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Stationary states of the two-dimensional nonlinear Schro¨dinger model with disorder
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Department of Mathematical Modelling, The Technical University of Denmark, DK-2800 Lyngby, Denmark

K. O” . Rasmussen
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

~Received 11 March 1998!

Solitonlike excitations in the presence of disorder in the two-dimensional cubic nonlinear Schro¨dinger
equation are analyzed. The continuum as well as the discrete problem are analyzed. In the continuum model,
otherwise unstable excitations are stabilized in the presence of disorder. In the discrete model, the disorder is
found to leave the narrow excitations unaffected. Our results suggest that the disorder provides a possibility to
control the spatial extent of the stable excitations in the continuum system.@S0163-1829~98!06429-7#

I. INTRODUCTION

The interplay between disorder and nonlinearity has been
drawing increasing attention of theoretical physicists the last
ten years.1 It is also a topic of great experimental concern in
several fields of modern physics, such as nonlinear optics,2,3

polaron formation in solid-states materials,4,5 and energy
transport in organic thin films.6

Attention has mainly been paid to systems that are
integrable—soliton bearing—in the absence of disorder. In
particular, in Ref. 7 the authors have discussed the effects of
a periodic potential on the soliton of the cubic nonlinear
Schrödinger~NLS! equation, and have shown on the basis of
an averaged NLS equation that the periodic potential leads to
a simple renormalization of the solitons and creates a ‘‘dress-
ing’’ of the soliton. Investigations of stationary wave propa-
gation in nonlinear disordered media have shown that non-
linearity changes the transmission properties of disordered
systems.8 It has been shown theoretically,9 and recently veri-
fied experimentally,10 that the presence of nonlinearity may
change the characteristic exponential decay of the transmis-
sion coefficient with system length into a power-law decay.
Among the soliton bearing models is also the so-called self-
trapping model of electrons in ionic crystals through po-
laronic lattice distortion11 ~a general model for coupled-field
systems12! where the nonlinearity arises from adiabatic
elimination of the lattice distortions. The study of such mod-
els with disorder and temporal noise has shown that the
ground state is always localized in the presence of disorder11

while the temporal noise always leads to destruction of the
localized states.13

However, the studied models all have long-lived soliton-
like solutions because in the continuum limit these equations
are all exactly integrable. The situation may change drasti-
cally if the continuum limit is nonintegrable. A relevant ex-
ample of such an equation is the two-dimensional~or higher-
dimensional! NLS equation. The most prominent application
of the two-dimensional NLS equations is probably the de-
scription of optical beams propagating in a three-dimensional
Kerr active medium.14 The discrete version has also been
applied in the context of optics as a model of optical pulse
propagation along a cluster of optical fibers.15 Two-
dimensional NLS equations have also been used in the mod-
eling of two-dimensional organic thin films6 and in several

other areas of nonlinear physics. However, the importance of
the two-dimensional NLS equation stems not only from its
physical importance but also from its simple and tractable,
yet rich, mathematical structure. As a mathematical object,
the two-dimensional NLS equation is rather well studied,
mainly due to the critical collapse phenomenon it exhibits
~for a review, see Rasmussen and Rypdal16!. As was realized
early,17 the two-dimensional NLS equation, although it is
nonintegrable, possesses a localized solution. This solution is
marginally stable and will, in the presence of perturbations,
usually either collapses or disperses.

Recently, Christiansenet al. investigated the effects of
disorder on the localized excitations in the quintic one-
dimensional NLS equation~where the nonlinear term is of
the form ucu4c) and showed that otherwise unstable excita-
tions are stabilized by the presence of disorder in the con-
tinuum problem.18 In the present paper, we study the effects
of disorder on the localized excitations in the cubic two-
dimensional NLS equation.

The paper is organized as follows. In Sec. II we introduce
the model describing the basic properties in the homoge-
neous discrete and continuum cases, and we discuss the nu-
merical results obtained when disorder is included in the
problem. We present numerical results showing that only the
broad excitations are significantly affected by the disorder
while the intrinsically localized excitations are rather unaf-
fected. Most importantly, we find that the disorder stabilizes
the very broad excitations. In Sec. III we address the problem
analytically in the continuum limit and show that the disor-
der indeed creates a stability window for the localized exci-
tations. Finally, Sec. IV contains a discussion of our results.

