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Stationary states of the two-dimensional nonlinear Schrdinger model with disorder

Yu. B. Gaididei¥ D. Hendriksen, and P. L. Christiansen
Department of Mathematical Modelling, The Technical University of Denmark, DK-2800 Lyngby, Denmark

K. @. Rasmussen
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
(Received 11 March 1998

Solitonlike excitations in the presence of disorder in the two-dimensional cubic nonlineardBgeio
equation are analyzed. The continuum as well as the discrete problem are analyzed. In the continuum model,
otherwise unstable excitations are stabilized in the presence of disorder. In the discrete model, the disorder is
found to leave the narrow excitations unaffected. Our results suggest that the disorder provides a possibility to
control the spatial extent of the stable excitations in the continuum sy§&0h63-182608)06429-1

I. INTRODUCTION other areas of nonlinear physics. However, the importance of
the two-dimensional NLS equation stems not only from its
The interplay between disorder and nonlinearity has beephysical importance but also from its simple and tractable,
drawing increasing attention of theoretical physicists the lasyet rich, mathematical structure. As a mathematical object,
ten years. It is also a topic of great experimental concern inthe two-dimensional NLS equation is rather well studied,
several fields of modern physics, such as nonlinear opfics, mainly due to the critical collapse phenomenon it exhibits
polaron formation in solid-states materi4f,and energy (for areview, see Rasmussen and Ryb‘?jz_aAs was realized
transport in organic thin filmé. early, the two-dimensional NL_S equat|o_n, althgugh |t. is
Attention has mainly been paid to systems that aré1on|n.tegrable, possesses a localized solution. This squyon is
integrable—soliton bearing—in the absence of disorder. Ifnarginally stable and will, in the presence of perturbations,
particular, in Ref. 7 the authors have discussed the effects ¢Sually either collapses or disperses.
a periodic potential on the soliton of the cubic nonlinear Recently, Christianseet al. investigated the effects of
Schradinger(NLS) equation, and have shown on the basis ofd!sorde.r on the Iocahz_ed excitations |n.the qumu; one-
an averaged NLS equation that the periodic potential leads t@mensmnaL NLS equatiofwhere the nonlinear term is of
a simple renormalization of the solitons and creates a “dresdhe form|¢|*4) and showed that otherwise unstable excita-
ing” of the soliton. Investigations of stationary wave propa- 0ns are Stab'“zged by the presence of disorder in the con-
gation in nonlinear disordered media have shown that nonnuum problem? In the present paper, we study the effects
linearity changes the transmission properties of disordere@ disorder on the localized excitations in the cubic two-
systemé It has been shown theoreticafand recently veri- dimensional NLS equation. ,
fied experimentally® that the presence of nonlinearity may _ 1he paper is organized as follows. In Sec. Il we introduce
change the characteristic exponential decay of the transmié?€ model describing the basic properties in the homoge-
sion coefficient with system length into a power-law decay."€ous discrete and continuum cases, and we discuss the nu-
Among the soliton bearing models is also the so-called selferical results obtained when disorder is included in the
trapping model of electrons in ionic crystals through pc,_problem. We present nu_mgr!cal results showing that qnly the
laronic lattice distortioht (a general model for coupled-field Proad excitations are significantly affected by the disorder
system® where the nonlinearity arises from adiabatic While the |ntr_|nS|caIIy Iocallzeql excitations are rather L_lr_1af-
elimination of the lattice distortions. The study of such mod-fécted. Most importantly, we find that the disorder stabilizes
els with disorder and temporal noise has shown that th&1€ very broad excitations. In Sec. Ill we address the problem
ground state is always localized in the presence of disbrder @nalytically in the continuum limit and show that the disor-

while the temporal noise always leads to destruction of théler indeed creates a stability window for the localized exci-
localized state&d tations. Finally, Sec. IV contains a discussion of our results.

However, the studied models all have long-lived soliton-
like solutions because in the continuum limit these equations
are all exactly integrable. The situation may change drasti-

cally if the continuum limit is nonintegrable. A relevant ex-  \we consider a quadratic two-dimensional lattice with the

ample of such an equation is the two-dimensidioalhigher- |attice spacing equal to unity. The model is given by the
dimensiongl NLS equation. The most prominent application Lagrangian

of the two-dimensional NLS equations is probably the de-

scription of optical beams propagating in a three-dimensional

Kerr active mediunt? The discrete version has also been - 1.

