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Kinetic-energy functionals studied by surface calculations

L. Vitos and H. L. Skriver
Center for Atomic-scale Materials Physics and Department of Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark

J. Kollár
Research Institute for Solid State Physics, P.O. Box 49, H-1525 Budapest, Hungary

~Received 10 November 1997!

The self-consistent jellium model of metal surfaces is used to study the accuracy of a number of semilocal
kinetic-energy functionals for independent particles. It is shown that the poor accuracy exhibited by the
gradient expansion approximation and most of the semiempirical functionals in the low density, high gradient
limit may be subtantially improved by including locally a von Weizsa¨cker term. Based on this, we propose a
simple one-parameter Pade´’s approximation, which reproduces the exact Kohn-Sham surface kinetic energy
over the entire range of metallic densities.@S0163-1829~98!03719-9#

I. INTRODUCTION

Within density functional theory,1 the kinetic energy of
the noninteracting particles, defined as the sum of one-
electron kinetic energies, may be determined exactly from
the one-electron wave functionsc j (r ) as

TKS@n#5(
j

occ E dr c j* ~r !S 2
\2

2m
¹2Dc j~r !, ~1!

which is an implicit functional of the electron density given
by

n~r !5(
j

occ

uc j~r !u2. ~2!

The application of the orbital-based expression~1! in total
energy calculations requires a knowledge of the complete
self-consistent solution to the Kohn-Sham equations.2 Unfor-
tunately, the exact self-consistent solution of the Kohn-Sham
problem is a time-consuming task, and in many cases, such
as ab initio molecular dynamics calculations,3–5 it becomes
the time limiting step. Furthermore, there are total energy
methods that derive the charge density by an alternative
route,6,7 and in these cases the calculation of one-electron
orbitals to determine the kinetic energy would form an inef-
ficient backward step. If, however, there existed an accurate,
explicit density-dependent kinetic energy functional, both the
computational effort of the self-consistent procedures and of
calculating the kintic energy and, hence, the total energy,
could be considerably reduced.

During the past decade many attempts have been made to
develop accurate orbital-free semilocal8–12 and
nonlocal4,13–15kinetic energy functionals. Although most of
the nonlocal functionals may reproduce with high accuracy
the exact Kohn-Sham results, including the quantum me-
chanical shell structure of the atomic densities,15 their appli-
cation to realistic three-dimensional extended systems raises
numerical difficulties, and in the present work we therefore
focus on the semilocal kinetic energy functionals. Further, an
orbital-free kinetic energy functional should give accurate

density profiles as well as kinetic energies. However, the
accuracy of the semilocal density functionals in the calcula-
tion of density profiles is usually considerably lower than
that obtained by insertion of exact densities.16 We therefore
consider only the latter case, i.e., we use the exact self-
consistent densities obtained using the Kohn-Sham scheme2

within the local density approximation for the exchange-
correlation energy in order to test the accuracy of the semilo-
cal kinetic energy functionals.

Most of the above mentioned semilocal and nonlocal
functionals, with a few exceptions,15 have been designed and
tested for use in atomic calculations and, as it turns out, they
are not well suited for surface calculations. The principal aim
of the present study is to establish the accuracy of a number
of first-principles and representative semiempirical kinetic
energy functionals and to isolate those factors that are crucial
for metal surfaces but irrelevant for atoms and molecules. To
have an accurate reference system, we consider the self-
consistent jellium surface model by Lang and Kohn,17 within
which the 3D Kohn-Sham problem reduces to a one-
dimensional problem where the numerical approximations
may be kept at a minimum. Such a semi-infinite jellium sur-
face is characterized by the electron density parameterr s
5(3/4pnb)1/3 given in terms of the bulk densitynb . The
present study covers the physically interesting density range
r s5226 and uses Wigner’s exchange-correlation
functional18 as in the original jellium surface calculations.17

II. THE DENSITY GRADIENT EXPANSION

For slowly varying densities the noninteracting kinetic en-
ergy functionalT@n# may be given in the form of a density
gradient expansion~GE!.16 In terms of the kinetic energy
density, defined by

T@n#[E t@n#dr , ~3!

this expansion can be written in the following form:

tGE@n#5t ~0!~n!1t ~2!@n#1t ~4!@n#1•••, ~4!
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where the zeroth order termt (0)(n) is the Thomas-Fermi
energy density which depends only on the densityn(r ) at the
point r . All other terms involve the gradient¹n and higher
order derivatives of the charge density, hence they include
some nonlocal contributions from the electron density in the
immediate vicinity ofr .