II. MODEL AND NUMERICAL RESULTS

We consider a quadratic two-dimensional lattice with the
lattice spacing equal to unity. The model is given by the
Lagrangian

L5 i(
nW

1

2
~ ċnWcnW2c.c.!2H, ~1!

where
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H5(
nW

(
DW

ucnW2cnW 2DW u22
1

2 (
nW

ucnW u42(
nW

enW ucnW u2

~2!

is the Hamiltonian of the system. In Eqs.~1! and ~2!, cnW

[cm,n is a complex wave function,nW 5(m,n), (m,n50,
61,62...) is the lattice vector, while the vectorDW 5
(61,0),(0,61) connects nearest neighbors in the lattice.
The first term in Eq.~2! is the dispersive energy of the ex-
citation, the second term describes a self-interaction of the
excitation, and the third term represents diagonal disorder in
the lattice. Finally, the random functionsenW are assumed to
have Gaussian distribution with the probability

p~enW !5
1

hAp
exp@2~enW /h!2# ~3!

and have the autocorrelation function

^enWenW 8&5h2dnW ,nW 8 , ~4!

where the bracketŝ• • • •& denote averaging over all real-
izations of the disorder. From the Lagrangian~1! we obtain
the equation of motion for the excitation function in the form

i ċm,n1~cm,n211cm,n111cm11,n1cm21,n24cm,n!

1ucm,nu2cm,n1em,ncm,n50,

n,m50,61,62, . . . . ~5!

Equation~5! conserves the normN defined as

N5(
nW

ucnW u2, ~6!

and the HamiltonianH.
We are interested in the stationary solutions of Eq.~5! in

the form

cnW~ t !5fnW exp~ iLt !, ~7!

with a real shape functionfnW and a nonlinear frequencyL.
The governing equations for the functionsfnW[fm,n then
become

2Lfm,n1~fm,n211fm,n111fm11,n1fm21,n24fm,n!

1ufm,nu2fm,n1em,nfm,n50. ~8!

Equation~8! together with Eq.~6! constitute a nonlinear ei-
genvalue problem that can be solved numerically using the
techniques described in Ref. 19. The dependenceN(L) in
the case without disorder has been studied earlier19–21and is
shown with a solid line in Fig. 1. It has previously been
shown20–22 that the linear stability of the stationary states in
the discrete case is determined by the Vakhitov-Kolokolov
criterion,23 yielding linear stability wheneverdN/dL.0.
This, together with the solid curve in Fig. 1, shows that low-
frequency nonlinear excitations in the discrete two-
dimensional NLS model (0<L<L th51.088) are unstable.
In the continuum limit (L→0) N(L)→Nc.11.7.

Further, we show in Fig. 1 the dependenceN on L for the
solutions of Eq.~8! in the presence of disorder. Results for
three values of the varianceh50.04 ~dotted line!, 0.07
~dash-dotted line!, and 0.1~dashed line! are shown. The re-

FIG. 1. The norm,N versus nonlinear frequencyL for various disorder strengthsh. Homogeneous caseh50 ~solid line!, h50.04
~dotted line!, h50.07 ~dashed-dotted line!, andh50.1 ~dashed line!.
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sults have been obtained as averages of 150 realizations of
the disorder. Several features arise as a consequence of the
disorder. In the continuum limit (L→0), we no longer have
N5Nc anddN/dL50. Instead,N→0 anddN/dL.0, sig-
nifying that the disorder stabilizes the excitations in the low-
frequency limit. The disorder creates a stability window such
that a bistability phenomenon emerges. Consequently, there
is an interval of the excitation norm in which two stable
excitations with significantly different widths have the same
norm.

