-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by Online Research Database In Technology

Technical University of Denmark DTU
>

Solitary plane waves in an isotropic hexagonal lattice

Zolotaryuk, Yaroslav; Savin, A.V.; Christiansen, Peter Leth

Published in:
Physical Review B (Condensed Matter and Materials Physics)

Link to article, DOI:
10.1103/PhysRevB.57.14213

Publication date:
1998

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

Zolotaryuk, Y., Savin, A. V., & Christiansen, P. L. (1998). Solitary plane waves in an isotropic hexagonal lattice.
Physical Review B (Condensed Matter and Materials Physics), 57(22), 14213-14227. DOI:
10.1103/PhysRevB.57.14213

DTU Library
Technical Information Center of Denmark

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.


https://core.ac.uk/display/13725932?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevB.57.14213
http://orbit.dtu.dk/en/publications/solitary-plane-waves-in-an-isotropic-hexagonal-lattice(0c5adcc7-f83f-4347-bc05-f838e071fddf).html

PHYSICAL REVIEW B VOLUME 57, NUMBER 22 1 JUNE 1998-II

Solitary plane waves in an isotropic hexagonal lattice

Y. Zolotaryuk
Department of Mathematical Modelling, Technical University of Denmark, DK-2800 Lyngby, Denmark
and Department of Mathematics, Heriot-Watt University, Edinburg EH14 4AS, United Kingdom

A. V. Savin
Department of Mathematical Modelling, Technical University of Denmark, DK-2800 Lyngby, Denmark
and Institute for Problems of Physics and Technology, 119034 Moscow, Russian Federation

P. L. Christiansen
Department of Mathematical Modelling, Technical University of Denmark, DK-2800 Lyngby, Denmark
(Received 13 January 1998

Solitary plane-wave solutions in a two-dimensional hexagonal lattice which can propagate in different
directions on the plane are found by using the pseudospectral method. The main point of our studies is that the
lattice model is isotropic and we show that the sound velocity is the same for different directions of wave
propagation. The pseudospectral method allows us to obtain solitary wave solutions with very narrow profile,
the thickness of which may contain a few atoms or even less than one lattice spacirgssentially discrete
solutiong. Since these nonlinear waves are quite narrow, details of lattice microstructure appear to be impor-
tant for their motion. Particularly, the regime of their propagation qualitatively depends on whether or not the
direction of their motion occurs along the lattice bonds. Two types of solitary plane waves are found and
studied. The stability of these solitary waves is investigated numerically by their interactions with vacancies
and lattice edges. Propagation of solitary plane waves through finite lattice domains with isotopic disorder is
extensively studied. Comparison of these results with the soliton propagation in one-dimensional lattices with
mass impurities is presentd$0163-18208)00522-(

I. INTRODUCTION us to find numerically the traveling-wave solutions for all
admissible velocities, the profile of which can be obtained
Solitary waves in two-dimensional2D) lattices have Wwith any given accuracy. In dependence on the direction of
been studied in a number of publicationg,using some es- solitary wave propagation, we show that in the 2D lattice the
sential simplifications. Thus, in all of these works scalarsolitary plane wave has either a finite or infinite interval of
models or strongly anisotropic models were considered.SUperSC?ni_C velocities. _ _ N
Therefore any extension of these studies to isotropic vector Realistic crystals always contain mass impurities. In order
models is of interest. The present paper aims to investigat€ investigate the stability of the solitary wave propagation in
the dynamics of solitary plane waves in the 2D hexagonaih€ 2D lattice, we also consider interactions of these waves
lattice shown in Fig. 1. This work is a natural extension of

the nonlinear dynamics of one-dimensiordD) lattices. "2
New features in the dynamics appear when 1D and multidi-

mensional systems are compared. Thus, in a 2D isotropic v

lattice with microstructure the properties of a nonlinear wave nil

should depend on the direction of propagation. X

The 2D hexagonal lattice studied in this paper is an en-
tirely vector model which includes interparticle interactions
of the central-symmetric type and only between the nearest n
neighbors. We consider the realistic (12,6) Lennard-Jones
(LJ) potential which contains the core. The presence of this
core leads to some specific features of the soliton solution,
e.g., the existence of the upper bound for the soliton ampli- n—1
tude. Therefore, it would be interesting to study the soliton
dynamics in the 1D LJ lattice as well. We start in this paper
with the 1D case and afterwards pass to the 2D lattice. Be-
cause the lattice solitons are essentially discrete objects and n=2
the techniques of the continuum analysis are not valid any-
more, we find the soliton solutions by applying the pseu-
dospectral method suggested and developed previously by FIG. 1. Schematic representation of the 2D isotropic hexagonal
Eilbeck and Flesc¢hand Duncaret al® This method allows lattice. The nearest-neighbor interactions are shown by springs.

m-3 m-2 m—I m m+l  m+2  m+3
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with mass impurities. In this paper we study the solitary

wave propagation through a lattice vacaifthe absence of a

particle at some lattice siteand through a 2D domain with ©

isotopic disorder. Also, we will study the influence of differ- 'QI:‘ (a)

ent boundary conditions on the solitary wave motion. Con- =

trary to the 1D case, when the lattice soliton is known to be

reflected from a heavy mass impurity, the solitary plane

wave rounds it, retaining its shape with some radiation of , , , ,

delocalized waves. 1 20 40 60 80 100
The paper is organized as follows. In Sec. Il we consider

briefly the 1D LJ lattice. The 2D LJ hexagonal lattice model

is described in the next section. In Sec. IV we reduce the 2D 1.25

problem to an effective 1D chain. Soliton dynamics in lat- o

tices with mass impurities is studied in Sec. V. Conclusions

are given in the next section. Finally, Appendixes A and B

contain short descriptions of the pseudospectral method and

a soliton solution of the reduced 1D problem in the con- 075,

tinuum approximation. 20 40 60 80 100

40t
Il. THE HOMOGENEOUS 1D LJ LATTICE
o 30
We consider a 1D lattice of particléatoms or moleculgs A (c)
with massm coupled by thg12,6) LJ potential. The dimen- 201
sionless Hamiltonian of such a chain has the form 1ol
1 . 2 0 I 1 1 I
H=; SUntU(Uni1—Un) |, 1) 1 20 40 60 80 100
s

where the dot denotes the differentiation with respect to the
dimensionless time-= \/m/xt with x being the characteris-

tic stiffness constant of the interatomic LJ potential. The lat
tice dimensionless variablg, describes the displacement of
thenth chain particle from its equilibrium position measured

