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Solitary plane-wave solutions in a two-dimensional hexagonal lattice which can propagate in different
directions on the plane are found by using the pseudospectral method. The main point of our studies is that the
lattice model is isotropic and we show that the sound velocity is the same for different directions of wave
propagation. The pseudospectral method allows us to obtain solitary wave solutions with very narrow profile,
the thickness of which may contain a few atoms or even less than one lattice spacing~i.e., essentially discrete
solutions!. Since these nonlinear waves are quite narrow, details of lattice microstructure appear to be impor-
tant for their motion. Particularly, the regime of their propagation qualitatively depends on whether or not the
direction of their motion occurs along the lattice bonds. Two types of solitary plane waves are found and
studied. The stability of these solitary waves is investigated numerically by their interactions with vacancies
and lattice edges. Propagation of solitary plane waves through finite lattice domains with isotopic disorder is
extensively studied. Comparison of these results with the soliton propagation in one-dimensional lattices with
mass impurities is presented.@S0163-1829~98!00522-0#

I. INTRODUCTION

Solitary waves in two-dimensional~2D! lattices have
been studied in a number of publications,1–7 using some es-
sential simplifications. Thus, in all of these works scalar
models or strongly anisotropic models were considered.
Therefore any extension of these studies to isotropic vector
models is of interest. The present paper aims to investigate
the dynamics of solitary plane waves in the 2D hexagonal
lattice shown in Fig. 1. This work is a natural extension of
the nonlinear dynamics of one-dimensional~1D! lattices.
New features in the dynamics appear when 1D and multidi-
mensional systems are compared. Thus, in a 2D isotropic
lattice with microstructure the properties of a nonlinear wave
should depend on the direction of propagation.

The 2D hexagonal lattice studied in this paper is an en-
tirely vector model which includes interparticle interactions
of the central-symmetric type and only between the nearest
neighbors. We consider the realistic (12,6) Lennard-Jones
~LJ! potential which contains the core. The presence of this
core leads to some specific features of the soliton solution,
e.g., the existence of the upper bound for the soliton ampli-
tude. Therefore, it would be interesting to study the soliton
dynamics in the 1D LJ lattice as well. We start in this paper
with the 1D case and afterwards pass to the 2D lattice. Be-
cause the lattice solitons are essentially discrete objects and
the techniques of the continuum analysis are not valid any-
more, we find the soliton solutions by applying the pseu-
dospectral method suggested and developed previously by
Eilbeck and Flesch8 and Duncanet al.9 This method allows

us to find numerically the traveling-wave solutions for all
admissible velocities, the profile of which can be obtained
with any given accuracy. In dependence on the direction of
solitary wave propagation, we show that in the 2D lattice the
solitary plane wave has either a finite or infinite interval of
supersonic velocities.

Realistic crystals always contain mass impurities. In order
to investigate the stability of the solitary wave propagation in
the 2D lattice, we also consider interactions of these waves

FIG. 1. Schematic representation of the 2D isotropic hexagonal
lattice. The nearest-neighbor interactions are shown by springs.
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with mass impurities. In this paper we study the solitary
wave propagation through a lattice vacancy~the absence of a
particle at some lattice site! and through a 2D domain with
isotopic disorder. Also, we will study the influence of differ-
ent boundary conditions on the solitary wave motion. Con-
trary to the 1D case, when the lattice soliton is known to be
reflected from a heavy mass impurity, the solitary plane
wave rounds it, retaining its shape with some radiation of
delocalized waves.

The paper is organized as follows. In Sec. II we consider
briefly the 1D LJ lattice. The 2D LJ hexagonal lattice model
is described in the next section. In Sec. IV we reduce the 2D
problem to an effective 1D chain. Soliton dynamics in lat-
tices with mass impurities is studied in Sec. V. Conclusions
are given in the next section. Finally, Appendixes A and B
contain short descriptions of the pseudospectral method and
a soliton solution of the reduced 1D problem in the con-
tinuum approximation.

II. THE HOMOGENEOUS 1D LJ LATTICE

We consider a 1D lattice of particles~atoms or molecules!
with massm coupled by the~12,6! LJ potential. The dimen-
sionless Hamiltonian of such a chain has the form

H5(
n

F1

2
u̇n

21U~un112un!G , ~1!

where the dot denotes the differentiation with respect to the
dimensionless timet5Am/kt with k being the characteris-
tic stiffness constant of the interatomic LJ potential. The lat-
tice dimensionless variableun describes the displacement of
thenth chain particle from its equilibrium position measured
in units of the lattice spacingl . The dimensionless potential
function U is defined through the expression

U~r !5
1

72
@~r 11!2621#2, ~2!

so that this function is normalized by the relationsU(0)
50 andU9(0)51. The corresponding equations of motion
are

r̈ n5U8~r n11!22U8~r n!1U8~r n21!, n50,61, . . . ,
~3!

where r n5un112un is the relative displacement from the
equilibria of thenth and the (n11)th lattice particles.

We look for solitary wave solutions of Eq.~3! propagat-
ing with constant velocitys: r n(t)5r (n2st)5r (z), z5n
2st. The boundary conditions for these types of solutions
are r (6`)50 and r 8(6`)50. These solutions can be
found by using the pseudospectral method described in Ap-
pendix A. For the description of soliton solutions it is con-
venient to use such quantities as their amplitudeA52r (0),
the ‘‘thickness’’ ~diameter!

D52F E
0

`

z2r ~z!dzY E
0

`

r ~z!dzG2

, ~4!

and the energy defined according to the Hamiltonian~1!. The
soliton energyE can be given in terms of the functionsr (z)
and r 8(z) obtained by using the pseudospectral method:

E5 (
n52ND

ND Fs2

2 S (
j 52ND

n

r j8D 2

1U~r n!G , ~5!

wherer n5r (n) and r n85r 8(n) with the boundary condition
u2ND
8 50. The numberND chosen to be, for instance, the

integer part of the number 10D provides that the soliton is
situated far away from the boundaries.