Furthermore, we see that the disorder creates a gap at
small L in which no localized excitation can exist, and that
the size of this gap apparently is increased as the variance of
the disorder is increased. It is also clearly seen that, asL
increases~decreasing width!, the effect of the disorder van-
ishes, so that the very narrow excitations are in average un-
affected by the disorder and only the continuum results are
affected by disorder. It is important to stress that this is an
average effect, because for each realization of the disorder
the narrow excitation will be affected. The narrow excitation
will experience a shift in the nonlinear frequency equal to the
amplitude of the disorder at the position of the excitation.

The qualitative form of the dependenceN(L) for a par-
ticular realization is very similar to the form of the average
dependence shown in Fig. 1. It is noteworthy that for all
realizations the curveN(L) is a smooth curve. It turns out
that the basic difference from realization to realization is a
displacement of the curve along theL axis.

The bistability we observe in Fig. 1 occurs due to the
competition between two different length scales of the prob-
lem, one length scale being defined by the relation between
the nonlinearity and the dispersion, while the length scale
defined by the disorder gives the other length scale. A similar
effect was observed by Christiansenet al.18 for the one-
dimensional discrete NLS equation with a quintic nonlinear-
ity. The latter is quite natural because, as it is well known
~see, e.g., Ref. 24!, the properties of the two-dimensional
NLS model with a cubic nonlinearity are similar to the prop-
erties the one-dimensional NLS equation with a quintic non-
linearity.

Having studied the stationary problem, it is vital to com-
pare the results to full dynamical simulations. Therefore, we
carry out a numerical experiment launching a pulse in a sys-
tem governed by the equation

i ] tc~rW,t !1¹2c~rW,t !1uc~rW,t !u2c~rW,t !1e~rW !c~rW,t !50,
~9!

being the continuum limit of Eq.~5! for the excitation func-
tion cnW(t)5c(rW,t). Specifically, stationary solutions to Eq.
~9! were obtained, and after reducing the amplitude of these
solutions by 5% they were used as initial conditions of the
dynamical simulations that were performed by applying a
Runge-Kutta scheme. Examples of the described experiment
are shown in Fig. 2. As is seen, the pulse behavior in the
absence of disorder and in the presence of disorder~we
present here a realization corresponding to the disorder vari-
anceh50.1) differs drastically. While the pulse rapidly dis-
perses in the ideal system~the contour plot fort5250 is
absent because the pulse width is of the system size!, the
process is arrested in the disordered system. After some tran-
sient behavior the excitation stabilizes and attains an ap-
proximately stationary width. It is clearly seen in Fig. 3
where the quantity

R5E uc~rW,t !u4drW, ~10!

FIG. 2. Evolution of an initial excitation of the normN
510.4402 in continuum systems without disorder~upper part! and
with disorder strengthh50.1 ~lower part!.

FIG. 3. The inverse width squared, obtained by numerical solu-
tion of Eq. ~9! in a no-disorder case (h50) ~upper part! and with
disorder strengthh50.1 ~lower part!. The normN510.4402 is the
same as in Fig. 2.
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characterizing the spatial extent of the excitation is shown.
When c(rW,t) is chosen as the self-similar solution@see be-
low, Eq. ~12!#, this quantity represents the squared inverse
excitation width. The dynamical simulations thus support the
conclusion that otherwise unstable excitations are stabilized
by the presence of disorder in the continuum limit.

III. ANALYTICAL RESULTS

Apparently, for the average dynamics there are only sig-
nificant effects of the disorder in the limit of small nonlinear
frequenciesL, and we shall therefore apply the analytical
approach in the continuum limit of Eq.~5! that is given by
Eq. ~9!. In what follows we will not restrict ourselves by the
two-dimensional model but will consider thed-dimensional
(d51,2,. . . ) case. Therefore,rW is thed-dimensional radius
vector and¹2 is the d-dimensional Laplace operator. The
potentiale(rW) is a spatially homogeneous Gaussian random
function with the properties

^e~rW !&50, ^e~rW !e~rW8!&5h2d~rW2rW8!. ~11!