applied in the context of optics as a model of optical pulse L=i> > (adn—c.c)—H, @
propagation along a cluster of optical fibérs.Two- "

dimensional NLS equations have also been used in the mod-

eling of two-dimensional organic thin filhsand in several where

Il. MODEL AND NUMERICAL RESULTS
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FIG. 1. The normN versus nonlinear frequency for various disorder strengths. Homogeneous casg=0 (solid line), »=0.04
(dotted ling, »=0.07 (dashed-dotted lineand »=0.1 (dashed ling

1
H=2 > [di—va-il*=5 2 il * =2 eiluil® N=2 [vil% ©®
n A n n n
@ and the HamiltoniaH .

is the Hamiltonian of the system. In Eqg&l) and (2), «; We are interested in the stationary solutions of €&.in
=ymn is @ complex wave functionp=(m,n), (m,n=0, the form
+1.+ i i i K= .
+1,+2...) is the lattice vector, while the vectok Ji(t) = b expliAt), @)

(%£1,0),(0£1) connects nearest neighbors in the lattice.

The first term in Eq(2) is the dispersive energy of the ex- with a real shape functiog; and a nonlinear frequency.
citation, the second term describes a self-interaction of thdhe governing equations for the functiols,= ¢, then
excitation, and the third term represents diagonal disorder ikecome

the lattice. Finally, the random functiors are assumed to

have Gaussian distribution with the probability “Admnt (dmn-1t dmns1t bmrint Sm-10~4bmn)
1 +|¢m,n|2¢m,n+6m,n¢m,n:0- 8
p(en) = —\/—eXr{—(éﬁ/ﬂ)z] (3)  Equation(8) together with Eq(6) constitute a nonlinear ei-
T genvalue problem that can be solved numerically using the
and have the autocorrelation function techniques described in Ref. 19. The dependdxga) in
the case without disorder has been studied eatii€rand is
(eren)=n"6ns (4 shown with a solid line in Fig. 1. It has previously been

showrf~??that the linear stability of the stationary states in
the discrete case is determined by the Vakhitov-Kolokolov
criterion?® yielding linear stability whenevedN/dA >0.

This, together with the solid curve in Fig. 1, shows that low-
frequency nonlinear excitations in the discrete two-

where the bracket§- - - -) denote averaging over all real-
izations of the disorder. From the Lagrangidn we obtain
the equation of motion for the excitation function in the form

Wt (Ymn—1F dmncit ¥mern T Pm-10™4Ymn) dimensional NLS model (8 A<A.,=1.088) are unstable.
+|¢m]n|2¢m]n+ €mn?mn=0, In the continuum limit A —0) N(A)—N.=11.7.
Further, we show in Fig. 1 the dependemten A for the
nm=0+1+2,.... (5)  solutions of Eq.(8) in the presence of disorder. Results for

three values of the variancg=0.04 (dotted ling, 0.07
Equation(5) conserves the noril defined as (dash-dotted ling and 0.1(dashed ling are shown. The re-
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FIG. 2. Evolution of an initial excitation of the nornN

=10.4402 in continuum systems without disordepper parnt and t

with disorder strengthy=0.1 (lower par. (b)
25 T T T T

sults have been obtained as averages of 150 realizations ¢
the disorder. Several features arise as a consequence of ti
disorder. In the continuum limitX—0), we no longer have
N=N; anddN/dA =0. InsteadN—0 anddN/dA >0, sig-
nifying that the disorder stabilizes the excitations in the low-
frequency limit. The disorder creates a stability window such
that a bistability phenomenon emerges. Consequently, ther
is an interval of the excitation norm in which two stable
excitations with significantly different widths have the same
norm.

Furthermore, we see that the disorder creates a gap ¢
small A in which no localized excitation can exist, and that
the size of this gap apparently is increased as the variance ¢
the disorder is increased. It is also clearly seen thatA as
increasegdecreasing width the effect of the disorder van- ) ) . )
ishes, so that the very narrow excitations are in average un ° s weo,® 200 250
affected by the disorder and only the continuum results are
affected by disorder. It is important to stress that this is an FIG. 3. The inverse width squared, obtained by numerical solu-
average effect, because for each realization of the disordgion of Eq.(9) in a no-disorder caser{=0) (upper pant and with
the narrow excitation will be affected. The narrow excitationdisorder strengthy=0.1 (lower par}. The normN=10.4402 is the
will experience a shift in the nonlinear frequency equal to thesame as in Fig. 2.
amplitude of the disorder at the position of the excitation.

