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Kinetic-energy functionals studied by surface calculations

L. Vitos and H. L. Skriver
Center for Atomic-scale Materials Physics and Department of Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark

J. Kollar
Research Institute for Solid State Physics, P.O. Box 49, H-1525 Budapest, Hungary
(Received 10 November 1997

The self-consistent jellium model of metal surfaces is used to study the accuracy of a number of semilocal
kinetic-energy functionals for independent particles. It is shown that the poor accuracy exhibited by the
gradient expansion approximation and most of the semiempirical functionals in the low density, high gradient
limit may be subtantially improved by including locally a von Weidsar term. Based on this, we propose a
simple one-parameter Pasl@pproximation, which reproduces the exact Kohn-Sham surface kinetic energy
over the entire range of metallic densiti€S0163-182¢08)03719-9

[. INTRODUCTION density profiles as well as kinetic energies. However, the
accuracy of the semilocal density functionals in the calcula-
Within density functional theory,the kinetic energy of tion of density profiles is usually considerably lower than
the noninteracting particles, defined as the sum of onethat obtained by insertion of exact densittéaVe therefore
electron kinetic energies, may be determined exactly fronconsider only the latter case, i.e., we use the exact self-
the one-electron wave functiong(r) as consistent densities obtained using the Kohn-Sham scheme
within the local density approximation for the exchange-
ks . h2 5 correlation energy in order to test the accuracy of the semilo-
T*n]=2> Jdr il =5 V7]#i(0, (D cal kinetic energy functionals.

) Most of the above mentioned semilocal and nonlocal
which is an implicit functional of the electron density given functionals, with a few exceptioris have been designed and
by tested for use in atomic calculations and, as it turns out, they
are not well suited for surface calculations. The principal aim
of the present study is to establish the accuracy of a number

n(r =2 lg(n2 (2)  of first-principles and representative semiempirical kinetic

! energy functionals and to isolate those factors that are crucial

The application of the orbital-based expressi@hin total for metal surfaces but irrelevant for atoms and m.olecules. To
energy calculations requires a knowledge of the complet§ave an accurate reference system, we consider the self-
self-consistent solution to the Kohn-Sham equatfodsfor-  consistent jellium surface model by Lang and Kdfmithin
tunately, the exact self-consistent solution of the Kohn-Shanfvhich the 3D Kohn-Sham problem reduces to a one-
problem is a time-consuming task, and in many cases, sucimensional problem where the numerical approximations
asab initio molecular dynamics calculatiois® it becomes ~May be kept at a minimum. Such a semi-infinite jellium sur-
the time limiting step. Furthermore, there are total energyace is characterized by the electron density parameger
methods that derive the charge density by an alternativer (3/4mny)™ given in terms of the bulk density,. The
route®” and in these cases the calculation of one-electrofresent study covers the physically interesting density range
orbitals to determine the kinetic energy would form an inef-rs=2—6 and uses Wigner's exchange-correlation
ficient backward step. If, however, there existed an accuratdunctional® as in the original jellium surface calculatioh’s.
explicit density-dependent kinetic energy functional, both the

occ

occ

computational effort of the self-consistent procedures and of Il. THE DENSITY GRADIENT EXPANSION
calculating the kintic energy and, hence, the total energy, ) N ) ) o
could be considerably reduced. For slowly varying densities the noninteracting kinetic en-

During the past decade many attempts have been made @9y functionalT[n] may be given in the form of a density
develop  accurate orbital-free  semildta? and  gradient expansiolGE).*® In terms of the kinetic energy
nonlocaf*3~* kinetic energy functionals. Although most of density, defined by
the nonlocal functionals may reproduce with high accuracy
the exact Kohn-Sham results, including the quantum me- _
chanical shell structure of the atomic densifietheir appli- T[n]=f t[n]dr, &)
cation to realistic three-dimensional extended systems raises
numerical difficulties, and in the present work we thereforethis expansion can be written in the following form:
focus on the semilocal kinetic energy functionals. Further, an
orbital-free kinetic energy functional should give accurate ted N]1=tO(n) +t@[n]+t*[n]+- - -, (4)
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TABLE I. The errors of various kinetic energy functionals for self-consistent jellium surface profiles
corresponding to,=2— 6 in percent of the exact Kohn-Sham surface kinetic enéfgy, T, andTge are
the zeroth-, second-, and fourth-order gradient expansion functiéRals 16, Trg 4w is the Thomas-
Fermi—von Weizseker functional forh = 1/4 (Ref. 20, T, the locally truncated functional by Pearson and
Gordon (Ref. 12, T, the generalized gradient approximation functional by Perdewal. (Ref. 2%, and
parametrized by Lembarki and ChermetRef. 24, Ty the Padeform by DePristo and KresgRef. 8),
Teew the functional from Eq(11), andT;, the Padeorm given by Eq.(13).