FIG. 2. (a) Function (1—A) 8 of the soliton amplitude, (b)
soliton diameteD, and (c) square root of the soliton energyE
against the soliton velocitg in the 1D LJ lattice.

in units of the lattice spacing The dimensionless potential B E s? é , 2
function U is defined through the expression E= 2 |72 & "] TU |, ®)
D J D
U(r)= %[(r+1)‘6—1]2, (2)  wherer,=r(n) andr/=r'(n) with the boundary condition

u’_ND=O. The numbemMp chosen to be, for instance, the

so that this function is normalized by the relationg0) integer part of the number DO provides that the soliton is
=0 andU"”(0)=1. The corresponding equations of motion situated far away from the boundaries.

are The numerical investigation of Eq&3) for the LJ chain
) shows that the lattice soliton solutions exist for all supersonic
rh.=U'(rp;1)—2U'(rp)+U’(r,_1), n=0,x1,..., (s>1) velocities. The behavior of the soliton amplitulles

(38)  a function of the velocitys is shown in Fig. 2a) where the
function (1—A) ~® againsts is plotted. This means that the
amplitudeA tends monotonically to 1 as-10(s~Y%). The
We look for solitary wave solutions of EG3) propagat- soliton thicl_<nes§3 decreases monotonically Wi.th sgturation
ing with constant velocitys: r,(7)=r(n—sr)=r(z), z=n as shown in Fig. @). When s=1.0055, the width is less
—sr. The boundary conditions for these types of solutiondan 10, whers=1.0226, becomes less than 5, next $or
are r(+»)=0 andr'(+=)=0. These solutions can be =1.175 it becomes less than 2, and finally $5¢ 3.7 it be-

found by using the pseudospectral method described in ApzOMes even less than one lattice :;%acing, i.e., 1. The soliton
pendix A. For the description of soliton solutions it is con- €N€rgyE increases monotonically & [see Fig. £)].

wherer,=u,,1—U, is the relative displacement from the
equilibria of thenth and the (+ 1)th lattice particles.

D=2

venient to use such quantities as their amplitdde—r (0), The LJ.IattiC(_:: i_s not an integrable system. Let us gonsider
the “thickness” (diametey the_ heaq-ln CO||.ISIOI’1 of two solltons: Dyrmg the coII|S|on.the
soliton interaction causes the radiation of small-amplitude
=, o 2 waves(phonong. The nonelasticity of this collision can be
fo z f(Z)dZ/ fo r(z)dz| , (49 described by the energy-loss percentage defined pby
=[(E;—E,)/E{]100% whereE, is the soliton energy be-
and the energy defined according to the HamiltoriignThe  fore collision andE, the soliton energy after collision. The
soliton energyE can be given in terms of the functionéz) dependence of the energy-loss percentagen the soliton
andr’(z) obtained by using the pseudospectral method: velocity s is presented in Table I. As follows from this table,
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TABLE |. Dependence of energy losspsafter head-in collision of two solitons in the 1D LJ lattice on their velosity

S 1.03 1.06 11 1.2 1.23 1.3 2.0 2.5 3.0 3.5

p(%) 1.4x10°° 1.1x10°*% 3.7x10°% 8.1x10* 8.3x10* 7.6x10* 56x10° 7.9x10°% 9.8x10°7 4.6x10°8

the maximal energy loss occurs at the velodty1.23 and tance 1 from it. The interparticle bonds shown in Fig. 1 by
equals 0.000 81. The collision process is illustrated by Figsprings are described by the LJ potentid). We use the
3(a). The phonon radiation is visible only after significant Cartesian frame of referencéY, so that each lattice site
zooming as shown in Figs(l®—3(d). The small values op  corresponds to the pair of integers,f1) with m andn being
mean that the LJ chain is close to be a completely integrablboth either even or odd. We denote this set of integer pairs
system. Energy losses tend to zero wieen1+0 [in this  (m,n) by I'. In the equilibrium position theng,n)th particle
limit the soliton dynamics is described by the completelyhas the coordinatesr(2,,/3n/2). Let (Upmn,vmrn) be the 2D
integrable Korteweg—de Vries equatiaand wherns— (in  vector displacement of thev(,n)th particle from its equilib-
this limit soliton dynamics is described by the completelyrium position. Then the Hamiltonian of the lattice can be

integrable rigid-sphere model written as
lll. 2D LJ LATTICE 1 s 5
. . . . . H= Eﬂmn(umn+vmn)+z U(rklmn) ’ (6)
Let us consider a 2D isotropic hexagonal lattice. Its sites (mnjel’ (kD

are labeled as shown in Fig. 1. Each lattice particle interacts
with its six nearest neighbors which are situated at the diswhere