In order to gain some analytical understanding of how the
presence of disorder affects the dynamics of the nonlinear
excitations, we apply a collective coordinate approach. Thus
it is assumed that the dynamics can be described in terms of
collective coordinates using a localized self-similar trial
function c(rW,t) ~Ref. 25! of the form

c~rW,t !5AA~ t !

bd~ t !
f S urW2RW ~ t !u

b~ t !
D eia~ t !@rW2RW ~ t !#21 ikW~ t !rW1 if~ t !,

~12!

where f (urW u) is the real shape function. Here we have as-
sumed that the solution is radially symmetric. The two real
time-dependent parametersA(t) andf(t) determine the am-
plitude and the phase of the excitation,b(t) anda(t) deter-
mine the width and the chirp of the excitation while another
pair of real parametersRW (t) and kW (t) determine the excita-
tion center-of-mass motion.

Equation~9! is the Euler-Lagrange equation for the action

S5E
2`

`

L dt, ~13!

where

L5E S i

2
~c] tc* 2c.c.!2u¹cu21

1

2
ucu41e~rW !ucu2DdrW

~14!

is the Lagrangian of the system. Inserting the trial function
into Eq. ~9!, the following equations are derived from the
Euler-Lagrange equations:

Ȧ50, ~15!

2AS ḟ1
1

2
RẄ RW 1

1

4
RẆ 2D s(0,2)2

A

4
b̈bs~2,2!1

1

2

A2

bd s~0,4!

5U~b!2F~$e%,b,RW !, ~16!

As~2,2!

2
b̈52

]

]b
@U~b!2F~$e%,b,RW !#, ~17!

and

1

2
RẄ 5

]F~$e%,b,RW !

]RW
, ~18!

where

U~b!5p~0,1!
A

b2 2
1

2

A2

bd s~0,4! ~19!

is the effective potential function when disorder is absent and

F~$e%,b,RW !5
A

bd E e~rW ! f 2S urW2RW u
b

D drW ~20!

is the part of the potential caused by the disorder. The coef-
ficientss(n,m) andp(n,m) are given by

s~n,m!5E urWunf m~ urWu!drW,

p~n,m!5E urWunS dmf ~ urWu!

durWum D 2

drW. ~21!

The stationary points of the set of equations~17! and~18!
are determined by the equations

]

]b
@U~b!2F~$e%,b,RW !#50, ~22!

]

]RW
F~$e%,b,RW !50. ~23!

Solving the problem includes the following steps. Consider-
ing the center-of-mass motion that is described by Eq.~18!,
we see that for each realization of the random potentiale(rW)
the pulse moves to the positionRW 5RW m($e%,b) in the lattice
whereF($e%,b,RW ) as a function ofRW has a maximum. In-
serting the valueRW 5RW m($e%,b) into Eq. ~22!,

]

]b
U~b!2S ]

]b
F~$e%,b,RW ! D

RW 5RW m~$e%,b!

50, ~24!

and solving it, we find the valueb($e%) of the pulse width
that minimizes the potentialU(b)2F($e%,b,RW ) for a given
realization$e(rW)%. The final step of the procedure is to find
the average valuêb($e%)&. It is impossible, however, to
realize the described program simply because we cannot
solve Eqs.~22! and ~23!, for givene(rW). Therefore, we will
use the following approximate approach.

Introducing

b5B1d, B5^b&, ~25!

and averaging Eq.~24!, we get to the zeroth order ind that
the stationary value of the mean excitation widthB is deter-
mined by the extrema of the function
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W5U~B!2V, ~26!

where

V5^F@$e%,RW m~$e%,B!,B#& ~27!

is the averaged disorder potential. Clearly, Eq.~27! can be
written as

^F@$e%,RW m~$e%,B!,B#&5E
2`

`

f P~ f !d f , ~28!

where P( f )d f is the probability of the function
F($e%,RW ,B), having a maximum in the interval (f , f 1d f ).
We also take into account that the random fieldF($e%,RW ,B)
is stationary~all its spectral moments are independent ofRW ).