The numerical investigation of Eqs.~3! for the LJ chain
shows that the lattice soliton solutions exist for all supersonic
(s.1) velocities. The behavior of the soliton amplitudeA as
a function of the velocitys is shown in Fig. 2~a! where the
function (12A)26 againsts is plotted. This means that the
amplitudeA tends monotonically to 1 as 12O(s21/6). The
soliton thicknessD decreases monotonically with saturation
as shown in Fig. 2~b!. When s51.0055, the width is less
than 10, whens51.0226, becomes less than 5, next fors
51.175 it becomes less than 2, and finally fors53.7 it be-
comes even less than one lattice spacing, i.e., 1. The soliton
energyE increases monotonically ass2 @see Fig. 2~c!#.

The LJ lattice is not an integrable system. Let us consider
the head-in collision of two solitons. During the collision the
soliton interaction causes the radiation of small-amplitude
waves~phonons!. The nonelasticity of this collision can be
described by the energy-loss percentage defined byp
5@(E12E2)/E1#100% whereE1 is the soliton energy be-
fore collision andE2 the soliton energy after collision. The
dependence of the energy-loss percentagep on the soliton
velocity s is presented in Table I. As follows from this table,

FIG. 2. ~a! Function (12A)26 of the soliton amplitudeA, ~b!
soliton diameterD, and ~c! square root of the soliton energyAE
against the soliton velocitys in the 1D LJ lattice.
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the maximal energy loss occurs at the velocitys51.23 and
equals 0.000 81. The collision process is illustrated by Fig.
3~a!. The phonon radiation is visible only after significant
zooming as shown in Figs. 3~b!–3~d!. The small values ofp
mean that the LJ chain is close to be a completely integrable
system. Energy losses tend to zero whens→110 @in this
limit the soliton dynamics is described by the completely
integrable Korteweg–de Vries equation! and whens→` ~in
this limit soliton dynamics is described by the completely
integrable rigid-sphere model!.

III. 2D LJ LATTICE

Let us consider a 2D isotropic hexagonal lattice. Its sites
are labeled as shown in Fig. 1. Each lattice particle interacts
with its six nearest neighbors which are situated at the dis-

tance 1 from it. The interparticle bonds shown in Fig. 1 by
springs are described by the LJ potential~2!. We use the
Cartesian frame of referenceXY, so that each lattice site
corresponds to the pair of integers (m,n) with m andn being
both either even or odd. We denote this set of integer pairs
(m,n) by G. In the equilibrium position the (m,n)th particle
has the coordinates (m/2,A3n/2). Let (umn ,vmn) be the 2D
vector displacement of the (m,n)th particle from its equilib-
rium position. Then the Hamiltonian of the lattice can be
written as

H5 (
~m,n!PG

F1

2
mmn~ u̇mn

2 1 v̇mn
2 !1 (

~k,l !
U~r klmn!G , ~6!

where

r klmn5AS k

2
1um1k,n1 l2umnD 2

1S A3

2
l 1vm1k,n1 l2vmnD 2

21 ~7!

is the deviation from the equilibrium distance between the
(m1k,n1 l )th and the (m,n)th particles and the summation
over (k,l ) runs three bonds in each lattice cell. We choose
the following three pairs:~2,0!, ~1,1!, and (21,1). The cor-
responding equations of motion can be written in the stan-
dard manner from the Hamiltonian~6!.

IV. SOLITARY PLANE WAVES

Let us consider the motion of a plane wave in a general
direction given by the Miller indices@ ī j 0# which are defined
in the frame of reference formed by the basis vectors, the
direction of which coincides with adjacent bonds. The direc-
tion of wave propagation coincides with the line that con-
nects the origin (0,0) with the particle at the lattice site
(m,n)5(2i 1 j , j ). The angle between this line and theX
axis is a5tan21(A3n/m)5tan21@A3 j /(2i 1 j )#. Without
loss of generality~because of the hexagonal symmetry!, we
can assume that 0<n<m/3, m.1, (0<a<p/6). Now we
rotate the Cartesian frameXY by the anglea anticlockwise.
Then in the new frame (u,v) the u axis determines the di-
rection of wave propagation and thev axis coincides with
the plane~front! of a wave ~note that in the 2D case the
‘‘plane ~front! of a wave’’ is just a line!.

We define a ‘‘directed elementary cell’’ of the 2D hex-
agonal lattice which corresponds to the angle of wave propa-
gationa as the smallest rectangular formed by the vertices at
the lattice sites~0,0!, (m,n), (m1m1 ,n1n1), and (m1 ,n1)
wherem152n and n15m/3 if m is proportional to 3 and

m1523n,n15m if m is not proportional to 3~see Fig. 4!.
The length of the rectangular sides which are parallel to theu
andv axes are given by the expressions

l u5
1

2
Am213n2, l v5

1

2
Am1

213n1
2, ~8!

respectively. When the plane-wave propagates in the direc-
tion of theu axis, all the lattice sites which are situated along
a line, parallel to the wave front, are equally displaced, so
that only theu projections of the sites change. Therefore the
problem of the plane-wave propagation in the 2D lattice can
be reduced to the effective 1D model.

Both as in the 2D lattice and in the ‘‘reduced’’ 1D chain,
each particle interacts with its six~not necessarily nearest!
neighbors. The length of the undistorted bonds in the re-
duced chain corresponds to the length of the projections of
the three bonds outcoming from the site (0,0) on theu axis:

d15cosS p

3
1a D5

m23n

2Am213n2
>0,

d25cosS p

3
2a D5

m13n

2Am213n2
.0, ~9!

d35cosa5
m

Am213n2
.0.