Mkimn™= \/

is the deviation from the equilibrium distance between them;=—3n,n;=m if m is not proportional to Jsee Fig. 4.
(m-+k,n+1)th and the (n,n)th particles and the summation The length of the rectangular sides which are parallel tauthe
over (k,l) runs three bonds in each lattice cell. We chooseandv axes are given by the expressions

the following three pairs(2,0), (1,1), and (—1,1). The cor-

responding equations of motion can be written in the stan- 1 — 5 1 — -
dard manner from the Hamiltonig). ly=5ym=+3n% I, =5Vmi+3ng, ®)

k

E + um+k,n+| —Umn

2 \/5 2
+ 7|+Um+k,n+l_vmn -1 (7)

respectively. When the plane-wave propagates in the direc-
tion of theu axis, all the lattice sites which are situated along
Let us consider the motion of a plane wave in a generak line, parallel to the wave front, are equally displaced, so

direction given by the Miller indicefi j0] which are defined that only theu projections of the sites change. Therefore the
in the frame of reference formed by the basis vectors, th@roblem of the plane-wave propagation in the 2D lattice can
direction of which coincides with adjacent bonds. The direc-be reduced to the effective 1D model.

tion of wave propagation coincides with the line that con- Both as in the 2D lattice and in the “reduced” 1D chain,
nects the origin (0,0) with the particle at the lattice site€ach particle interacts with its sinot necessarily nearest
(m,n)=(2i+j,j). The angle between this line and tixe nelghbors._The length of the undistorted bonds in the re-
axis is a=tan Y(y3n/m)=tan Y[ y3j/(2i+j)]. Without duced chain corresponds to the length of the projections of
loss of generalitybecause of the hexagonal symmgtye  the three bonds outcoming from the site (0,0) onuhexis:

can assume thatOn=m/3, m>1, (0<a<w/6). Now we

IV. SOLITARY PLANE WAVES

rotate the Cartesian frame€Y by the anglex anticlockwise. die ™ _ m—=3n =0
Then in the new frameu,v) the u axis determines the di- 1mCogzra)= 2Jm?+3n2

rection of wave propagation and tleaxis coincides with

the plane(front) of a wave (note that in the 2D case the

“plane (front) of a wave” is just a ling. d =cos(z— a) __m+3n -0 )
We define a “directed elementary cell” of the 2D hex- 2 3 2.Jm2+3n2 '

agonal lattice which corresponds to the angle of wave propa-

gationa as the smallest rectangular formed by the vertices at

the lattice site€0,0), (m,n), (m+my,n+n,), and My,n;) ds=cosa= _m 0.

wherem;=—n andn;=m/3 if m is proportional to 3 and Jm?+3n?
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0.08
0.06
. =
| 0.04 b.\
0.02 +
0_
200
.0002 .
.0001 (b)
=
0000 r
-.0001 FIG. 5. Shape of the reduced LJ potentig(r) for j=1 (curve
0002 1) and j=2 (curve 2. Spacing of the reduced 1D chain &
=0.327 m=9,n=1, anda=10.89°).
.0001
‘T: 10000 Since (n,n) eI, the numbersh—3n)/2, (m+3n)/2, and
m are integers. Ldt=1 be their largest common divisor, i.e.,
~-0001 (m—3n)/2=k,|, (m+3n)/2=k,l, and m=ksl, wherek;,
-0002 k,, andks are integers. Therefore the spacing of the reduced
0001+ chain can be defined by
=~ 0000
" @=3-_1 __ i_123 (0
-.0001 : s . a=a(a)=—= . j=1,23.
1 50 100 150 200 Ki  m?+3n2

n

FIG. 3. (a) Head-in collision of the lattice solitons with veloci-
tiess=1.2 in the 1D LJ lattice(b) their profiles before collision
(7=50), (c) after collision (= 100), and(d) later, at7=150.

FIG. 4. Construction of the reduced 1D chain model corre-
sponding to motion of a solitary plane wave in the direction given
by a. The particular case of the directed elementary cell with

=9 andn=1 («=10.89°) is presented. For this case the vertices

of the cell are(0,0), (9,1, (8,4, and (—1,3). Its boundaries are
indicated by solid lines of length, and |, defined by Eqs(8).
Projections of lattice sites on theaxis are shown by dashed lines.

The Hamiltonian of this chain can be written in the form

3
1 1.
H= 2 | gunt 2 Uil —un | (1)
. =

whereu,, is the displacement of theth particle in this chain
and thejth (j=1,2,3) reduced LJ potential is defined by

— 1 2\—3 2 —
Uj(r)—7_2[(1+2djr+r ) _1] , dj—kja, (12)

if k;#0 andU;(r)=0 if k;=0, j=1,2,3. The Hamiltonian
(11) gives the energy density along the wave front. The re-
duced LJ potentia(12) coincides with the standard LJ po-
tential only if d;=1. For other values ofl; the reduced
potential(12) is a function bounded from above as shown in
Fig. 5. Its maximal values are given by

Ui o= ! 1-d?)"3-17? ! 13
j,max= Ma 7_2[( j) ] 17_21 (13

at r=—d; while its minima U; ;=0) happen atr=
—2d; and O(see Fig. .

The equations of motion that correspond to the Hamil-
tonian(11) are

lin=2J [U] (Ut~ Un) = U] (Uy = Upi),

n=0,*1,.... (14)



FIG. 6. Five directed elementary cellshown by the rectangu-
lars) for the five directions of solitary wave propagation. The rect-
angulars 1, 2, 3, 4, and 5 correspond to the directi@i®] («

=0°), [410] (a=10.89°), [210] (a=19.11°), [430] (a
=25.29°), and 110] (a=30°).

Here and throughout this paper the summation gveuns

the valuesj=1, 2, and 3. This system of equations can be
rewritten in terms of the longitudinal relative displacements

rh=Uup41— U, as follows:

Fn:E

l

K; K
!
—Uj(lEl Mk +1 lElrnkjlﬂ) :

In the continuum limit the system of the discrete E(f5)
can be transformed to the Boussinesq equation and its sol
tion is given in Appendix B. The soliton solution exists for
all s>s, wheres,=/9/8 is the velocity of small-amplitude

kj kj
U],(IZl I'n+l> _Uj,( Igl rn-%—I—l)

+U] (15

waves in the lattice which does not depend on the direction

of wave propagation.
Similarly to the 1D case, in order to find numerically

exact soliton solutions which take into account the discrete-

ness of the lattice:

TABLE Il. Geometric parameterEi_jOJ, (m,n), (My,ny), a;
Iy, I, ke, ko, ks; N, a for five directions of solitary wave propa-
gation.