To evaluateV, we apply the theorem by Belyayev,26

which is a multidimensional generalization of Rice’s
theorem27 ~see also Ref. 28!. Let F(RW ), (RW 5R1 ,..Rd) be a
stationary Gaussian field with zero mean andFi(RW )
5 ]F(RW )/]Ri , Fi j (RW )5 ]F(RW )/]Ri]Rj . Let D5(hi j ) be a
symmetricd3d matrix andgW 5(gi) a vector of lengthd,
and hW 5(hi j ), (i< j 51,2..d) a vector of lengthd(d11)/2.
Finally, if p( f ,gW ,hW ) is the joint probability density function
for the random functionsF(RW ),Fi(RW ),Fi j (RW ), so that

p~ f ,gW ,hW !5K d~ f 2F !)
i 51

d

d~gi2Fi ! )
i< j 51

d~d11!/2

d~hi j 2Fi j !L .

~29!

The probability thatF has a maximum in the interval (f , f
1d f ) is

P~ f !d f5~21!d

*
P~h!

uD~h!up~ f ,0,hW !dhW

*2`
` *
P~h!

uD~h!up~ f ,0,hW !dhW d f
d f ,

~30!

whereuD(h)u is the determinant ofD(h) andP(h) is the set
of hW for whichD(h) is negative definite.

Inserting Eq.~30! into Eq. ~28!, we get

^F~$e%,RW m~$e%,B!,B!&

5~21!d

*
2`

`

*
P~h!

f uD~h!up~ f ,0,hW !dhW d f

*
2`

`

*
P~h!

uD~h!up~ f ,0,hW !dhW d f

. ~31!

It is seen from Eqs.~11! and ~20! that ~i! F and Fi are
uncorrelated for alli , ~ii ! F and Fi j are uncorrelated fori
Þ j , ~iii ! Fi andF j are uncorrelated foriÞ j , ~iv! Fi andF jk
are uncorrelated for alli , j ,k.

Thus we obtain from Eqs.~11!, ~20!, ~29!, and~31!,

^F~$e%,RW m~$e%,B!,B!&

5~21!d

*
P~h!

uD~h!u( j 51
d M j

]

]hj j

f~hW !dhW

*
P~h!

uD~h!uf~hW !dhW
, ~32!

where the abbreviation

f~hW !5expS 2
1

2 (
i , j 51

d hi j
2

Mi j
2

1

2 (
i , j 51

d

hii hj j @M 21# i j D
~33!

is used. Here

M j52^FF j j &5^F jF j&, ~34!

and the squared3d matrix M with componentsMi j that are
second moments of theFi j ’s, i.e.,

Mi j 5^Fii F j j &. ~35!

An explicit form of the effective potential functionW is
obtained using the fact that the trial function given by Eq.
~12! is radially symmetric in the frame of reference that is
coupled with the center-of-massR. Then we have

M j5
A2h2

B2d E S ]gS urWu
B

D
]r j

D 2

drW

5
A2h2

Bd12 E r j
2

r 2 @g8~ urWu!#2drW[
A2h2

Bd12 m1 ,

M j j 5
A2h2

B2d E S ]2gS urWu
B

D
]r j

2
D 2

drW

5
A2h2

Bd14 E F 1

urWu S 12
r j

2

urWu2D g8~ urWu!1
r j

2

urWu2
g9~ urWu!G2

drW

[
A2h2

Bd14 m2 ,

Mi j 5
A2h2

B2d E S ]2gS urWu
B

D
]r i]r j

D 2

drW

5
A2h2

Bd14 E r i
2r j

2

urWu4 S g9~ urWu!2
1

urWu
g8~ urWu! D 2

drW

[
A2h2

Bd14 m3 , ~ iÞ j !, ~36!

whereg5 f 2 and g8(x)5 dg/dx. It is seen that the coeffi-
cientsm1 , m2 , andm3 do not depend on the indicesi and j .
They merely depend on the dimensionality of the system and
on the explicit form of the trial functionf (r ).