The errors of the expansion~4! including one (TGE
0 ), two

(TGE
2 ), or three (TGE

4 ) terms relative to the exact Kohn-Sham
value for jellium surfaces are shown in Table I and in Fig. 1.
Here and in the following we use the definition~3! for each
component of the expansion as well as for the total kinetic
energy functionals. It is seen that for the high and interme-
diate densities, i.e.,r s5224.5, the error of the Thomas-
Fermi functionalTGE

0 is to a large degree corrected by the
second- (T(2)) and fourth-order (T(4)) terms, showing the
rapid convergence of the expansion. Note that this is not
convergence in the strict sense because in the gradient ex-
pansion for surface density profiles the sixth- and higher-
order terms diverge if the exponentially decreasing densities
are inserted.16 On the other hand, in the low density limit the

error of the fourth-order gradient expansionTGE
4 5T(0)

1T(2)1T(4) is still very large (170%). At this stage we
mention that the accuracy of the fourth-order gradient expan-
sion for the Lang-Kohn density profiles, especially forr s
.3, is considerably better than that found for other less re-
alistic surface models, such as the linear potential
approximation.16,19

To understand the failure of the gradient expansion for
surfaces at highr s values, we now examine its local conver-
gence in terms of the semilocal variables,

s@n#[
u¹nu
2kFn

and q@n#[
u¹2nu

2kF u¹nu
, ~5!

wherekF5(3p2n)1/3 is the Fermi wavelength. As stated in
the original work by Hohenberg and Kohn,1 the criterion for
convergence of the expansion~4! is that both of these dimen-
sionless quantities are well below unity. This condition is
generally satisfied in bulk metals and in the inner part of
isolated atoms.12 However, for the exponentially decaying
densities, which occur in the exterior region of atoms12 and
at metal surfaces, the condition is violated, and in fact for
these systems boths andq go to infinity.

In Fig. 2 we plot the scaled gradients@n# versus the dis-
tancez from the edge of the positive jellium background~in
units of kF) for two self-consistent density profiles. It is ob-
served thats@n# increases from zero to infinity when the
surface is reached. Moreover, as the bulk density decreases,
i.e., r s increases, the scaled gradients@n# viewed as a func-
tion of z rises rapidly while the density is still finite. From
the inset, which shows the relative kinetic energy density
tGE
2 @n#/tGE

2 @nb# calculated using the second order gradient
expansion and plotted as a function of the scaled gradient
s@n#, it is seen that, within this approximation, the kinetic
energy density forr s52 decreases more rapidly with the
scaled gradient than forr s56. Hence, in the larger s regime
a sizeable contribution to the surface kinetic energy comes
from spatial regions where the scaled gradient is large, and
therefore the error of the gradient expansion increases with
r s .

TABLE I. The errors of various kinetic energy functionals for self-consistent jellium surface profiles
corresponding tor s5226 in percent of the exact Kohn-Sham surface kinetic energy.TGE

0 , TGE
2 , andTGE

4 are
the zeroth-, second-, and fourth-order gradient expansion functionals~Ref. 16!, TTF(1/4)W is the Thomas-
Fermi–von Weizsa¨cker functional forl51/4 ~Ref. 20!, TL the locally truncated functional by Pearson and
Gordon ~Ref. 12!, TLC the generalized gradient approximation functional by Perdewet al. ~Ref. 27!, and
parametrized by Lembarki and Chermette~Ref. 24!, TDK the Pade´ form by DePristo and Kress~Ref. 8!,
TGE/W the functional from Eq.~11!, andT3,2 the Pade´ form given by Eq.~13!.

r s TGE
0 TGE

2 TGE
4 TTF(1/4)W TL TLC TDK TGE/W T3,2

2.0 211 22 21 8 22 22 23 0.0 20.2
2.5 217 25 22 11 24 24 25 0.5 20.1
3.0 224 28 24 13 27 28 28 0.6 0.1
3.5 235 213 26 15 212 213 213 2.9 0.3
4.0 251 221 210 18 221 222 221 5.5 0.4
4.5 277 233 217 21 233 236 232 8.7 0.5
5.0 2121 256 229 26 257 260 253 12.3 0.4
5.5 2223 2108 255 37 2109 2117 2101 17.1 0.3
6.0 2650 2329 2170 74 2333 2359 2302 29.6 20.6