SOLITARY PLANE WAVES IN AN ISOTROPIC ...

[ijo] (mn) (my,n)) «a I, 1, ki ko kg N, a

[010] (2,0 (0,2 0° 1 Y3 1.1 2 2 05
[410] (9.) (1,3 10.89° 21 7 1 2 3 14 0.327
(21200 (5.) (35 19.11° 7 21 1 4 5 14 0.189
[430] (11,3 (-9,1) 25.29° 37 111 1 10 11 74 0.082
[1200 @D (1) 30° Y3 1 0 1 1 2 0.866

14 217

1.5

0.5F

20 30

25}

201

L 12
15 10

E1 /2

10} 11

(b)

20 30 40

Q

(4]

L

FIG. 7. (a) Squared total lattice compressiBf, (b) square root
JE of the energ)E given by the Hamiltoniarf 11), and the profile
thicknessD against velocitys for the solitary wave propagating in
the directionse=0° (curves 1, 7, and 13a=10.89°(curves 2, 8,
and 14, «=19.11°(curves 3, 9, and )5a=25.29°(curves 4, 10,
and 16, anda=30° (curves 5, 11, and 27Two small circles ina)

and (b) are the bifurcation points which separate the hard solitary
wave solution represented by curves 5 and 11 from the soft solitary
wave solution represented by curves 6 and 12 for the caseawith
=30°.

(16)

ro(7)=r(z), z=na-sr,

we use the pseudospectral meth@at details see again Ap-
pendix A). For the description of solitary wave solutions we
use the total compression of the lattiee= -2, r,=u_.
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TABLE lll. Dependence of total lattice compressi& profile
thicknessD, and energ)E on the direction angler (velocity iss
=15).
0.1
a R D E
3
0° 0.1599 1.3458 0.02611 T
10.89° 0.1664 1.2934 0.02940
19.11° 0.1777 1.2275 0.03463 0.05
25.29° 0.1854 1.1817 0.03872
30° 0.1886 1.2765 0.04075
0
—Uu, calculated in the direction of wave propagation, the
thickness(diametey D of solitary wave profile given by Eq.
(4), and the energf calculated according to Ed5) and FIG. 8. Normalized profile of the solitary waver (z)/a mov-
normalized byl as in the Hamiltoniari11). ing in directions witha=0° (curve ), «=10.89° (curve 2, a

We consider the five directions of wave propagat|on given=19.11° (curve 3, a=25.29° (curve 4, anda=30° (curve 5.

by the Miller indices[010], [410], [210], [430], and[110]
(shown in Fig. 6. The values of the parametems{,n;), «,  and 7b), the total lattice compressioR and the energy

Iy, 1, Kq, Kz, K3, and the numbeN , of sites in the directed increase with the growth of the angte within the interval
elementary cell are presented in Table Il. For these five di0°<a<30°. The increase of also results in decreasing the
rections of propaga’[iorﬁz, \/E, andD against the velocitg soliton thicknes® as demonstrated by Fig(cj. As can be
are plotted in Fig. 7. The solitary wave has the infinite inter-seen from this figure, the diameterdepends weakly on the
val of velocities,sy<s<o, only in the directiona=0 (m  angle of propagatiom. Exact values of the compressi&
=2n=0). However, for 6<a=</6 the solitary wave has the diameteD, and the energ for different directions of
the finite interval of velocities: s;<s<s;<« where s, the solitary wave propagation are presented in Table Ill. The
=s,(a) is some critical(maxima) value. The finiteness of plots of the corresponding soliton profiles normalized by the
this interval is a consequence of the boundedness of the répacinga are shown in Fig. 8. As follows from this figure,
duced LJ potentia{12) from above(see Fig. 5. Indeed, as the change of the propagation direction affects mainly the
we have shown in Sec. Il, the soliton amplitude in the 1D LJsolitary wave amplitudé but not its shape.

chain is bounded for all velocities<ds<« because the par-  The amplitudeA of the solitary wave solutions presented
ticles in such a chain cannot pass each through other. How Fig. 8 by curves 1-5 lies in the hardness region of the
ever, in the 2D lattice whemr#0, the projections of the reduced potentia{12) and we call these types of solutions
particle displacements on tha axis can “pass” each the “hard” solitary waves. As shown in Fig. 8, curve 5,
through other and this is in agreement with the finite behavwhich corresponds to the direction of propagation with

ior of the reduced potentidll2), plotted in Fig. 5, atr= =7/6, bifurcates at the critical (maxima) velocity s;
—d; . With the growth of the velocitg of the solitary wave = =16.42, into the solitary wave solutions for which its ampli-
solutlon(16) the amplitudeA= —r(0) increases as in the 1D tude lies in the softness region of the potentie?). We call
case but this increase happens to be more and more strofitese types of solutions the “soft” solitary waves. The bi-
while approachmg a certain critical Va]s@ because the po- furcation of the hard solitary wave solution into the soft so-
tential (12) becomes more and more soft. At the point of lution is illustrated by curves 5 and 6 in Fig(af and by
inflection (where the second derivative of a function equalscurves 11 and 12 in Fig.(). The soft solitary wave solution
zero of this potential which is closest to the point0, the  plotted in Fig. 9 by curve 2 has larger amplitude and thick-
derivative of the amplitudé(s) with respect to the velocity Nness if compared to the hard solution shown in this figure by
s becomes infinity, so that for velocities>s; solitary wave
solutions are impossible. In the point of inflexion, hardness

of the reduced potentiall2) changes into softness which 0.8y
prevents the solitary wave regime. However, since the re-

duced potential(12) contains also the hard region, we may 0.6f
expect that the solitary wave solutions with amplitude ex- T

ceeding the critical valu&;=A(s;) can also exist. Indeed, 0.4}
below we confirm that there also exists another branch of
solitary wave solutions with an amplitude in the softness
region of the potentia(12), so that the critical valus=s;
becomes a bifurcation point.