TABLE I. Dependence of energy lossesp after head-in collision of two solitons in the 1D LJ lattice on their velocitys.

s 1.03 1.06 1.1 1.2 1.23 1.3 2.0 2.5 3.0 3.5

p(%) 1.431025 1.131024 3.731024 8.131024 8.331024 7.631024 5.631025 7.931026 9.831027 4.631028
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Since (m,n)PG, the numbers (m23n)/2, (m13n)/2, and
m are integers. Letl>1 be their largest common divisor, i.e.,
(m23n)/25k1l , (m13n)/25k2l , and m5k3l , where k1,
k2, andk3 are integers. Therefore the spacing of the reduced
chain can be defined by

a5a~a!5
dj

kj
5

l

Am213n2
, j 51,2,3. ~10!

The Hamiltonian of this chain can be written in the form

H5
1

l v
(

n
F1

2
u̇n

21(
j 51

3

U j~un1kj
2un!G , ~11!

whereun is the displacement of thenth particle in this chain
and thej th ( j 51,2,3) reduced LJ potential is defined by

U j~r !5
1

72
@~112djr 1r 2!2321#2, dj5kja, ~12!

if kjÞ0 andU j (r )[0 if kj50, j 51,2,3. The Hamiltonian
~11! gives the energy density along the wave front. The re-
duced LJ potential~12! coincides with the standard LJ po-
tential only if dj51. For other values ofdj the reduced
potential~12! is a function bounded from above as shown in
Fig. 5. Its maximal values are given by

U j ,max5maxH 1

72
@~12dj

2!2321#2,
1

72J , ~13!

at r 52dj while its minima (U j ,min50) happen atr 5
22dj and 0 ~see Fig. 5!.

The equations of motion that correspond to the Hamil-
tonian ~11! are

ün5(
j

@U j8~un1kj
2un!2U j8~un2un2kj

!#,

n50,61, . . . . ~14!

FIG. 3. ~a! Head-in collision of the lattice solitons with veloci-
ties s51.2 in the 1D LJ lattice,~b! their profiles before collision
(t550), ~c! after collision (t5100), and~d! later, att5150.

FIG. 4. Construction of the reduced 1D chain model corre-
sponding to motion of a solitary plane wave in the direction given
by a. The particular case of the directed elementary cell withm
59 andn51 (a510.89°) is presented. For this case the vertices
of the cell are~0,0!, ~9,1!, ~8,4!, and (21,3). Its boundaries are
indicated by solid lines of lengthl u and l v defined by Eqs.~8!.
Projections of lattice sites on theu axis are shown by dashed lines.

FIG. 5. Shape of the reduced LJ potentialU j (r ) for j 51 ~curve
1! and j 52 ~curve 2!. Spacing of the reduced 1D chain isa
50.327 (m59, n51, anda510.89°).
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Here and throughout this paper the summation overj runs
the values:j 51, 2, and 3. This system of equations can be
rewritten in terms of the longitudinal relative displacements
r n5un112un as follows:

r̈ n5(
j

FU j8S (
l 51

kj

r n1 l D 2U j8S (
l 51

kj

r n1 l 21D
2U j8S (

l 51

kj

r n2kj 1 l D 1U j8S (
l 51

kj

r n2kj 211 l D G . ~15!

In the continuum limit the system of the discrete Eqs.~15!
can be transformed to the Boussinesq equation and its solu-
tion is given in Appendix B. The soliton solution exists for
all s.s0 wheres05A9/8 is the velocity of small-amplitude
waves in the lattice which does not depend on the direction
of wave propagation.

Similarly to the 1D case, in order to find numerically
exact soliton solutions which take into account the discrete-
ness of the lattice:

r n~t!5r ~z!, z5na2st, ~16!

we use the pseudospectral method~for details see again Ap-
pendix A!. For the description of solitary wave solutions we
use the total compression of the latticeR52(nr n5u2`

FIG. 6. Five directed elementary cells~shown by the rectangu-
lars! for the five directions of solitary wave propagation. The rect-
angulars 1, 2, 3, 4, and 5 correspond to the directions@010# (a

50°), @ 4̄10# (a510.89°), @ 2̄10# (a519.11°), @ 4̄30# (a

525.29°), and@ 1̄10# (a530°).

FIG. 7. ~a! Squared total lattice compressionR2, ~b! square root
AE of the energyE given by the Hamiltonian~ 11!, and the profile
thicknessD against velocitys for the solitary wave propagating in
the directionsa50° ~curves 1, 7, and 13!, a510.89° ~curves 2, 8,
and 14!, a519.11° ~curves 3, 9, and 15!, a525.29° ~curves 4, 10,
and 16!, anda530° ~curves 5, 11, and 17!. Two small circles in~a!
and ~b! are the bifurcation points which separate the hard solitary
wave solution represented by curves 5 and 11 from the soft solitary
wave solution represented by curves 6 and 12 for the case witha
530°.

TABLE II. Geometric parameters@ ī j 0#, (m,n), (m1 ,n1), a;
l u , l v ; k1, k2, k3; Na , a for five directions of solitary wave propa-
gation.

@ ī j 0# (m,n) (m1 ,n1) a l u l v k1 k2 k3 Na a

@010# ~2,0! ~0,2! 0° 1 A3 1 1 2 2 0.5

@ 4̄10# ~9,1! ~-1,3! 10.89° A21 A7 1 2 3 14 0.327

@ 2̄10# ~5,1! ~-3,5! 19.11° A7 A21 1 4 5 14 0.189

@ 4̄30# ~11,3! ~-9,11! 25.29° A37 A111 1 10 11 74 0.082

@ 1̄10# ~3,1! ~-1,1! 30° A3 1 0 1 1 2 0.866
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2u` calculated in the direction of wave propagation, the
thickness~diameter! D of solitary wave profile given by Eq.
~4!, and the energyE calculated according to Eq.~5! and
normalized byl v as in the Hamiltonian~11!.