FIG. 1. Errors of the surface kinetic energy obtained by different
kinetic energy functionals relative to the exact Kohn-Sham kinetic
energy versusr s . TGE

0 , TGE
2 , andTGE

4 are the zeroth-, second-, and
fourth-order gradient expansion functionals~Ref. 16!, TTF(1/4)W is
the Thomas-Fermi–von Weizsa¨cker functional~Ref. 20!, TGE/W the
functional from Eq.~11!, andT3,2 the Pade´ form from Eq.~13!.
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It is clear that the shortcoming of the gradient expansion
in surface calculations is caused by the combination of a
large gradient and a finite density, which occurs near a sur-
face. Such a combination is particular to surfaces and does
not play a role at the outer regions of isolated atoms where
the density decreases much more rapidly. This, on the other
hand, means that the fitting procedures used to design kinetic
energy functionals for use in atomic calculations never test
combinations of large gradients and finite densities. It is
therefore no surprise that these semiempirical functionals do
not work well in surface calculations.

III. KINETIC ENERGY FUNCTIONALS

To put the analysis of the preceding section on a quanti-
tative basis, we test in the following a number of kinetic
energy functionals in calculations of surface kinetic energies
and discuss their accuracy. Based on this, we propose a par-
ticularly simple functional that for surfaces yields essentially
exact,,1%, results, and that for atoms is of the same accu-
racy as the second order gradient expansion.

A. The Thomas-Fermi–von Weizsäcker functional

In the Thomas-Fermi–von Weizsa¨cker model,20 which
may be considered a modified second order gradient expan-
sion, the strength of the second order gradient termt (2)@n# is
controlled by an adjustable parameterl, i.e.,

tTF~l!W@n#5t ~0!~n!19lt ~2!@n#. ~6!

For l51/9, this functional is equivalent to the second order
gradient expansion. Chizmeshya and Zaremba21 tested the
Thomas-Fermi–von Weizsa¨cker functional in jellium surface
calculations and found thatl51/4 represented an optimal
value in the density ranger s5226. In Table I and Fig. 1 we
show jellium surface results obtained by Eq.~6! for l51/4.
It is seen that theTTF(1/4)W@n# functional leads to substan-
tially improved results relative to the gradient expansion in
the highr s range but to considerably higher errors in the low
r s range. We found by modifyingl that the average error in
the surface kinetic energy could not be reduced below ap-
proximately 10%.

B. The locally truncated GE functional

Pearson and Gordon12 solved the divergence problem by a
local truncation of the gradient expansion. That is, at each
point in space the number of terms included in the series is
determined by a local criterion based on the properties of an
asymptotic series. In practice, this means that if the fourth
order term is larger than the second order term, the fourth
order term is discarded, otherwise it is kept. As a result, the
locally truncated functionaltL@n# is identical to Eq.~4! for
slowly varying densities and reduces to the Thomas-Fermi
term in the rapidly varying limit.

TheTL@n# functional has been studied for a large number
of atoms and molecules,12,22 and in all cases it gives better
results for the total kinetic energy than a globally truncated
gradient expansion. Its success may be assigned to the fact
that for atoms and molecules the error caused by the
Thomas-Fermi term in the large gradient limit, i.e., in the
asymptotic region, is lower than that caused by an expansion
that also includes the semilocal terms. However, in the case
of a metal surface, an important contribution to the surface
kinetic energy comes from regions of high gradients where
the density is still finite, and such systems are not expected
to be described properly by a locally truncated functional.

In Table I, the sixth column shows the results for the
surface kinetic energy obtained by means of theTL@n# func-
tional. The errors of this functional are only slightly higher
than those obtained by the second order gradient expansion,
and we may therefore conclude that the reduction of errors
caused by including the fourth order term in the gradient
expansion~4! comes mainly from regions where the gradient
expansion is not valid.