The qualitative form of the dependenb¥A) for a par- L 9yp(r,8) + V24(r, )+ | (1, 0)|20(r ) + e(r) gp(r,t) =0,
ticular realization is very similar to the form of the average (9)
dependence shown in Fig. 1. It is noteworthy that for all | _ . _
realizations the curvél(A) is a smooth curve. It turns out P€iNg the continuum limit of Eq(S) for the excitation func-
that the basic difference from realization to realization is ation ¢;(t) = #(r,t). Specifically, stationary solutions to Eg.
displacement of the curve along theaxis. (9) were obtained, and after reducing the amplitude of these

The bistability we observe in Fig. 1 occurs due to thesolutions by 5% they were used as initial conditions of the
competition between two different length scales of the probdynamical simulations that were performed by applying a
lem, one length scale being defined by the relation betweeRunge-Kutta scheme. Examples of the described experiment
the nonlinearity and the dispersion, while the length scaleare shown in Fig. 2. As is seen, the pulse behavior in the
defined by the disorder gives the other length scale. A similagbsence of disorder and in the presence of disofder
effect was observed by Christiansenal® for the one-  present here a realization corresponding to the disorder vari-
dimensional discrete NLS equation with a quintic nonlinear-ance,=0.1) differs drastically. While the pulse rapidly dis-
ity. The latter is quite natural because, as it is well knOWHperses in the ideal systefthe contour plot fort=250 is
(see, e.g., Ref. 24 the properties of the two-dimensional absent because the pulse width is of the system),sihe
NLS model with a cubic nonlinearity are similar to the prop- process is arrested in the disordered system. After some tran-
erties the one-dimensional NLS equation with a quintic nonsient behavior the excitation stabilizes and attains an ap-
linearity. proximately stationary width. It is clearly seen in Fig. 3

Having studied the stationary problem, it is vital to com- where the quantity
pare the results to full dynamical simulations. Therefore, we
carry out a numerical experiment launching a pulse in a sys- . S g
tem governed by the equation R_f [¢(r.p]*dr, (10
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characterizing the spatial extent of the excitation is shown. As(2, 2)

When ¢(r,t) is chosen as the self-similar solutipsee be- > [U(b) F({e}.b.R], 17
low, Eq. (12)], this quantity represents the squared inverse

excitation width. The dynamical simulations thus support theand

conclusion that otherwise unstable excitations are stabilized

by the presence of disorder in the continuum limit. 1 B JF ({€},b,R) 18)
2 R
IIl. ANALYTICAL RESULTS
) . where
Apparently, for the average dynamics there are only sig-
nificant effects of the disorder in the limit of small nonlinear A 1A
frequenciesA, and we shall therefore apply the analytical U(b)=p(0,D iz~ 5 a S(0.4) (19

approach in the continuum limit of E@5) that is given by
Eg. (9). In what follows we will not restrict ourselves by the is the effective potential function when disorder is absent and
two-dimensional model but will consider tliedimensional E |

_ = : : : A -
(d=1,2,...) case. Therefore, is the d-dimensional radius F b R)= f r f2< )dr 20
vector andV? is the d-dimensional Laplace operator. The (e} ) «(r) 20

potential(r) is a spatially homogeneous Gaussian randomyg he part of the potential caused by the disorder. The coef-
function with the properties ficientss(n,m) andp(n,m) are given by

(e()=0, (e(Ne(r))y=n?s(r—r"). (11)

In order to gain some analytical understanding of how the
presence of disorder affects the dynamics of the nonlinear e 1218 2
excitations, we apply a collective coordinate approach. Thus b(n m):J |F|n( d™f(|r|) daF 21)
it is assumed that the dynamics can be described in terms of ' dir|m '

collective coordinates using a localized self-similar trial

s(n,m>=f Ir|"Em(|r]ydr

function ¢(r,t) (Ref. 25 of the form The stationary points of the set of equati¢hg) and(18)
are determined by the equations
W(F 1) = /A(t f( |r_R(t)|)eia(t)[F—Ez(t)]2+i|2(t)F+i¢(t) d -
b(t) b(t) ’ 5LV (D) —F({€},b,R)]=0, (22)
(12
where f(|p|) is the real shape function. Here we have as- d .
sumed that the solution is radially symmetric. The two real % F({e},b,R)=0. (23

time-dependent parametekgt) and ¢(t) determine the am-

plitude and the phase of the excitatidr{t) and «(t) deter-  Solving the problem includes the following steps. Consider-
mine the width and the chirp of the excitation while anothering the center-of-mass motion that is described by #8),

pair of real parameterB(t) andk(t) determine the excita- we see that for each realization of the random poteatig)

tion cent_er-of-mas; motlion. on for the acti the pulse moves to the positidd= R({€},b) in the lattice
Equation(9) is the Euler-Lagrange equation for the aCtlonwhereF({e},b,ﬁ) as a function ofd has a maximum. In-

foo serting the valu®k=R,,({e},b) into Eq. (22),

S= L dt, (13

i ({e},b,ﬁ)) =0, (29

U(b)— (
where b R=R,({e}.b)