We consider the five directions of wave propagation given
by the Miller indices@010#, @ 4̄10#, @ 2̄10#, @ 4̄30#, and@ 1̄10#
~shown in Fig. 6!. The values of the parameters (m1 ,n1), a,
l u , l v , k1, k2, k3, and the numberNa of sites in the directed
elementary cell are presented in Table II. For these five di-
rections of propagation,R2, AE, andD against the velocitys
are plotted in Fig. 7. The solitary wave has the infinite inter-
val of velocities,s0,s,`, only in the directiona50 (m
52,n50). However, for 0,a<p/6 the solitary wave has
the finite interval of velocities: s0,s<s1,` where s1
5s1(a) is some critical~maximal! value. The finiteness of
this interval is a consequence of the boundedness of the re-
duced LJ potential~12! from above~see Fig. 5!. Indeed, as
we have shown in Sec. II, the soliton amplitude in the 1D LJ
chain is bounded for all velocities 1,s,` because the par-
ticles in such a chain cannot pass each through other. How-
ever, in the 2D lattice whenaÞ0, the projections of the
particle displacements on theu axis can ‘‘pass’’ each
through other and this is in agreement with the finite behav-
ior of the reduced potential~12!, plotted in Fig. 5, atr 5
2dj . With the growth of the velocitys of the solitary wave
solution~16! the amplitudeA52r (0) increases as in the 1D
case but this increase happens to be more and more strong
while approaching a certain critical values1 because the po-
tential ~12! becomes more and more soft. At the point of
inflection ~where the second derivative of a function equals
zero! of this potential which is closest to the pointr 50, the
derivative of the amplitudeA(s) with respect to the velocity
s becomes infinity, so that for velocitiess.s1 solitary wave
solutions are impossible. In the point of inflexion, hardness
of the reduced potential~12! changes into softness which
prevents the solitary wave regime. However, since the re-
duced potential~12! contains also the hard region, we may
expect that the solitary wave solutions with amplitude ex-
ceeding the critical valueA1[A(s1) can also exist. Indeed,
below we confirm that there also exists another branch of
solitary wave solutions with an amplitudeA in the softness
region of the potential~12!, so that the critical values5s1
becomes a bifurcation point.

Whena→01, the critical~maximal! velocity s1 tends to
infinity. The increase ofa leads to decreasing the upper
bounds1. Thus, fora525.29° we haves1531.23, while for
a530° this bound iss1516.42. For other values ofa the
critical values1 exceeds 100. As one can see from Figs. 7~a!

and 7~b!, the total lattice compressionR and the energyE
increase with the growth of the anglea within the interval
0°<a<30°. The increase ofs also results in decreasing the
soliton thicknessD as demonstrated by Fig. 7~c!. As can be
seen from this figure, the diameterD depends weakly on the
angle of propagationa. Exact values of the compressionR,
the diameterD, and the energyE for different directions of
the solitary wave propagation are presented in Table III. The
plots of the corresponding soliton profiles normalized by the
spacinga are shown in Fig. 8. As follows from this figure,
the change of the propagation direction affects mainly the
solitary wave amplitudeA but not its shape.

The amplitudeA of the solitary wave solutions presented
in Fig. 8 by curves 1–5 lies in the hardness region of the
reduced potential~12! and we call these types of solutions
the ‘‘hard’’ solitary waves. As shown in Fig. 8, curve 5,
which corresponds to the direction of propagation witha
5p/6, bifurcates at the critical ~maximal! velocity s1
516.42, into the solitary wave solutions for which its ampli-
tude lies in the softness region of the potential~12!. We call
these types of solutions the ‘‘soft’’ solitary waves. The bi-
furcation of the hard solitary wave solution into the soft so-
lution is illustrated by curves 5 and 6 in Fig. 7~a! and by
curves 11 and 12 in Fig. 7~b!. The soft solitary wave solution
plotted in Fig. 9 by curve 2 has larger amplitude and thick-
ness if compared to the hard solution shown in this figure by

FIG. 8. Normalized profile of the solitary wave2r (z)/a mov-
ing in directions witha50° ~curve 1!, a510.89° ~curve 2!, a
519.11° ~curve 3!, a525.29° ~curve 4!, anda530° ~curve 5!.

TABLE III. Dependence of total lattice compressionR, profile
thicknessD, and energyE on the direction anglea ~velocity is s
51.5).

a R D E

0° 0.1599 1.3458 0.02611
10.89° 0.1664 1.2934 0.02940
19.11° 0.1777 1.2275 0.03463
25.29° 0.1854 1.1817 0.03872
30° 0.1886 1.2765 0.04075

FIG. 9. Profile of the two solitary wave solutions2r (z) propa-
gating with velocitys515 in the direction witha530°.
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curve 1. Note that fora5p/6, according to Eq.~12!,
U1(r )[0 and the potentialsU2(r )5U3(r ) have the point of
inflexion atr 520.728. This value appears to be between the
amplitudes~the maxima of curves 1 and 2 in Fig. 9! of the
hard and soft solitary waves. In this case the soft solution
exists for velocities from the interval 14.62<s<s1516.42.
The peculiar property of this solution is the decrease of its
amplitude and energy with the growth of the velocitys ~see
Fig. 7, curves 6 and 12!. The numerical integration of the
equations of motion for the reduced chain~15! with the ini-
tial conditions obtained by using the pseudospectral method
has shown that both types of solitary waves are stable. They
propagate in the lattice with constant velocity, retaining their
shape. For a soft solitary wave the particles in the vicinity of
the wave amplitude are subjected to the soft part of the re-
duced potential~12! whereas the particles at the tails of the
solitary wave profile are affected by the hard part of this
potential. Therefore for the existence of soft solitary waves
the effect of the hard part of the potential~12! must dominate
the effect of the soft part. As a result, their amplitude has to
be bounded from above.