Inserting Eqs.~36! into Eqs.~32!–~35!, and rescaling the
variableshi j ,
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hi j 5
Ah

Bd/212 zi j , ~37!

we obtain that the averaged disorder potential has the form

V5vd

Ah

Bd/2 , ~38!

where the coefficientv is

vd5~21!dm1

*
P~z!

uD~z!u( j 51
d ]

]zj j
f~zW !dzW

*
P~z!

uD~z!uf~zW !dzW
~39!

with the functionf(zW) being determined by Eqs.~33! and
~35! in which one has to substitute

Mi j 5m2d i j 1m3~12d i j !. ~40!

In accordance with Eqs.~36!, the coefficientv depends only
on the dimensionality of the systemd and the explicit form
of the trial functionf (r ). E.g.,

v15A2p
p~0,1!

Ap~0,2!
, v25

8

A6p

p~0,1!

Ap~22,1!1p~0,2!
.

~41!

Thus the effective averaged potentialW takes the form

W5p~0,1!
A

B2 2
1

2

A2

Bd s~0,4!2vd

Ah

Bd/2 . ~42!

Using this and Eq.~16!, the nonlinear frequencyḟ5L can
be determined as

L52
1

N S W2
1

2

A2s~0,4!

Bd D . ~43!

In the case of the one-dimensional NLS equation (d
51), Eq. ~42! has the same form as the effective potential
obtained in Ref. 11 where the effects of disorder on the po-
laron ground state were studied. In Ref. 11 a quite different
approach, combining statistical and scaling analysis, was
used.

In the case of the two-dimensional NLS equation (d
52), the effective potential~42! can be written as

W5
N

s~0,2! Fp~0,1!S 12
N

Nc
D 1

B2 2
v2h

B G , ~44!

where N5As(0,2) is the number of excitations andNc
52p(0,1)s(0,2)/s(0,4) is its critical value for which the sta-
tionary state of the two-dimensional NLS equation exists in
the absence of disorder. WhenN,Nc , the effective poten-
tial ~44! has a minimum for

B5
2

v2h
p~0,1!S 12

N

Nc
D ~45!

and the nonlinear frequency~43! takes the form

L5
v2

2h2

4s~0,2!p~0,1!S 12
N

Nc
D S 11

As~0,4!

2p~0,1!S 12
N

Nc
D D .

~46!

Equation~46! shows that the nonlinear frequencyL increase
monotonically whenN is increasing. According to the
Vakhitov-Kolokolov criterion, this means that the corre-
sponding stationary states are linearly stable. It is also seen
from Eq. ~46! that L(N) does not vanish in the limitN
→0:

Lgap[ lim
N→0

L;h2. ~47!

FIG. 4. The width of the gap,Lgap versus the disorder strengthh. Results of numerical calculations are indicated by squares while the
analytical dependence given by Eq.~47! is shown by the solid line. The gap is measured atN54.
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The appearance of the gap was also seen in the numerical
simulations. Figure 4 shows the comparison of the depen-
dence given by Eq.~47! with the numerically obtained de-
pendence of the gap. The agreement between the two ap-
proaches is rather good, signifying that the analytical
approach captures the essential features of the system.

IV. SUMMARY

In summary, we have in this paper shown that the pres-
ence of disorder permits the existence of stable localized
low-frequency excitations. We have shown this using ana-
lytical analysis and numerical simulations of the stationary
as well as the dynamical problem. Analyzing the discrete
problem, the appearance of a bistability phenomenon was
observed, and the source of this bistability was identified to
be the competition between two length scales. The length
scale was found to be directly related to the strength of the
disorder. The existence of a frequency gap in which no sta-
tionary state exists was shown analytically and numerically.
This gap, and the appearance of a narrow region where stable
excitations exist, allows rather accurate controllability of the

excitations via the disorder. Comparing our results with the
results of Ref. 18 for a similar case of a one-dimensional
NLS equation with a quintic nonlinearity, it is found that the
two systems exhibit very similar features in the presence of
disorder. This may be predictable considering the similarity
of these systems.16 It is, however, noteworthy that the aver-
aged potential, Eq.~39!, arising from the disorder is different
in the two cases@see Eq.~43! of Ref. 18#, suggesting that the
exact form of the potential is not crucial.
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