Whena— 0+, the critical(maxima) velocity s; tends to
infinity. The increase ofe leads to decreasing the upper
bounds;. Thus, fora=25.29° we have;=31.23, while for
a=30° this bound iss;=16.42. For other values at the FIG. 9. Profile of the two solitary wave solutionsr (z) propa-
critical values; exceeds 100. As one can see from Figg) 7 gating with velocitys= 15 in the direction witha=30°.

0.2r
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curve 1. Note that fora= /6, according to EQ.(12), For modeling the solitary wave motion along the bonds
U,(r)=0 and the potentialgl,(r) =U(r) have the point of (i.e., whena=0) we used the number of lattice sites given
inflexion atr = —0.728. This value appears to be between theby M=N=200. The solitary wave velocity was taken
amplitudes(the maxima of curves 1 and 2 in Fig) 8f the =1 5, Initially, the solitary wave was placed mh=50[see
hard and soft solitary waves. In this case the soft solutiorFig. 10@)]. In order to model the presence of a mass vacancy
exists for yelocmes from th_e mteryal 14.85<s5,=16.42. gt the n;,n;)th site, it is sufficient in the system of equa-
The peculiar property of this solution is the decrease of itgjons of motion governed by the Hamiltoniai) to set
amplitude and energy with the growth of the velogtysee |, ' —0 and to remove all the terms that are responsible for
Fig. 7, curves 6 and 12 The numerical integration of the o . . . . )

equations of motion for the reduced chairb) with the ini- the mterp.artmlel .|nteract|ons with them,n;)th site. We

tial conditions obtained by using the pseudospectral methofh00Se this position to bey =n; =100, so that the vacancy
has shown that both types of solitary waves are stable. They Placed at the center of the lattice rectangular domain. The
propagate in the lattice with constant velocity, retaining thejf'umerical integration of the equations of motion has shown
shape. For a soft solitary wave the particles in the vicinity ofthat the propagation through the vacancy does not destroy
the wave amplitude are subjected to the soft part of the rethe solitary wavesee Fig. 1()]. In the vicinity of the va-
duced potentia(12) whereas the particles at the tails of the cancy a transverse modulation of the solitary wave appears
solitary wave profile are affected by the hard part of thisthat creates two transverse waves propagating along the front
potential. Therefore for the existence of soft solitary wavesn opposite directions, as shown in Fig.(20 The motion of

the effect of the hard part of the potent{aR) must dominate these waves is accompanied by radiation of longitudinal
the effect of the soft part. As a result, their amplitude has tesmall-amplitude waves. Due to the periodic boundary condi-
be bounded from above. tions, the transverse modulational waves pass through each
other many times eventually disappearing, so that the solitary
wave becomes undistorted in the limit>c. Before the pas-
sage through the vacancy, the solitary wave had the energy
E=4.52, while after the passage at the time instant

As was shown in the previous section, the properties of= 1567 the energy wak=4.48. Thus, the solitary wave of
the propagation of a narrow solitary wave essentially depentidth 1003 lost at one vacancy only 0.84% of its energy.
on the direction(given by the angle) of this propagation. Let us consider now the solitary wave propagation
The biggest difference exists at the angle valuesO0 and through a lattice domairh;C A with isotopic disorder. For
a=1/6 (or the samep=/2). Therefore we restrict our- Simulations it was chosen with 40m<140 and ZI<n
selves by investigation only at these two angles. <200. We chose at eacha random site numben(n) from

Let us consider the motion of a solitary wave alonghe the interval 46=m=140. Next, we Sejmnyn= pi, wWhere
axis (@=0). In order to simulate properly the solitary wave #;=1 is the isotope mass at tiien(n),n]th site andum,
motion in the infinite 2D lattice, we consider a sufficiently =1 for the rest of the lattice sites. Then the density of mass
large finite rectangular domaiA contained inI" with 1 impurities in the domain\; is c=1/50y3. The solitary wave
s=m=M and 1=n=<N, and assume at the lattice edgespropagation through the domaix; with «;=3 is shown in
which are perpendicular to the wave propagation, the periFig. 11. Initially, the solitary wave center was situated at the
odic boundary conditiongi.e., substituten+1 by 1 if n site my=18 [see Fig. 1(a)]. While passing the domain; ,
=N andn—1 by N if n=1), whereas the lattice boundaries radiation of small-amplitude waves occurs at each impurity
in the longitudinal direction are assumed to be fixed., as shown by Fig. 1®). The solitary wave outcomes from
U1,=0 andUy,=0). Let the center of a solitary wave be this domain are strongly distortefsee Fig. 1&)]. The
initially (7=0) situated(along theX axis) at some site with ~ Straight linearity of the solitary wave profile is a necessary

my<M/2. Then for the domairh we can use the following condition for its motion. The alignment of this profile, after
initial conditions: the scattering on impurities, happens due to emission of