V. INTERACTION OF SOLITARY PLANE WAVES
WITH VACANCIES AND MASS IMPURITIES

As was shown in the previous section, the properties of
the propagation of a narrow solitary wave essentially depend
on the direction~given by the anglea) of this propagation.
The biggest difference exists at the angle valuesa50 and
a5p/6 ~or the same,a5p/2). Therefore we restrict our-
selves by investigation only at these two angles.

Let us consider the motion of a solitary wave along theX
axis (a50). In order to simulate properly the solitary wave
motion in the infinite 2D lattice, we consider a sufficiently
large finite rectangular domainL contained inG with 1
<m<M and 1<n<N, and assume at the lattice edges
which are perpendicular to the wave propagation, the peri-
odic boundary conditions~i.e., substituten11 by 1 if n
5N andn21 by N if n51), whereas the lattice boundaries
in the longitudinal direction are assumed to be fixed~i.e.,
u̇1n[0 and u̇Mn[0). Let the center of a solitary wave be
initially ( t50) situated~along theX axis! at some site with
m0,M /2. Then for the domainL we can use the following
initial conditions:

umn~0!5(
l 51

m

r @a~ l 2m0!#, vmn~0!50,

u̇mn~0!52s(
l 51

m

r 8@a~ l 2m0!#, v̇mn~0!50, ~17!

where the functionr (z) with s.s0 is a soliton solution of
the reduced system of Eqs.~15! and the period of the reduced
chain isa51/2 ~note thata50). After the solitary wave has
passed in the longitudinal directionM /2 lattice sites, we shift
it back byM /2 sites, modeling in this way the solitary wave
motion in the infinite lattice. Therefore, we are able to avoid
simulations of lattice dynamics with large numbers of par-
ticles.

For modeling the solitary wave motion along the bonds
~i.e., whena50) we used the number of lattice sites given
by M5N5200. The solitary wave velocity was takens
51.5. Initially, the solitary wave was placed atm0550 @see
Fig. 10~a!#. In order to model the presence of a mass vacancy
at the (mi ,ni)th site, it is sufficient in the system of equa-
tions of motion governed by the Hamiltonian~6! to set
mmini

[0 and to remove all the terms that are responsible for

the interparticle interactions with the (mi ,ni)th site. We
choose this position to bemi5ni5100, so that the vacancy
is placed at the center of the lattice rectangular domain. The
numerical integration of the equations of motion has shown
that the propagation through the vacancy does not destroy
the solitary wave@see Fig. 10~b!#. In the vicinity of the va-
cancy a transverse modulation of the solitary wave appears
that creates two transverse waves propagating along the front
in opposite directions, as shown in Fig. 10~c!. The motion of
these waves is accompanied by radiation of longitudinal
small-amplitude waves. Due to the periodic boundary condi-
tions, the transverse modulational waves pass through each
other many times eventually disappearing, so that the solitary
wave becomes undistorted in the limitt→`. Before the pas-
sage through the vacancy, the solitary wave had the energy
E54.52, while after the passage at the time instantt
51567 the energy wasE54.48. Thus, the solitary wave of
width 100A3 lost at one vacancy only 0.84% of its energy.

Let us consider now the solitary wave propagation
through a lattice domainL i,L with isotopic disorder. For
simulations it was chosen with 40<m<140 and 1<n
<200. We chose at eachn a random site numberm(n) from
the interval 40<m<140. Next, we setmm(n),n5m i , where
m i>1 is the isotope mass at the@m(n),n#th site andmmn
51 for the rest of the lattice sites. Then the density of mass
impurities in the domainL i is c51/50A3. The solitary wave
propagation through the domainL i with m i53 is shown in
Fig. 11. Initially, the solitary wave center was situated at the
site m0518 @see Fig. 11~a!#. While passing the domainL i ,
radiation of small-amplitude waves occurs at each impurity
as shown by Fig. 12~b!. The solitary wave outcomes from
this domain are strongly distorted@see Fig. 12~c!#. The
straight linearity of the solitary wave profile is a necessary
condition for its motion. The alignment of this profile, after
the scattering on impurities, happens due to emission of
small-amplitude waves which go out slowly with the profile
alignment, so that at the end of the simulations the profile
becomes completely linear with a weakly modulated ampli-
tude in the transverse direction@see Fig. 12~d!#.

We define the transmission coefficient of a solitary wave
T as the ratio of its initial energy to the energy transmitted
through the domainL i , so that the quantityT describes the
solitary wave stability with respect to mass disorder. The
dependence ofT on isotope massm i is presented in Table
IV. For comparison this table also contains the values forT
found from the simulations for the reduced 1D model gov-
erned by the Hamiltonian~11!. As follows from Table IV,
with the growth of the massm i , the transmission coefficient
T decreases. It is interesting to notice that the reduced 1D
model gives form i<4 approximately the same values ofT
as the 2D model governed by the Hamiltonian~6!. However,
beginning from the valuem i55, the 1D model gives the

57 14 219SOLITARY PLANE WAVES IN AN ISOTROPIC . . .



lesser values compared with the 2D case. This error is con-
nected with the dimensionality of the reduced problem; in
the 2D lattice the solitary wave has an opportunity toround
isotope impurities of large mass and this is impossible in the
1D chain. This essential difference between the 2D lattice
and the reduced 1D chain appears to be stronger when the
isotope massm i is larger. For instance, in the limit of infi-
nitely large isotope massm i , in the reduced chain model the
transmission coefficientT is always zero~the soliton always
reflects from a heavy impurity!, while in the 2D lattice we
always haveT.0. In the latter case the solitary wave trans-
mission occurs only because of streamlining immobile lattice
sites.