C. Functionals based on a gradient enhancement factor

A widely used family of semiempirical kinetic energy
functionals based on a conjointness of the kinetic and ex-
change energy has been introduced by Leeet al.23 These
functionals may be written in the form

tLLP@n#5t ~0!~n!FLLP~s!, ~7!

whereFLLP(s) is an explicitly gradient dependent enhance-
ment factor chosen to be the same as the one used in the
corresponding exchange energy functional.23,24 The coeffi-
cients of this enhancement factor may be determined from
exact atomic kinetic energies. This family of functionals has
been tested for atoms25 and molecules,26 and it leads to better
agreement with the exact values than the gradient expansion.

In the present test calculations with theTLLP@n# func-
tional, we use an enhancement factorFLC of the functional
form given by Perdewet al.27 in their generalized gradient
approximation to the exhange energy but fitted to atomic
kinetic energies by Lembarki and Chermette.24 In Fig. 3 we
plot a number of gradient factors includingFLC as functions
of

x@n#[t ~2!@n#/t ~0!~n!5~5/27!s2@n#. ~8!

We note that for the second order gradient expansion, which
is identical to the generalized gradient approximation for the
kinetic energy,28 written in the form ~7!, we haveFGE

2 (s)
511(5/27)s2. From Fig. 3 it is seen that for lowx values

FIG. 2. The self-consistent density profilesn(z) ~in units of the
bulk densitynb) and the corresponding scaled gradients@n# for
r s52 andr s56. The inset shows the relative kinetic energy density
tGE
2 @n#/tGE

2 @nb# calculated within the second order gradient approxi-
mation versus the scaled gradients@n# for the samer s values.
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FLC(x) behaves like the second order gradient expansion,
while for high x values it falls belowFGE

2 (x) and in the
x→` limit it tends tox21.27

The results obtained for the surface kinetic energy using
the Lembarki-Chermette functionalTLC@n# are listed in the
seventh column of Table I. The values are very close to those
found using the second order gradient expansion, which
shows that the high gradient limit is not properly included in
this functional. We emphasize that the family of semiempir-
ical kinetic energy functionals based on the conjointness ar-
gument of Leeet al.23 is unable to reproduce the high gradi-
ent limit s→`, since the gradient enhancement factorF(s)
for the exchange functionals behaves as;s22,27 while the
enhancement factor for the kinetic energy, as we will see
later, must tend to;s2.

D. Functionals with correct asymptotic limits

Since none of the above mentioned functionals, which
correctly include the low gradient limit, Eq.~4!, are able to
reproduce the Kohn-Sham results in the surface regions of
large gradients, we conclude that for these regions of space
one must include a term that gives the correct kinetic energy
in the limit of rapidly varying densities. It has been shown
for many systems16 that in the limits@1 the noninteracting
kinetic energy functional reduces to the von Weizsa¨cker
functional29 given by

tW@n#59t ~2!@n#. ~9!

This functional gives the exact kinetic energy for one- and
two-electron systems. Furthermore, it becomes exact for
weak and rapidly varying potentials, for exponentially de-
caying densities, and near the nuclear positions. Though
there is no rigorous proof, it is believed that Eq.~9! repre-
sents the correct kinetic energy in the larges@n# regime.16

Therefore, an accurate noninteracting kinetic energy func-
tional should reproduce both the slowly varying limit given
by Eq. ~4! and the rapidly varying limit given by Eq.~9!.

Many attempts have been made to develop kinetic energy
functionals that satisfy these two requirements.8,9 The Pade´
approximation used by DePristo and Kress8 leads to a func-
tional that may be written

tDK@n#5t ~0!~n!P4,3~x!, ~10!

wherex is given by Eq.~8! and involves four semiempirical
parameters determined by fitting the kinetic energy func-
tional globally to the exact atomic total kinetic energies. At
low x values, theP4,3(x) enhancement function shown in
Fig. 3 is slightly larger than the second order gradient expan-
sion, atx'0.4 it becomes smaller thanFGE

2 (x), and for large
x values it increases towards an asymptotic behavior of 9x,
which is the form corresponding to the functional given in
Eq. ~9!.

The results for the surface kinetic energy given by
TDK@n# are presented in the eighth column of Table I. A
comparison of the results obtained by the locally truncated
functional TL@n# and the Pade´ approximation by DePristo
and Kress shows that the accuracy of these functionals are
very similar both for atoms~see Table II from Ref. 8! and for
surfaces. This indicates that for the total kinetic energies of
atoms the high gradient limit, inluded only in the latter func-
tional, does not play an important role. Therefore, a func-
tional of the form~10!, where the Pade´ parameters have been
obtained by fitting to Kohn-Sham atomic kinetic energies,
does not provide a proper description of regions of high gra-
dients, found for instance at surfaces, as may immediately be
realized upon examination of Table I.