small-amplitude waves which go out slowly with the profile
m alignment, so that at the end of the simulations the profile
becomes completely linear with a weakly modulated ampli-
“m”(o)‘.; rfalt=mo)],  vmn(0)=0, tude in the trarﬁsver)s/e directigsee Fig. 11)3!1)]. P
We define the transmission coefficient of a solitary wave
m T as the ratio of its initial energy to the energy transmitted
‘ __ , _ . _ through the domain\,;, so that the quantity’ describes the
Umi(0) 521 rlalt=mo)], vmi(0)=0, (17 solitary wave stabilitly with respect to mass disorder. The
dependence of on isotope masg; is presented in Table
where the functiorr (z) with s>s; is a soliton solution of V. For comparison this table also contains the valuesTfor
the reduced system of Eq4.5) and the period of the reduced found from the simulations for the reduced 1D model gov-
chain isa= 1/2 (note thatw=0). After the solitary wave has erned by the Hamiltoniai11). As follows from Table IV,
passed in the longitudinal directidn/2 lattice sites, we shift with the growth of the masg;, the transmission coefficient
it back byM/2 sites, modeling in this way the solitary wave T decreases. It is interesting to notice that the reduced 1D
motion in the infinite lattice. Therefore, we are able to avoidmodel gives foru;<4 approximately the same values Df
simulations of lattice dynamics with large numbers of par-as the 2D model governed by the Hamilton{&n However,
ticles. beginning from the valugu;=5, the 1D model gives the

V. INTERACTION OF SOLITARY PLANE WAVES
WITH VACANCIES AND MASS IMPURITIES
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FIG. 10. Propagation of the solitary wave with velocity 1.5 in the directione=0° through the vacancy situated at the (100,100)th
lattice site. Profiles of localized contractiong,— uny 1, along theX axis are presente@) initially (at 7=0), (b) at 7=66.68, andc) 7
=133.36.

lesser values compared with the 2D case. This error is corexamine the influence of transverse boundaries, we consid-
nected with the dimensionality of the reduced problem; inered the solitary wave motion in the 2D lattice domain which
the 2D lattice the solitary wave has an opportunitydand  was finite in the transversa] direction(with free boundary
isotope impurities of large mass and this is impossible in theonditions but infinite in the longitudinal i) direction. To
1D chain. This essential difference between the 2D latticenodel the free boundary conditions, all the terms in the
and the reduced 1D chain appears to be stronger when tleguations of motion which contain the bonds appearing out-
isotope massu; is larger. For instance, in the limit of infi- side the lattice domai were removed. Initiallfat 7=0),
nitely large isotope masg; , in the reduced chain model the the solitary wave was taken with the velocity=1.5. For
transmission coefficierl is always zerdthe soliton always N=200 the width of the solitary wave is 108 and its
reflects from a heavy impurity while in the 2D lattice we energy iSE=4.52. The results of simulations of the solitary
always havel>0. In the latter case the solitary wave trans-wave motion is presented in Fig. 12. The solitary wave mo-
mission occurs only because of streamlining immobile latticetion is accompanied by intensive radiation of waves at the
sites. free boundaries. The edges of the solitary wave begin break-
In a finite lattice domain\ its boundary conditions should ing and its profile acquires a nonlinear arched shape. The
significantly affect the solitary wave dynamics. In order toenergy is translocated in the form of transverse waves from
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FIG. 11. Propagation of the solitary wave with velocéty 1.5 in the directiona=0° through the lattice domain (40m=140) with
isotopic disorder(isotope mass ig; =3 and the density of impurities is= 1/50,/3). Isolines of longitudinal localized contractions are
presenteda) initially (7=0), (b) at 7=18, (c) 7=44, and(d) 7=400.

the solitary wave center to the edges and there they are emit- The rectangular lattice domain was chosen withv
ted. The velocity, amplitude, and energy of the solitary wave=400 andN=200. Similarly, for simulations of the equa-
monotonically diminish. Thus, at the time instants 338,  tions of motion governed by the Hamiltoni#6) we use the
1057, 1834, 3779 the energy whs-3.73[Fig. 12@)], 2.12  periodic boundary conditions in the transver3g @irection
[Fig. 12b)], 1.02, 0.09, respectively. Thus, in a finite 2D and the fixed boundary conditions in the longitudinal) (
lattice the solitary wave has a finite lifetime which dependsgirection.
on the solitary wave width. In the example considered, the \ye choose again the velocity to lse-1.5 and consider
solitary wave of the width 1008 losses the half energy dur- the solitary wave propagation through a single vacancy situ-
ing the timer=1000. . _ ated at the ify, ,n;)th site with m;=200 andn;=100. The
Let us consider now the motion of the solitary wave alongnymerical integration of the equations of motion has shown
theY axis («=m/2). To this end, we choose the following that the propagation through the vacancy does not result im-
initial conditions: mediately in decaying the solitary wave. At the vacancy, the
solitary wave emits small-amplitude waves and a local de-
! formation of its profile appears as shown in Fig(@3Two
Umn=0, Umn(o)zzl rfa(l=no)], modulational transverse waves appear that propagate along
(18)  the solitary wave profile with emission of longitudinal small-
n amplitude waves$see Fig. 18)]. In the infinite lattice these
- : _ ' _ modulational waves would move to infinity but in the trans-
Umn =0, vm(0)= _Szl r'fal=no)l, versely finite lattice domairh;, due to the periodic bound-
ary conditions, these waves collide many times and, as a
where the functior (z) with s>s; is the soliton solution of result, the solitary wave looses its stability as illustrated by
the reduced system of Eq4.5) andng is the number of the Fig. 13c). Finally, the solitary wave looses 71% of its en-
site (along theY axig at which the center of the solitary ergy. Thus, initially (at 7=0), the energy of the solitary
wave profile is situated. The period of the reduced chain isvave of the width 200 sites wds=8.15 and after its propa-
a=+3/2. gation through the vacancy over 2700 lattice sites its energy
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FIG. 12. Motion of the solitary wave with velocity=1.5 in the directiorw=0° in transversely finite lattice domain with free boundary
edges. Profiles of localized contractions are presented at time ing@nts: 338.46,(b) 7=1057.08, andc) 7=1834.28.