In a finite lattice domainL its boundary conditions should
significantly affect the solitary wave dynamics. In order to

examine the influence of transverse boundaries, we consid-
ered the solitary wave motion in the 2D lattice domain which
was finite in the transverse (n) direction~with free boundary
conditions! but infinite in the longitudinal (m) direction. To
model the free boundary conditions, all the terms in the
equations of motion which contain the bonds appearing out-
side the lattice domainL were removed. Initially~at t50),
the solitary wave was taken with the velocitys51.5. For
N5200 the width of the solitary wave is 100A3 and its
energy isE54.52. The results of simulations of the solitary
wave motion is presented in Fig. 12. The solitary wave mo-
tion is accompanied by intensive radiation of waves at the
free boundaries. The edges of the solitary wave begin break-
ing and its profile acquires a nonlinear arched shape. The
energy is translocated in the form of transverse waves from

FIG. 10. Propagation of the solitary wave with velocitys51.5 in the directiona50° through the vacancy situated at the (100,100)th
lattice site. Profiles of localized contractionsumn2um11,n along theX axis are presented~a! initially ~at t50), ~b! at t566.68, and~c! t
5133.36.
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the solitary wave center to the edges and there they are emit-
ted. The velocity, amplitude, and energy of the solitary wave
monotonically diminish. Thus, at the time instantst5338,
1057, 1834, 3779 the energy wasE53.73 @Fig. 12~a!#, 2.12
@Fig. 12~b!#, 1.02, 0.09, respectively. Thus, in a finite 2D
lattice the solitary wave has a finite lifetime which depends
on the solitary wave width. In the example considered, the
solitary wave of the width 100A3 losses the half energy dur-
ing the timet.1000.

Let us consider now the motion of the solitary wave along
the Y axis (a5p/2). To this end, we choose the following
initial conditions:

umn50, vmn~0!5(
l 51

n

r @a~ l 2n0!#,

~18!

u̇mn50, v̇mn~0!52s(
l 51

n

r 8@a~ l 2n0!#,

where the functionr (z) with s.s0 is the soliton solution of
the reduced system of Eqs.~15! andn0 is the number of the
site ~along theY axis! at which the center of the solitary
wave profile is situated. The period of the reduced chain is
a5A3/2.

The rectangular lattice domainL was chosen withM
5400 andN5200. Similarly, for simulations of the equa-
tions of motion governed by the Hamiltonian~6! we use the
periodic boundary conditions in the transverse (X) direction
and the fixed boundary conditions in the longitudinal (Y)
direction.

We choose again the velocity to bes51.5 and consider
the solitary wave propagation through a single vacancy situ-
ated at the (mi ,ni)th site with mi5200 andni5100. The
numerical integration of the equations of motion has shown
that the propagation through the vacancy does not result im-
mediately in decaying the solitary wave. At the vacancy, the
solitary wave emits small-amplitude waves and a local de-
formation of its profile appears as shown in Fig. 13~a!. Two
modulational transverse waves appear that propagate along
the solitary wave profile with emission of longitudinal small-
amplitude waves@see Fig. 13~b!#. In the infinite lattice these
modulational waves would move to infinity but in the trans-
versely finite lattice domainL i , due to the periodic bound-
ary conditions, these waves collide many times and, as a
result, the solitary wave looses its stability as illustrated by
Fig. 13~c!. Finally, the solitary wave looses 71% of its en-
ergy. Thus, initially ~at t50), the energy of the solitary
wave of the width 200 sites wasE58.15 and after its propa-
gation through the vacancy over 2700 lattice sites its energy

FIG. 11. Propagation of the solitary wave with velocitys51.5 in the directiona50° through the lattice domain (40<m<140) with
isotopic disorder~isotope mass ism i53 and the density of impurities isc51/50A3). Isolines of longitudinal localized contractions are
presented~a! initially ( t50), ~b! at t518, ~c! t544, and~d! t5400.
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was E52.36. Consequently, while moving along the direc-
tion with a5p/2, the solitary wave appears to be more sen-
sitive to the presence of vacancies in the 2D lattice than in
the direction witha50.

We consider now the solitary wave propagation in a lat-
tice domain with isotopic disorderL i . For simulations we
choseL i to be the rectangular with 1<m<400 and 40<n
<140. For each integerm we choose randomly the site num-
ber n(m) from the interval 40<n<140. We again set
mm,n(m)5m i wherem i is an impurity mass andmmn51 for
the other sites. Then in the domainL i the density of impu-
rities is the same as before:c51/50A3. The solitary wave
motion through the disordered domainL i is shown in Fig.
14. The dependence of the transmission coefficientT on the
impurity massm i is presented in Table IV. The coefficientT

for solitary wave transmission in the direction witha5p/2
is always less than in the direction witha50. Contrary to
the case witha50, the dependence ofT on m i for a5p/2
does not possess monotonic behavior. Thus, form i52 the
transmission coefficient is less than form i53. Note that for
the reduced 1D model the dependence ofT on m i is strictly
monotonic. Therefore, the nonmonotonic behaviorT
5T(m i) is a purely 2D effect: destroying a solitary wave
occurs not only directly, while interacting with an impurity,
but also under the interaction of transverse modulational
waves appearing on the solitary wave profile.