s T2 Tae Tée  Trruaw T Tic Tok  Teew  Taz
2.0 —-11 -2 -1 8 -2 -2 -3 0.0 —-0.2
2.5 —17 -5 -2 11 —4 —4 -5 0.5 —-0.1
3.0 —24 -8 —4 13 -7 -8 —8 0.6 0.1
3.5 —-35 —-13 L) 15 -12 —-13 —-13 2.9 0.3
4.0 —-51 =21 —-10 18 =21 —22 -21 55 0.4
45 -77 —-33 —-17 21 —-33 —36 -32 8.7 0.5
50 —121 —56 —29 26 —57 —60 —53 12.3 0.4
55 —223 —108 —55 37 —109 —117 —101 17.1 0.3
6.0 —650 —329 —170 74 —333 —359 —302 29.6 —0.6

where the zeroth order terrﬁo)(n) is the Thomas-Fermi error of the fourth-order gradient expansingE:T(o)
energy density which depends only on the densf{ty) atthe 721 T(4) js still very large (170%). At this stage we
pointr. All other terms involve the gradieritn and higher  mention that the accuracy of the fourth-order gradient expan-
order derivatives of the charge density, hence they includgjon for the Lang-Kohn density profiles, especially far
some nonlocal contributions from the electron density in the> 3 s considerably better than that found for other less re-
immediate vicinity ofr. alistic surface models, such as the linear potential

The errors of the expansidd) including one T3g), two approximation-®1°
(TéE), or three (I'éE) terms relative to the exact Kohn-Sham  To understand the failure of the gradient expansion for
value for jellium surfaces are shown in Table | and in Fig. 1.surfaces at highg values, we now examine its local conver-
Here and in the following we use the definitig8) for each  gence in terms of the semilocal variables,
component of the expansion as well as for the total kinetic
energy functionals. It is seen that for the high and interme- |Vn| |V2n|
diate densities, i.ef,=2—4.5, the error of the Thomas- sln]=5,-, and q[n]EZI<—|Vn|’ )

. . o - F F
Fermi functionalTgg is to a large degree corrected by the
second- T®) and fourth-order T) terms, showing the wherekg=(372n)%3 is the Fermi wavelength. As stated in
rapid convergence of the expansion. Note that this is nothe original work by Hohenberg and Kofirthe criterion for
convergence in the strict sense because in the gradient egonvergence of the expansit is that both of these dimen-
pansion for surface density profiles the sixth- and highersionless quantities are well below unity. This condition is
order terms diverge if the exponentially decreasing densitiegenerally satisfied in bulk metals and in the inner part of
are inserted® On the other hand, in the low density limit the isolated atoms$? However, for the exponentially decaying
densities, which occur in the exterior region of atéfrand
at metal surfaces, the condition is violated, and in fact for
these systems bothandq go to infinity.

In Fig. 2 we plot the scaled gradiesin] versus the dis-
tancez from the edge of the positive jellium backgroufid
units ofkg) for two self-consistent density profiles. It is ob-
served thats[ n] increases from zero to infinity when the
surface is reached. Moreover, as the bulk density decreases,
i.e., rg increases, the scaled gradiesph] viewed as a func-
tion of z rises rapidly while the density is still finite. From
the inset, which shows the relative kinetic energy density
t2n]/t3dn,] calculated using the second order gradient
I (Boh) expansion and plotted as a function of the scaled gradient
s s[n], it is seen that, within this approximation, the kinetic

FIG. 1. Errors of the surface kinetic energy obtained by different€nergy density for ;=2 decreases more rapidly with the

kinetic energy functionals relative to the exact Kohn-Sham kineticScaled gradient than far=6. Hence, in the large regime
energy versus. TOGE, TéE, andT‘éE are the zeroth-, second-, and @ Sizeable contribution to the surface kinetic energy comes

fourth-order gradient expansion functiondRef. 16, Trryqw is  from spatial regions where the scaled gradient is large, and
the Thomas-Fermi—von Weizsker functional(Ref. 20, Tgenw the  therefore the error of the gradient expansion increases with

functional from Eq.(11), and T3, the Paddorm from Eq.(13). rs.