was E=2.36. Consequently, while moving along the direc-for solitary wave transmission in the direction with= /2
tion with a= w/2, the solitary wave appears to be more sends always less than in the direction with=0. Contrary to
sitive to the presence of vacancies in the 2D lattice than inhe case withw=0, the dependence af on u; for a=7/2
the direction witha=0. does not possess monotonic behavior. Thus,fcr2 the
We consider now the solitary wave propagation in a lattransmission coefficient is less than fer=3. Note that for
tice domain with isotopic disordek;. For simulations we the reduced 1D model the dependencd ain u; is strictly
choseA; to be the rectangular with<im=400 and 4&n  monotonic. Therefore, the nonmonotonic behavidr
<140. For each integen we choose randomly the site num- =T(u,) is a purely 2D effect: destroying a solitary wave
ber n(m) from the interval 46sn<140. We again set occurs not only directly, while interacting with an impurity,
Mmn(m)= Mi Where u; is an impurity mass angk,,=1 for  but also under the interaction of transverse modulational
the other sites. Then in the domak) the density of impu- waves appearing on the solitary wave profile.
rities is the same as before=1/50y3. The solitary wave Now we consider the solitary wave motion in the lattice
motion through the disordered domahk is shown in Fig. domain A which is infinite in the direction of the solitary
14. The dependence of the transmission coefficlenh the  wave propagation but finite in the transverse directiwith
impurity massu; is presented in Table IV. The coefficieht the free boundary conditionsWe choseM =400 ands
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TABLE IV. Dependence of the transmission coeffici@ntfor while in a 1D chain such a situation does not make any
the solitary plane wave propagating through the lattice domain withsense.
isotopic disorder on dimensionless impurity mags The density

of impurities isc=1/50y/3. ACKNOWLEDGMENTS
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10.0 0.279 0.348 0.188 0.163 APPENDIX A: THE PSEUDOSPECTRAL METHOD

el 0.0 0.254 0.0 0.104

Let us consider the following system of equations:

ics is presented in Fig. 15. Similarly to the case wits 0, i
the propagation is accompanied by intensive emission of K,
waves at the lattice edges. The solitary wave is not destroyed _ U-’( > Foks]
immediately but its velocity, amplitude, and energy mono- =1 J
tonically decrease. Thus, at the time instantsO, 176.6, ) . :
371.4, 867.6, and 2106.8 the energy Eas8.15, 6.23Fig. To find the whole class of sol!ton soIL_mons as weII_ as to
15(a)], 3.18[Fig. 15b)], 0.88[Fig. 15c)], and 0.10, respec- ca!culate those values of velocigyat which such solutions _
tively. Therefore, fora=m/2 the lifetime of the solitary exist, we use the pseudospeciral r{,‘e”.“)d developed by Eil-
wave is significantly less than fer=0. The solitary wave of beck and Fleschand Duncanetal? Since we look for

; ; - traveling-wave solutions,,(7) =r(z), z=na—sr, the set of
Sgo\gldth 200 looses the half energy during the time Eqs. (A1) is reduced to

=1.5. The result of simulations of the solitary wave dynam- Fa= 2>, {w(;l fn+|) —Uj’(|21 fn+|—1>

+U] . (A1)

ki
E Mk —1+1
=1 J

Ki

u;(E r(z+1a)

=1

K;

—UJ-’(EJ r[z+(|—1)a])

=1

3
VI. CONCLUSIONS sr’= _El
=

Thus, the dynamics of solitary plane waves in a 2D hex-
agonal lattice has been investigated numerically by using —U!(E r[z+(|—k-)a])
pseudospectral techniques. Contrary to the previous stldies, N )
the lattice was considered to be purely isotropic. It is impor-
tant that the solitary wave solutions we examined are quite

k:

narrow, even of one lattice spacing. Therefore we could +Uj ;1 r[z+(|—kj—1)a]) '
study them at large supersonic velocities, sayl.5, or even .
larger. We have found that the regime of the solitary wave n=0*1,.... (A2)

propa_lg_ation es_sentially_ depends on the direc_tion of its mopg before®® we look for solutions of Eq(A2) in the form
tion; it is sensitive to microstructure of the lattice.

We have also carried out the extensive investigation of N
the solitary wave propagation through lattice domains with r(z)= >, Cpdp(2) (A3)
isotopic disorder. We have shown that the dynamical prop- p=0

erties of the solitary wave significantly depend on the direc-fOr some sufficiently large integed where the coefficients

tion of its propagation. Thus, in the infinite 2D lattice the [c }N are to be determined. The basis functiapg(z)’s
pIp=0 :

solitary wave is the most stable while moving along the . ; .

.27 Tare chosen to be the same as in the cosine Fourier transform,
bonds @=0,7/3,27/3,7,47/3,57/3). When the lattice is fi- ie.. b.(z) = cos(2mpzl). We consider (z) to be a periodic
nite in the transverse direction and the lattice edges are fre?uﬁ’(:tign with a suﬁiciéntly large period.. In the limit of

the lifetime of the solitary wave is the longest at these : - .
largeL we expect to obtain a good approximation to a soli-

angles. : . o . i
Contrary to the case of the 1D soliton theories on thetary wave solution which has an infinite period. The bound

iti +o0)=
soliton interaction with lattice impuritié®3 the important ?g):a?f;)c?s:]ttl(s)?:l(tﬁs?ser? eélgwirtlj:rg;?\:\?eafsxn?eni??r]lbtﬁ:a()f
point of the 2D model considered in this paper is that within '

this model it is possible to model properly interactions ofform

solitary waves with lattice vacancies. Here we have studied N

such types of |r_1teract|ons arld found that the solltary_ waves r(L/2)= 2 cp cogpm) =0, (A4)
of localized lattice deformation can easilgund vacancies, p=0
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FIG. 13. Propagation of the solitary wave with velocity 1.5 in the directione= /2 through the vacancy situated at the (200,100)th
lattice site. Profiles of localized contractiong,,—vm+1, @long theY axis are given at the timesa) (7=56.3), (b) 7=114.0, and(c) 7
=137.8.