3 [ . _r 1., NP and solving it, we find the valub({e}) of the pulse width
_f 2 (W —e.c) = |Vl Syl + e(n)lyl® | dr that minimizes the potentidl (b)— F({e},b,R) for a given
(149 realization{e(r)}. The final step of the procedure is to find

the average valuéb({e})). It is impossible, however, to

is the Lagrangian of the system. Inserting the trial function"™ ) !
into Eq. (9), the following equations are derived from the realize the described program simply because we cannot

Euler-Lagrange equations: solve Eqs(22) and(23), for given e(r). Therefore, we will
use the following approximate approach.
A=0, (15) Introducing
—A ot 2 RR+ 4 R?)s(0,2)- 4 bbs(2,2)+ 29 s(0.4) and averaging Eq24), we get to the zeroth order ifi that

R the stationary value of the mean excitation wigths deter-
=U(b)—-F({e€},b,R), (16 mined by the extrema of the function
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W=U(B)-V, (26)

where

V=(F[{e},Rn({€},B),B]) (27)

is the averaged disorder potential. Clearly, E2{7) can be
written as

(FLieLRu(ehB1BY= | tP()dt, (29
where P(f )df is the probability of the function
F({e},R,B), having a maximum in the intervaf (f+df ).
We also take into account that the random figld e}, R,B)

is stationary(all its spectral moments are independenﬁ())f
To evaluateV, we apply the theorem by Belyayé¥,
which

theoren’ (see also Ref. 28Let F(R), (R=R;,..Ry) be a
stationary Gaussian field with zero mean afg(R)
= gF(R)/4R;, Fij(R)= dF(R)/dRidR; . Let D=(h;;) be a
symmetricdxXd matrix andg=(g;) a vector of lengthd,
andh=(hyj), (i<j=1,2.d) a vector of lengthd(d+1)/2.
Finally, if p(f,g,h) is the joint probability density function
for the random function& (R),F;(R),Fi;(R), so that

d(d+1)/2

p(f,g.h)={ o(f- F)H 8(gi—Fi) H 8(hij—Fy))

(29

ij

The probability that- has a maximum in the intervaf (f
+df ) is

J |D(h)|p(f,0h)dh

P(f )df=(—1)d — df,

17 I |D(h)|p(f,0h)dhdf
P(h)

(30

where|D(h)| is the determinant ob(h) andP(h) is the set

of h for which D(h) is negative definite.
Inserting Eq.(30) into Eq.(28), we get

(F({e},Rn({€},B),B))

o

I [ f|D(h)|p(f,0h)dhdf
—ooP(h)

=(-1)¢ (31

©

I [ |D(h)|p(f,0h)dhdf
—ooP(h)

It is seen from Eqgs(11) and (20) that (i) F and F; are
uncorrelated for ali, (i) F andF;; are uncorrelated for
#], (i) F; andF; are uncorrelated far#j, (iv) F; andFjy
are uncorrelated for all,j, k.

Thus we obtain from Eqg11), (20), (29), and(31),

STATIONARY STATES OF THE TWO-DIMENSIONA . ..

is a multidimensional generalization of Rice'’s
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(F({e},Rn({€}.B).B))
J
I D)=, —¢<h>dh
P( ) hjj
=(-1)° — (32
J |D(h)[¢(h)dh
P(h)
where the abbreviation
d 2
1 h 1
3 _ _ 1
()= exg( 2.2 W, 2 hij i (M~
(33
is used. Here
M;=—(FF;;)=(FF;), (34)
and the squardx d matrix M with componentsVl;; that are
second moments of tHé ’s, i.e.,
Mi;=(FiiFjp). (35

An explicit form of the effective potential functiow is
obtained using the fact that the trial function given by Eqg.
(12) is radially symmetric in the frame of reference that is
coupled with the center-of-mags Then we have

I

AZ7? 59(3) A
M]: BZd f ar] dr
A22 12 2.2

2% | Dte i rdi= 5 m
BIT 2 garz M

2 2

|2@1”(|r|)

A?7? 1 r?
ﬁ | J|2 g (|r|)+|

_A2772

=Wm2,

1)) °

24| 2

y _Aznzf 59(8) o2
T g Iriar; '

A27]2 2r2 1 N 2
= gava E |] (g”(| |)—ﬂ '(|f|)) dr

A2 772
=garaMs, (i#]), (36)
whereg=f? andg’(x)= dg/dx. It is seen that the coeffi-
cientsm;, m,, andms do not depend on the indicesand].
They merely depend on the dimensionality of the system and
on the explicit form of the trial functiori(r).