60

Percent error
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1.2 T B. The locally truncated GE functional

[ —rg=6 Pearson and Gorddhsolved the divergence problem by a
] local truncation of the gradient expansion. That is, at each
point in space the number of terms included in the series is
determined by a local criterion based on the properties of an
asymptotic series. In practice, this means that if the fourth
order term is larger than the second order term, the fourth
order term is discarded, otherwise it is kept. As a result, the
locally truncated functional, [n] is identical to Eq.(4) for
RN slowly varying densities and reduces to the Thomas-Fermi
-0.4 0.0 04 0.8 term in the rapidly varying limit.
Z(kg) TheT,[n] functional has been studied for a large number
_ _ _ o of atoms and moleculé$;?? and in all cases it gives better
FIG. 2. The self-consistent density profilez) (in units of the  oq 15 for the total kinetic energy than a globally truncated

bulk densityn;) and the corresponding scaled gradiep] for o4 ient expansion. Its success may be assigned to the fact
rs=2 andr;=6. The inset shows the relative kinetic energy denSitythat for atoms and molecules the error caused by the

2 2 el - .
tgd nl/tgd np] calculated within the second order gradient approxi Thomas-Fermi term in the large gradient limit, i.e., in the

mation versus the scaled gradiefin] for the same' values. asymptotic region, is lower than that caused by an expansion

It is clear that the shortcoming of the gradient expansior;[hat also includes the s_emilocal terms. Hoyvever, in the case
in surface calculations is caused by the combination of O.f am etal surface, an |mportant contrlputlon o .the surface
large gradient and a finite density, which occurs near a suﬁlfme'[IC energy comes from regions of high gradients where
face. Such a combination is artiéular to surfaces and do the denS|ty_|s still finite, and such systems are not e_xpected
) pa . &3 be described properly by a locally truncated functional.
not play a role at the outer regions of isolated atoms where In Table | the sixth column shows the results for the

the density decreases much more rapidly. This, on the othesrurface kinetic energy obtained by means of Tagn] func-

hand, means that the fitting procedures used to design kinetic

: . . . onal. The errors of this functional are only slightly higher
energy fu_nct|onals for use In atomic Ca.IC.UIat'O”S never tes han those obtained by the second order gradient expansion
combinations of large gradients and finite densities. It is '

. . o ) and we may therefore conclude that the reduction of errors
therefore no surprise that these semiempirical functionals dg d . ; .
. . caused by including the fourth order term in the gradient

not work well in surface calculations. . : : :
expansiorn(4) comes mainly from regions where the gradient

expansion is not valid.

08

04

0.0

Ill. KINETIC ENERGY FUNCTIONALS

To put the analysis of the preceding section on a quanti- C. Functionals based on a gradient enhancement factor

tative basis, we test in the fOllOWing a number of kinetic A W|de|y used fam”y of Semiempirica| kinetic energy
energy functionals in calculations of surface kinetic energiesynctionals based on a conjointness of the kinetic and ex-

and discuss their accuracy. Based on this, we propose a pathange energy has been introduced by k¢al?® These
ticularly simple functional that for surfaces yields essentiallyfynctionals may be written in the form

exact,<1%, results, and that for atoms is of the same accu-
racy as the second order gradient expansion. tupln]=tO(n)F p(s), (7

whereF | p(S) is an explicitly gradient dependent enhance-

ment factor chosen to be the same as the one used in the
In the Thomas-Fermi—von Weizseer modef® which  corresponding exchange energy functiofidf The coeffi-

may be considered a modified second order gradient expagients of this enhancement factor may be determined from

sion, the strength of the second order gradient éfifin] is  exact atomic kinetic energies. This family of functionals has

A. The Thomas-Fermi-von Weizsaker functional

controlled by an adjustable parameleri.e., been tested for atorfisand molecule&® and it leads to better
agreement with the exact values than the gradient expansion.
treoowl N1=t©@(n) + Ot @[ n]. (6) In the present test calculations with tAg s[n] func-

: . . . tional, we use an enhancement fackqr. of the functional
For A= 1/9, this functional is equivalent to the second ordersym given by Perdevet al?’ in their generalized gradient

gradient expansion. Chizmeshya and Z.arfe%h'basted the  approximation to the exhange energy but fitted to atomic
Thomas-Fermi—von Weizsker functional in jellium surface inetic energies by Lembarki and Cherméttén Fig. 3 we

calculations and found that=1/4 represented an optimal ot 4 number of gradient factors includiffg . as functions
value in the density rangg=2—6. In Table | and Fig. 1 we

show jellium surface results obtained by E6) for A =1/4.