Now we consider the solitary wave motion in the lattice
domain L which is infinite in the direction of the solitary
wave propagation but finite in the transverse direction~with
the free boundary conditions!. We choseM5400 and s

FIG. 12. Motion of the solitary wave with velocitys51.5 in the directiona50° in transversely finite lattice domain with free boundary
edges. Profiles of localized contractions are presented at time instants:~a! t5338.46,~b! t51057.08, and~c! t51834.28.
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51.5. The result of simulations of the solitary wave dynam-
ics is presented in Fig. 15. Similarly to the case witha50,
the propagation is accompanied by intensive emission of
waves at the lattice edges. The solitary wave is not destroyed
immediately but its velocity, amplitude, and energy mono-
tonically decrease. Thus, at the time instantst50, 176.6,
371.4, 867.6, and 2106.8 the energy wasE58.15, 6.23@Fig.
15~a!#, 3.18@Fig. 15~b!#, 0.88@Fig. 15~c!#, and 0.10, respec-
tively. Therefore, fora5p/2 the lifetime of the solitary
wave is significantly less than fora50. The solitary wave of
the width 200 looses the half energy during the timet
.300.

VI. CONCLUSIONS

Thus, the dynamics of solitary plane waves in a 2D hex-
agonal lattice has been investigated numerically by using
pseudospectral techniques. Contrary to the previous studies,1

the lattice was considered to be purely isotropic. It is impor-
tant that the solitary wave solutions we examined are quite
narrow, even of one lattice spacing. Therefore we could
study them at large supersonic velocities, says.1.5, or even
larger. We have found that the regime of the solitary wave
propagation essentially depends on the direction of its mo-
tion; it is sensitive to microstructure of the lattice.

We have also carried out the extensive investigation of
the solitary wave propagation through lattice domains with
isotopic disorder. We have shown that the dynamical prop-
erties of the solitary wave significantly depend on the direc-
tion of its propagation. Thus, in the infinite 2D lattice the
solitary wave is the most stable while moving along the
bonds (a50,p/3,2p/3,p,4p/3,5p/3). When the lattice is fi-
nite in the transverse direction and the lattice edges are free,
the lifetime of the solitary wave is the longest at these
angles.

Contrary to the case of the 1D soliton theories on the
soliton interaction with lattice impurities10–13 the important
point of the 2D model considered in this paper is that within
this model it is possible to model properly interactions of
solitary waves with lattice vacancies. Here we have studied
such types of interactions and found that the solitary waves
of localized lattice deformation can easilyround vacancies,

while in a 1D chain such a situation does not make any
sense.
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APPENDIX A: THE PSEUDOSPECTRAL METHOD

Let us consider the following system of equations:

r̈ n5(
j

FU j8S (
l 51

kj

r n1 l D 2U j8S (
l 51

kj

r n1 l 21D
2U j8S (

l 51

kj

r n2kj 1 l D 1U j8S (
l 51

kj

r n2kj 211 l D G . ~A1!

To find the whole class of soliton solutions as well as to
calculate those values of velocitys at which such solutions
exist, we use the pseudospectral method developed by Eil-
beck and Flesch8 and Duncanet al.9 Since we look for
traveling-wave solutions,r n(t)5r (z), z5na2st, the set of
Eqs.~A1! is reduced to

s2r 95(
j 51

3 FU j8S (
l 51

kj

r ~z1 la !D 2U j8S (
l 51

kj

r @z1~ l 21!a# D
2U j8S (

l 51

kj

r @z1~ l 2kj !a# D
1U j8S (

l 51

kj

r @z1~ l 2kj21!a# D G ,

n50,61, . . . . ~A2!

As before,8,9 we look for solutions of Eq.~A2! in the form

r ~z!. (
p50

N

cpfp~z! ~A3!

for some sufficiently large integerN where the coefficients
$cp%p50

N are to be determined. The basis functionsfp(z)’s
are chosen to be the same as in the cosine Fourier transform,
i.e., fp(z)5cos(2ppz/L). We considerr (z) to be a periodic
function with a sufficiently large periodL. In the limit of
largeL we expect to obtain a good approximation to a soli-
tary wave solution which has an infinite period. The bound-
ary conditionr (6`)50 allows us to decrease the number of
coefficients in the series~A3!. Therefore we rewrite it in the
form

r ~L/2!5 (
p50

N

cp cos~pp!50, ~A4!

TABLE IV. Dependence of the transmission coefficientT for
the solitary plane wave propagating through the lattice domain with
isotopic disorder on dimensionless impurity massm i . The density
of impurities isc51/50A3.

T

m i

a50 a5p/2

Reduced 1D chain 2D lattice Reduced 1D chain 2D lattice

1.0 1.0 1.0 1.0 1.0
2.0 0.871 0.857 0.846 0.318
3.0 0.697 0.681 0.656 0.407
4.0 0.563 0.561 0.515 0.322
5.0 0.470 0.489 0.414 0.259
7.0 0.368 0.405 0.288 0.198

10.0 0.279 0.348 0.188 0.163
` 0.0 0.254 0.0 0.104

57 14 223SOLITARY PLANE WAVES IN AN ISOTROPIC . . .



and find the equality

c052 (
p51

N

cpfp~L/2!. ~A5!

Therefore Eq.~A3! can be rewritten as

r ~z!. (
p51

N

cp@fp~z!2fp~L/2!#. ~A6!

