompanying
compositional variation have been found@50#. For example,
in PC-cholesterol mixtures that show coexistence of the gel
and the liquid-ordered phases@5# domains have been ob-
served by using scattering techniques to have sizes that range
from 40 to 60 Å and that depend on both the temperature and
the overall composition of the mixtures@51,52#. It has also
been found that the domain size and the associated~scatter-
ing! intensity actually grow as the temperature is decreased.
This trend is also predicted for the M2 phase by our model
calculations.

We note, however, that the mean-field analysis discussed
so far is based on the specific model~2!, which presents
perhaps the simplest phenomenological description of a fluid
lipid bilayer and therefore inevitably implies certain simpli-
fication of some physical effects. One such effect, neglected
in our model, is the dependence of the bending rigidity of a
monolayer on the corresponding in-plane field. Theoretical
studies of lipid bilayers of mixtures@53# have predicted a
linear dependence, i.e.,km(f i)'k01akf i , and recent ex-
periments@54# have started to explore this issue. Taking this

linear dependence into account would give rise to terms such
ascH2 andfcH, which could also be written down based
on considerations of the inversion symmetry of the bilayer. It
would be expected that the presence of these terms in the
bilayer free energy leads to certain modifications of our
mean-field predictions. However, it may be argued that these
terms do not affect the existence of the D-M1 and M1-M2
transitions, although they must lead to quantitative changes
both in the precise locations of these transitions in the pa-
rameter space and in the wavelength of modulation of the
modulated phases. It may also be readily seen that these
terms will not influence the transitions between those phases
in which the bilayer remains flat.

Of course, thermal fluctuations, which have been ne-
glected in the mean-field analysis, may also modify the
mean-field predictions in various aspects. The modulated
phases in our analysis are considered to be striped. Based on
an argument formulated by Toner and Nelson, however, it
may be anticipated that thermal fluctuations eliminate any
long-range correlations between the orientations of the
stripes. In other words, topological defects may be expected
to decorate the modulated~striped! phases@55#. The region
of stability of the modulated phases in the mean-field phase
diagrams may also be modified by thermal fluctuations. It
has been established that in systems involving mechanisms
of length-scale selection thermal fluctuations can destabilize
a homogeneous, disordered phase towards a modulated
phase and furthermore change the nature of the transition
between the two phases from second order to first order@56#.
Thus, in the presence of thermal fluctuations, the D-M phase
boundaries may appear in different locations in the param-
eter space from those shown in the mean-field phase dia-
grams and may be of first order rather than second order.

In Sec. IV we have extended our analysis of the phenom-
enological model~2! beyond the scope of the mean-field
theory to investigate some of the macroscopic effects of the
intermonolayer coupling in situations where mechanical con-
straints are no longer enforced and consequently strong fluc-
tuations in the bilayer conformation are expected. Qualita-
tively stated, our main conclusion is that strong fluctuations
in the in-plane fields, through the bilinear coupling between
bilayer local mean curvature and the in-plane difference
field, enhance bilayer conformational fluctuations and this
interplay leads to a dramatic reduction of the effective bend-
ing rigidity. This result implies that in the absence of exter-
nal mechanical constraints, a fluid lipid bilayer may lose the
correlation between its surface normals beyond a persistence
lengthj̄p @38,57# that can be reduced by ‘‘turning on’’ strong
fluctuations in the in-plane fields. As our estimate made in
Sec. IV shows, this effective persistence length may be re-
duced to a range that is likely accessible to laboratory ex-
periments. In other words, the ‘‘crumpling instability,’’ or
the conformational collapse, of a bilayer may be observed at
realistic length scales~see Sec. IV!. Moreover, this mecha-
nism may provide a minimal explanation for the dramatic
influence that cosurfactants can have on the structural stabil-
ity of amphiphilic multimembrane systems@38,57#.

Finally, it is worth pointing out that the bilayer softening
effect of in-plane fluctuations is also present in bilayers that
are under mechanical constraints, although it does not imply
conformational instability of the bilayers. This effect has ac-
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tually been used to interpret the phenomenon of ‘‘anomalous
swelling’’ observed in multilamellar systems of one-
component PC lipids when the systems are cooled towards
their main phase transition points@17,58#. The measurement
of an effective or ‘‘apparent’’ bending rigidity by an analysis
of flicker noise ~bilayer shape fluctuations! of individual
vesicles has also demonstrated this effect@59#.
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APPENDIX

This appendix collects the available analytical expressions
for some of the lines of phase transitions and special points
in the phase diagrams shown in Figs. 1 and 3. In Fig. 1 the
line of the second-order transitions between the D and HO1
phases is simply given by

tD52g12. ~A1!

The critical line separating the D and the M1 phases is de-
scribed by

tD5a~q0!, ~A2!

whereq0 is the wave number of modulation whose definition
is given in Eq.~14!

a~q0!5jc
22SA jc

2

lsc
2

21D 2

. ~A3!

The line of first-order transitions between the HO1 and the
M1 phases is expressed as

tD5
2A 3

2 g122a~q0!

A 3
2 21

. ~A4!

The regions of the M1 and the M2 structures are separated
by a line of second-order transtions, given by

tD52~2q0
21g12!2A2~a~q0!12q0

21g12!
224q0

4.
~A5!

Finally, the first-order transitions between the M1 and the
HO2 phases fall onto a straight line, described by

tD5
2a~q0!

A 3
2 21

. ~A6!

Some of the special points denoted in Fig. 1 are deter-
mined as follows:PL is the point of intersection of the tran-
sition line given by Eq.~A1! and the line described by Eqs.
~A3! and~A4!. The two critical end points,Pce,1andPce,2are
the points of intersection of the critical M1-M2 line@Eq.
~A5!# with the first-order M12HO1 line @Eq. ~A4!# and the
first-order M12HO2 @Eq. ~A6!#, respectively. For a fixed
lsc, jc,M

2 defines the value ofjc
2 at which Pce,1 and Pce,2

merge.
In Fig. 3 the critical surfaces separating the high-

temperature~D! phase from the modulated~M! phase are
given by

~ tD1g12!c
~0!1

1

6
~c~0!!35m,

tD5a~q0!2
1

2
~c~0!!2. ~A7!

The coordinates of the two tricritical pointsPtc,1 andPtc,2
are obtained by substituting into Eq.~A7! the following two
expressions forc (0), respectively:

c~0!56A @g121a~q0!14q0
2#@g121a~q0!#

2@g121a~q0!14q0
2#1@g121a~q0!#

.

~A8!
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