It is seen that the g4 [ N] functional leads to substan- x[n]=t@[n]/tO(n)=(5/27sn]. (8
tially improved results relative to the gradient expansion in

the highr ¢ range but to considerably higher errors in the lowWe note that for the second order gradient expansion, which
r range. We found by modifyiny that the average error in is identical to the generalized gradient approximation for the
the surface kinetic energy could not be reduced below apkinetic energy?® written in the form(7), we haveF2g(s)
proximately 10%. =1+(5/27)s?. From Fig. 3 it is seen that for low values
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15.0 7 Many attempts have been made to develop kinetic energy
v functionals that satisfy these two requireméiitsthe Pade
5 1257 /o approximation used by DePristo and Kf&k=ads to a func-
° / tional that may be written
w 100 / 1
t /P, (X
| w0 | torl ] =ty o), 10
] . . . L
2 0 14X wherex is given by Eq.(8) and involves four semiempirical
8 N S parameters determined by fitting the kinetic energy func-
S 25 - tional globally to the exact atomic total kinetic energies. At
T 7 _____————T;—(‘x‘)' low x values, theP,y(x) enhancement function shown in
0.0 T Lcl Fig. 3 is slightly larger than the second order gradient expan-
"o 1 2 3 4 sion, atx~_q.4 it becomes smaller thanZ;E(x)3 and for_Iarge
X X values it increases towards an asymptotic behaviorxof 9

which is the form corresponding to the functional given in
FIG. 3. Comparison of gradient enhancement factors of the varigq. (9).
ous kinetic energy functionals. The dashed lines are the von Weiz- The results for the surface kinetic energy given by
sacker (%), the DePristo and KreséP, y(x)), the second order Tok[n] are presented in the eighth column of Table I. A
gradient expansion (tx), and the Lembarki and Chermette comparison of the results obtained by the locally truncated
(F_c(x)) functionals. The solid line corresponds to the Péafen functional T_[n] and the Padepproximation by DePristo
(P32 from Eq.(13). and Kress shows that the accuracy of these functionals are
very similar both for atomgsee Table Il from Ref. Band for
FLc(x) behaves like the second order gradient expansiorsurfaces. This indicates that for the total kinetic energies of
while for high x values it falls belowFéE(x) and in the atoms the high gradient limit, inluded only in the latter func-
Xx—oo limit it tends tox .2 tional, does not play an important role. Therefore, a func-
The results obtained for the surface kinetic energy usindional of the form(10), where the Padparameters have been
the Lembarki-Chermette functiondl c[n] are listed in the obtained by fitting to Kohn-Sham atomic kinetic energies,
seventh column of Table I. The values are very close to thosdoes not provide a proper description of regions of high gra-
found using the second order gradient expansion, whicldlients, found for instance at surfaces, as may immediately be
shows that the high gradient limit is not properly included inrealized upon examination of Table I.
this functional. We emphasize that the family of semiempir-

ical kinetic energy ;gnctionals based on the conjointness ar- E. The effect of a von Weizéaker term

gument of Leest al=° is unable to reproduce the high gradi- o ) )

ent limit s— o, since the gradient enhancement fadtgs) The kinetic energy functionaltpc[n] fulfills both
for the exchange functionals behaves-as~22" while the ~ aSymptotic limits, Eq(4) and Eq.(9), but due to the param-

enhancement factor for the kinetic energy, as we wil seélrization based on atomic kinetic energies it reaches the
later. must tend to- s2. ’ large gradient limit only at very high values. In order to

test directly the effect of a von Weizsker term on the ki-

netic energy of metal surfaces, we introduce the functional
D. Functionals with correct asymptotic limits