3

and find the equality N
]-'(Z)EpE::l cpbp(z)+j§‘,

N
Uj’( > cpq};)(z)>

N =1 p=1
Co=— pgl Cpp(L12). (A5) . "
il 3, e -l 3, cpia
Therefore Eq(A3) can be rewritten as p=1 p=1
N
u .’ @z | |
r(z):pg1 Col bp(2)— p(LI2)]. (A6) U pzl Cojp (Z)) 0, (A7)

Inserting expressiofA6) into Eq. (A2), we obtain where
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FIG. 14. Propagation of the solitary wave with velocéty 1.5 in the directione= 7/2 through the lattice domain (40n<140) with
isotopic disordefisotope mass ig; =3 and density of impurities is= 1/50y/3). Isolines of longitudinal localized contractions are presented
at time instants(a) (7=0), (b) at r=670.89, andc) v=78.39.

2 Fz)=0, i=12,...N. (A10)

P2 ps(2),

2
by(2)=| ——
K This system of equations was solved numerically by the
(1_ B modification of the Powell hybrid method. The routine-
ip .21 [dp(z+1a) = p(LI2)], BRJ1from theMINPAK package was used. We took the num-

K, ber of the Fourier coefficientd=200 and the periol to be
(2)_ z+(1—1)a)— b (LI2)], the solitary wave diameter multiplied by the factor of 10.
Gip 21 [fp(zt (1= 1)a) = Gy(L12)] The important point in the numerical solution of E&\10)

was the choice of the initial guess. It was taken to be the
K; function —A secl(uz) with the parameter values taken
qJ(S)ZE {dplz+(1—kj)al— ¢p(LI2)}, from the continuum approximatiofsee below Appendix B
=1 and expressiondB9) and (B10) therd. This approximation
Kj appears to be good enough &% 1.2. For higher velocities
qiy'= |21 {pp[z+(I-kj—1)al—¢p(L/2)}. (A8)  the parametera andu were path followed from the interval
- s<1.2.

Let us split the intervalO,L/2] into the N collocation
points: APPENDIX B: THE SOLITARY WAVE PROFILE

IN THE CONTINUUM APPROXIMATION
(i—1)L

. Let us consider the system of the equations of motion
' 2N

(16). Suppose their solution,(7) depends smoothly on the
site numbern. Next, we setna=x, so that the profile
Then we obtain the system ®f nonlinear algebraic equa- r,(7)=r(X,7) changes smoothly with the change of the vari-
tions with respect to thél coefficients{cp}gﬂz ablex. Then for any integet in the continuum approxima-

i=1,2,...N. (A9)
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FIG. 15. Motion of the solitary wave with velocity=1.5 in the directiona= 7/2 in the transversely finite lattice domain with free
boundary edges. Profiles of localized contractions are given at time insf@nts: 176.56,(b) 7=371.36, andc) 7=867.58.

tion we can write the following expansion: ) 1
d]aU](kJr)-}— l—zdjrxx =0, d]:kja
XX
(B2)

rTT_;

1 1 1

rnﬂ(f)zriIarx+E(Ia)zrxxig(la)3rxxx+ﬂ(la)4rxxxx

Here the linear fourth-order term,,, takes in the harmonic
+ ..., (B1) approximation account of the lattice dispersion caused by its

discreteness. Omitting this dispersive term for small-
amplitude waves <a this equation is reduced to the linear

Next, we substitute this expansion into E¢5) and keep all  wave equation

the expansion terms up to fourth order. However, we linear-

ize all the terms which contain fourth-order derivatives over

X, omitting anha_rmonic fourt_h-order terms. As a result, we r”_z d%r =0, (B3)

obtain the following partial differential equation: T
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from which one can find the velocity of small-amplitude and using this expansion in E(B6), we obtain the standard
plane waves propagating in the direction given by the angl@oussinesq equation

.
1 3 1
6,1 2 2 4 2 2_
so=vadi+ a3+ di=a? ki T K3 K. (B4) 1—2; djr”+(sp—s )r—gg dj(“dj—z)f =0,
Taking Egs.(9) into account, we can calculate this value (B8)
explicitly. As a result, we find which has a soliton solution of the form
So=19/8=1.0606 . . ., (B5) r(z)=—A sect(uz), (B9)

so that the characteristisound velocity, i.e., the velocity of \,hare
plane long-wave waves in the 2D hexagonal isotropic lattice,
does not depend on the direction of their propagation.

Suppose now that the functiarix, 7) is a solitary wave uP=3(s?=s)1 >, d°,
solution, i.e.,r(x,7)=r(z) with z=x—s7, andr, r’, and !
r"—0 whenz—~. Then, Eq.(B2) can be twice integrated

and transformed to the following generalized Boussinesq A=(32—s§)a/2 d#(8d?—1),
equation: ~ C1 T
@12 K+ kU] (k) —(sla)’r=0. (B6) 7%, di=ka. (B10
i i

The distanced; and integerk; , j=1, 2, and 3, are given by
This equation describes the dynamics of chain particles, eadfgs. (9) and(10).
of which interacts withsix neighbors located at the distances The necessary condition for the usage of the continuum
dj=k;a, j=1,2,3. Expanding the reduced LJ potentia®) approximation is the requirement of a sufficient “thickness”
up to the third ordeftaking into account only cubic anhar- (diameterD) of the soliton solution. In fact, this approxima-
monicity): tion can be used only for<4s/sy;<<1.05. For higher veloci-
ties the discreteness of the chain should be taken into ac-
(B7) count more properly. For this purpose we use the
' pseudospectral method already described in Appendix A.

1

1
Uj(r)= Edjzrz—dj(4dj2— > r3+...
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