Inserting Eqs(36) into Eqgs.(32)—(35), and rescaling the

variablesh;; ,
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In the case of the one-dimensional NLS equatiah (
=1), Eq.(42) has the same form as the effective potential
obtained in Ref. 11 where the effects of disorder on the po-

we obtain that the averaged disorder potential has the formaron ground state were studied. In Ref. 11 a quite different

An
V:Ud 5drz: (38)
B
where the coefficient is
d J N
J 1D(2)|2]_1 ———¢(2)dz
P(2) 9zj;
vg=(—1)my (39)

I |D(2)| $(2)dz
P(2)

with the function ¢(Z) being determined by Eq$33) and
(35) in which one has to substitute

In accordance with Eq$36), the coefficienv depends only
on the dimensionality of the systechand the explicit form
of the trial functionf(r). E.g.,

R POD 8 p(0,1)
' (02 Ver Vp(-2)+p(02

(41)
Thus the effective averaged potentidtakes the form
AZ

A7
W=p(0,1) ?—Eg{S(OA)—Ud W (42)

Using this and Eq(16), the nonlinear frequencgbzA can
be determined as

approach, combining statistical and scaling analysis, was
used.

In the case of the two-dimensional NLS equatioth (
=2), the effective potentiad2) can be written as

N N V27
- s(O,Z)[p(O’1)<1_N_C) 8 B

where N=As(0,2) is the number of excitations and.
=2p(0,1)s(0,2)/s(0,4) is its critical value for which the sta-
tionary state of the two-dimensional NLS equation exists in
the absence of disorder. Whéh< N, , the effective poten-
tial (44) has a minimum for

w

: (44)

B= 2 (0 1)(1 N) (45)
V27 P Nc
and the nonlinear frequen¢yd) takes the form
2 2
v As(0,4
A= 27 s(0,4)
N N
4s(0,2)p(0,1)( 1- N—) 2p(0,1)( 1— N—)
Cc C
(46)

Equation(46) shows that the nonlinear frequendyincrease
monotonically whenN is increasing. According to the
Vakhitov-Kolokolov criterion, this means that the corre-
sponding stationary states are linearly stable. It is also seen
from Eq. (46) that A(N) does not vanish in the limiN

—0:

1 1 A%s(0,4) — i 2
——_(w=2= ’ Aga=lim A~ 7. (47)
A N (W > Bl | (43 gar— T
10° T
o
107 e
AGap 10721 J
10k 4
o
10_4 2 I 1 0
10~ 10° 10

FIG. 4. The width of the gap) 44, versus the disorder strengip Results of numerical calculations are indicated by squares while the
analytical dependence given by Ed7) is shown by the solid line. The gap is measuretat4.
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The appearance of the gap was also seen in the numericakcitations via the disorder. Comparing our results with the
simulations. Figure 4 shows the comparison of the deperresults of Ref. 18 for a similar case of a one-dimensional
dence given by Eq47) with the numerically obtained de- NLS equation with a quintic nonlinearity, it is found that the
pendence of the gap. The agreement between the two apwo systems exhibit very similar features in the presence of
proaches is rather good, signifying that the analyticaldisorder. This may be predictable considering the similarity
approach captures the essential features of the system.  of these system¥. It is, however, noteworthy that the aver-
aged potential, Eq.39), arising from the disorder is different
IV. SUMMARY in the two casepsee Eq(43) of Ref. 1§, suggesting that the

) ) exact form of the potential is not crucial.
In summary, we have in this paper shown that the pres-

ence of disorder permits the existence of stable localized
low-frequency excitations. We have shown this using ana-
lytical analysis and numerical simulations of the stationary
as well as the dynamical problem. Analyzing the discrete Yu.B.G. thanks MIDIT and the Department of Math-
problem, the appearance of a bistability phenomenon wasmatical Modelling, Technical University of Denmark for
observed, and the source of this bistability was identified tdhospitality. He also acknowledges partial support from the
be the competition between two length scales. The lengtlukrainian Fundamental Research Fund under Grant No. 2.4/
scale was found to be directly related to the strength of th&55 and from SRC QM “Vidhuk.” The present work was
disorder. The existence of a frequency gap in which no stasupported by the Danish Research Council through Contract
tionary state exists was shown analytically and numericallyNo. 9313393(supercomputing projegtsWork at Los Ala-
This gap, and the appearance of a narrow region where stabheos National Laboratory was performed under the auspices
excitations exist, allows rather accurate controllability of theof the US DOE.
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