Since none of the above mentioned functionals, which tO[n]+t@[n] if x<np,
correctly include the low gradient limit, Eq4), are able to teemln]= tuln] it x> 7 (1)
reproduce the Kohn-Sham results in the surface regions of W '
large gradients, we conclude that for these regions of spaGghere 5 is a parameter of order unity. Although this func-
one must include a term that gives the correct kinetic energyional is clearly discontinuous at= », it reproduces the two

in the limit of rapldly Varying densities. It has been shown asymptotic forms given by Ec(4) (up to second ordémnd
for many system that in the limits>1 the noninteracting by Eq. (9).

kinetic engergy functional reduces to the von Wecisa The results obtained by means B [n] for 7=1 are
functionaf® given by shown in Table | and in Fig. 1. It is immediately seen that the
local inclusion of the von Weizsker term, where the gradi-
tw[n]=9t?[n]. (99  ent expansion fails, rather than the Thomas-Fermi term as in

the locally truncated functiondl [ n], reduces the errors of
This functional gives the exact kinetic energy for one- andthe second order gradient expansion by nearly one order of
two-electron systems. Furthermore, it becomes exact fomagnitude, and that of the fourth order gradient expansion
weak and rapidly varying potentials, for exponentially de-by a factor of 3-5. Hence, the von Weizsker term appears
caying densities, and near the nuclear positions. Thougtp contain the most important contribution to the surface ki-
there is no rigorous proof, it is believed that £§) repre- netic energy in the larges regime. We note that in E46)
sents the correct kinetic energy in the lagj@] regime!®  the von WeizSeker functional(9) is included whem =1,
Therefore, an accurate noninteracting kinetic energy funcbut due to the presence of the Thomas-Fermi term this in-
tional should reproduce both the slowly varying limit given volves some amount of double counting especially for large
by Eq. (4) and the rapidly varying limit given by Ed9). rs values.
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F. A kinetic energy functional for surfaces density, which leads to errors in surface calculation, does not

As a consequence of the above analysis of the effect dpeeur in an isolated atom, or at least has little effect on the

the von Weizgaker term we propose the following simple @ccuracy, the proposed functional may be used in atomic
kinetic energy functional: calculations with an accuracy similar to the first-principles

kinetic energy functionals.

tzAn]=tQ(n)P3Ax), (12)
wherex is given by Eq.(8), and IV. CONCLUSION
3 We have tested the accuracy of a number of semilocal
P, AX) = 1+0.95+9ax (13) noninteracting kinetic energy functionals in jellium model
sdX)=——————

calculations for metal surfaces. It is found that the traditional
) ) ] , . gradient expansion, which provides an excellent description
This functional is based on a one-parameter Paleroxi-  of the kinetic energy density inside the metallic part of a
mation and fora=0.396 it gives the best possible surface syrface, where the Friedel oscillations occur, fails near the
kinetic energy for a wide range of densities. It is similar tosyrface on account of the large gradient. We note that this
but simpler than the semiempirical functional designed fonarge gradient limit cannot be described properly by fitting
atomic calculations by DePristo and Krésat low gradi-  the parameters of a semiempirical functional only to atomic
ents,P3 5(x) contains the dominant-wave-vector approxima-kinetic energies. We conlude that the slope of a true semilo-
tion Sim”ar to the funCtiOI’la| Of DePI’iStO and Kress and |t Ca' kinetic energy functiona| must reach the S|0pe of the von
reduces to the second order gradient expansion at verxlow weizszker term already at relatively low values of the
values, while forx>1 its slope rapidly reaches that of the gcgled gradient, i.es[n]~2.5-2.8, and propose a simple

von Weizsaker functional, i.e., 8. semiempirical functional that fulfills this condition.
The enhancement factdt; 5(x) is plotted in Fig. 3 and

the kinetic energies obtained by means of this semiempirical
functional may be found in the last column of Table | and in
Fig. 1. It is seen that the functional reproduces the exact One of us(L.V.) thanks Dr. N.D. Lang for the self-
Kohn-Sham surface kinetic energies within 1% for a wideconsistent jellium surface computer code. The Center for
range of densities and gradients. We point out that since th&tomic-scale Materials Physics is sponsored by the Danish
semiempirical kinetic energy functionél?) in the low gra-  National Research Foundation. Part of this work was sup-
dient limit reduces to the second order gradient expansiorported by the research project OTKA 016740 and 23390 of
and since the combination of a large gradient and a finitéhe Hungarian Scientific Research Fund.

1—-0.0%+ax?
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