Inserting expression~A6! into Eq. ~A2!, we obtain

F~z![ (
p51

N

cpbp~z!1(
j 51

3 FU j8S (
p51

N

cpqjp
~1!~z!D

2U j8S (
p51

N

cpqjp
~2!~z!D 2U j8S (

p51

N

cpqjp
~3!~z!D

1U j8S (
p51

N

cpqjp
~4!~z!D G50, ~A7!

where

FIG. 13. Propagation of the solitary wave with velocitys51.5 in the directiona5p/2 through the vacancy situated at the (200,100)th
lattice site. Profiles of localized contractionsvmn2vm11,n along theY axis are given at the times:~a! (t556.3), ~b! t5114.0, and~c! t
5137.8.
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bp~z!5S 2pps

L D 2

fp~z!,

qjp
~1!5(

l 51

kj

@fp~z1 la !2fp~L/2!#,

qjp
~2!5(

l 51

kj

@fp~z1~ l 21!a!2fp~L/2!#,

qjp
~3!5(

l 51

kj

$fp@z1~ l 2kj !a#2fp~L/2!%,

qjp
~4!5(

l 51

kj

$fp@z1~ l 2kj21!a#2fp~L/2!%. ~A8!

Let us split the interval@0,L/2# into the N collocation
points:

zi5
~ i 21!L

2N
, i 51,2, . . . ,N. ~A9!

Then we obtain the system ofN nonlinear algebraic equa-
tions with respect to theN coefficients$cp%p51

N :

F~zi !50, i 51,2, . . . ,N. ~A10!

This system of equations was solved numerically by the
modification of the Powell hybrid method. The routineHY-

BRJ1 from theMINPAK package was used. We took the num-
ber of the Fourier coefficientsN5200 and the periodL to be
the solitary wave diameter multiplied by the factor of 10.
The important point in the numerical solution of Eq.~A10!
was the choice of the initial guess. It was taken to be the
function 2A sech2(mz) with the parameter values taken
from the continuum approximation@see below Appendix B
and expressions~B9! and ~B10! there#. This approximation
appears to be good enough fors,1.2. For higher velocitiess
the parametersA andm were path followed from the interval
s,1.2.

APPENDIX B: THE SOLITARY WAVE PROFILE
IN THE CONTINUUM APPROXIMATION

Let us consider the system of the equations of motion
~16!. Suppose their solutionr n(t) depends smoothly on the
site numbern. Next, we setna5x, so that the profile
r n(t)5r (x,t) changes smoothly with the change of the vari-
ablex. Then for any integerl in the continuum approxima-

FIG. 14. Propagation of the solitary wave with velocitys51.5 in the directiona5p/2 through the lattice domain (40<n<140) with
isotopic disorder~isotope mass ism i53 and density of impurities isc51/50A3). Isolines of longitudinal localized contractions are presented
at time instants:~a! (t50), ~b! at t5670.89, and~c! t578.39.
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tion we can write the following expansion:

r n6 l~t!.r 6 lar x1
1

2
~ la !2r xx6

1

6
~ la !3r xxx1

1

24
~ la !4r xxxx

1 . . . . ~B1!

Next, we substitute this expansion into Eqs.~16! and keep all
the expansion terms up to fourth order. However, we linear-
ize all the terms which contain fourth-order derivatives over
x, omitting anharmonic fourth-order terms. As a result, we
obtain the following partial differential equation:

r tt2(
j

FdjaUj8~kj r !1
1

12
dj

6r xxG
xx

50, dj5kja.

~B2!

Here the linear fourth-order termr xxxx takes in the harmonic
approximation account of the lattice dispersion caused by its
discreteness. Omitting this dispersive term for small-
amplitude wavesr !a this equation is reduced to the linear
wave equation

r tt2(
j

dj
4r xx50, ~B3!

FIG. 15. Motion of the solitary wave with velocitys51.5 in the directiona5p/2 in the transversely finite lattice domain with free
boundary edges. Profiles of localized contractions are given at time instants:~a! t5176.56,~b! t5371.36, and~c! t5867.58.
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from which one can find the velocity of small-amplitude
plane waves propagating in the direction given by the angle
a:

s05Ad1
41d2

41d3
45a2Ak1

41k2
41k3

4. ~B4!

Taking Eqs.~9! into account, we can calculate this value
explicitly. As a result, we find

s05A9/851.06066 . . . , ~B5!

so that the characteristic~sound! velocity, i.e., the velocity of
plane long-wave waves in the 2D hexagonal isotropic lattice,
does not depend on the direction of their propagation.

Suppose now that the functionr (x,t) is a solitary wave
solution, i.e.,r (x,t)5r (z) with z5x2st, and r , r 8, and
r 9→0 whenz→`. Then, Eq.~B2! can be twice integrated
and transformed to the following generalized Boussinesq
equation:

~a4/12!(
j

kj
6r 91(

j
kjU j8~kj r !2~s/a!2r 50. ~B6!

This equation describes the dynamics of chain particles, each
of which interacts withsix neighbors located at the distances
dj5kja, j 51,2,3. Expanding the reduced LJ potential~12!
up to the third order~taking into account only cubic anhar-
monicity!:

U j~r !5
1

2
dj

2r 22dj S 4dj
22

1

2D r 31•••, ~B7!

and using this expansion in Eq.~B6!, we obtain the standard
Boussinesq equation

1

12(j
dj

6r 91~s0
22s2!r 2

3

a(j
dj

4S 4dj
22

1

2D r 250,

~B8!

which has a soliton solution of the form

r ~z!52A sech2~mz!, ~B9!

where

m253~s22s0
2!/(

j
dj

6 ,

A5~s22s0
2!a/(

j
dj

4~8dj
221!,

s.s0 , dj5kja. ~B10!

The distancesdj and integerskj , j 51, 2, and 3, are given by
Eqs.~9! and ~10!.

The necessary condition for the usage of the continuum
approximation is the requirement of a sufficient ‘‘thickness’’
~diameterD) of the soliton solution. In fact, this approxima-
tion can be used only for 1,s/s0,1.05. For higher veloci-
ties the discreteness of the chain should be taken into ac-
count more properly. For this purpose we use the
pseudospectral method already described in Appendix A.
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