E. The effect of a von Weizsa¨cker term

The kinetic energy functionaltDK@n# fulfills both
asymptotic limits, Eq.~4! and Eq.~9!, but due to the param-
etrization based on atomic kinetic energies it reaches the
large gradient limit only at very highx values. In order to
test directly the effect of a von Weizsa¨cker term on the ki-
netic energy of metal surfaces, we introduce the functional

tGE/W@n#5H t ~0!@n#1t ~2!@n# if x<h,

tW@n# if x.h,
~11!

whereh is a parameter of order unity. Although this func-
tional is clearly discontinuous atx5h, it reproduces the two
asymptotic forms given by Eq.~4! ~up to second order! and
by Eq. ~9!.

The results obtained by means ofTGE/W@n# for h51 are
shown in Table I and in Fig. 1. It is immediately seen that the
local inclusion of the von Weizsa¨cker term, where the gradi-
ent expansion fails, rather than the Thomas-Fermi term as in
the locally truncated functionalTL@n#, reduces the errors of
the second order gradient expansion by nearly one order of
magnitude, and that of the fourth order gradient expansion
by a factor of 325. Hence, the von Weizsa¨cker term appears
to contain the most important contribution to the surface ki-
netic energy in the larger s regime. We note that in Eq.~6!
the von Weizsa¨cker functional~9! is included whenl51,
but due to the presence of the Thomas-Fermi term this in-
volves some amount of double counting especially for large
r s values.

FIG. 3. Comparison of gradient enhancement factors of the vari-
ous kinetic energy functionals. The dashed lines are the von Weiz-
säcker (9x), the DePristo and Kress„P4,3(x)…, the second order
gradient expansion (11x), and the Lembarki and Chermette
„FLC(x)… functionals. The solid line corresponds to the Pade´ form
(P3,2) from Eq. ~13!.
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F. A kinetic energy functional for surfaces

As a consequence of the above analysis of the effect of
the von Weizsa¨cker term we propose the following simple
kinetic energy functional:

t3,2@n#5t ~0!~n!P3,2~x!, ~12!

wherex is given by Eq.~8!, and

P3,2~x!5
110.95x19ax3

120.05x1ax2
. ~13!

This functional is based on a one-parameter Pade´ approxi-
mation and fora50.396 it gives the best possible surface
kinetic energy for a wide range of densities. It is similar to
but simpler than the semiempirical functional designed for
atomic calculations by DePristo and Kress.8 At low gradi-
ents,P3,2(x) contains the dominant-wave-vector approxima-
tion similar to the functional of DePristo and Kress and it
reduces to the second order gradient expansion at very lowx
values, while forx.1 its slope rapidly reaches that of the
von Weizsa¨cker functional, i.e., 9x.

The enhancement factorP3,2(x) is plotted in Fig. 3 and
the kinetic energies obtained by means of this semiempirical
functional may be found in the last column of Table I and in
Fig. 1. It is seen that the functional reproduces the exact
Kohn-Sham surface kinetic energies within 1% for a wide
range of densities and gradients. We point out that since the
semiempirical kinetic energy functional~12! in the low gra-
dient limit reduces to the second order gradient expansion,
and since the combination of a large gradient and a finite

density, which leads to errors in surface calculation, does not
occur in an isolated atom, or at least has little effect on the
accuracy, the proposed functional may be used in atomic
calculations with an accuracy similar to the first-principles
kinetic energy functionals.

IV. CONCLUSION

We have tested the accuracy of a number of semilocal
noninteracting kinetic energy functionals in jellium model
calculations for metal surfaces. It is found that the traditional
gradient expansion, which provides an excellent description
of the kinetic energy density inside the metallic part of a
surface, where the Friedel oscillations occur, fails near the
surface on account of the large gradient. We note that this
large gradient limit cannot be described properly by fitting
the parameters of a semiempirical functional only to atomic
kinetic energies. We conlude that the slope of a true semilo-
cal kinetic energy functional must reach the slope of the von
Weizsäcker term already at relatively low values of the
scaled gradient, i.e.,s@n#'2.522.8, and propose a simple
semiempirical functional that fulfills this condition.
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