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Transverse instability and riddled basins in a system of two coupled logistic maps

Yu. L. Maistrenko, V. L. Maistrenko, and A. Popovich
Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivska street, Kiev 252601, Ukraine

E. Mosekilde
Center for Chaos and Turbulence Studies, Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark

~Received 19 June 1997!

Riddled basins denote a characteristic type of fractal domain of attraction that can arise when a chaotic
motion is restricted to an invariant subspace of total phase space. An example is the synchronized motion of
two identical chaotic oscillators. The paper examines the conditions for the appearance of such basins for a
system of two symmetrically coupled logistic maps. We determine the regions in parameter plane where the
transverse Lyapunov exponent is negative. The bifurcation curves for the transverse destabilization of low-
periodic orbits embedded in the chaotic attractor are obtained, and we follow the changes in the attractor and
its basin of attraction when scanning across the riddling and blowout bifurcations. It is shown that the appear-
ance of transversely unstable orbits does not necessarily lead to an observable basin riddling, and that the loss
of weak stability~when the transverse Lyapunov exponent becomes positive! does not necessarily destroy the
basin of attraction. Instead, the symmetry of the synchronized state may break, and the attractor may spread
into two-dimensional phase space.@S1063-651X~98!05303-3#

PACS number~s!: 05.45.1b

I. INTRODUCTION

A problem that arises in many fields of science is related
to the behavior of a group of interacting entities or functional
units, each of which displays deterministic chaos or other
forms of complex nonlinear dynamic behavior. Fujisaka and
Yamada@1# showed how two identical chaotic systems under
variation of the coupling strength can attain a state of chaotic
synchronization in which the motion of the coupled system
takes place on an invariant subspace of total phase space. For
two coupled identical one-dimensional maps, for instance,
the synchronized chaotic motion is one dimensional, and oc-
curs along the main diagonal in phase plane. The transverse
Lyapunov exponentl' provides a measure of the average
stability of the chaotic attractor perpendicularly to this direc-
tion.

Chaotic synchronization was subsequently studied by nu-
merous investigators@2–5#, and a variety of applications for
chaos suppression, for monitoring of dynamical systems, and
for different communication purposes have been suggested.
An important question concerns the form of the basin of
attraction for the synchronized state and the bifurcations
through which this basin, or the attractor itself, undergoes
qualitative changes. Particularly interesting are the phenom-
ena of riddled basins of attraction@6–8# and on-off intermit-
tency@9#, that can be observed on either side of the so-called
blowout bifurcation@7#, where the transverse Lyapunov ex-
ponentl' changes sign.

On-off intermittency is an extreme form of intermittent
bursting@10,11# that occurs in the presence of a small posi-
tive value ofl' @9#. In this case the chaotic set on the in-
variant subspace is no longer transversely attracting on the
average. However, immediately above the bifurcation, a tra-
jectory may spend a very long time in the neighborhood of
the invariant subspace. From time to time, the repulsive char-
acter of the chaotic set manifests itself, and the trajectory

exhibits a burst in which it moves far away from the invari-
ant subspace, to be reinjected again into the proximity of this
subspace. Besides a reinjection mechanism, the occurrence
of on-off intermittency hinges on the fact that the positive
value of the transverse Lyapunov exponent applies over long
periods of time. For shorter time intervals, the net contribu-
tion to l' may be negative, and the trajectory is attracted to
the chaotic set@9#.

If there is no reinjection mechanism, a trajectory started
near the invariant subspace may exhibit a superpersistent
chaotic transient in which the behavior initially resembles
the chaotic motion before the blowout bifurcation. Eventu-
ally, however, almost all trajectories will move away from
this region and approach some other attractor~or go to infin-
ity!. Alternatively, the blowout bifurcation can lead to an
attractor which is confined by nonlinear mechanisms to a
region of phase space~the absorbing area! situated inside the
original basin of attraction, and this basin remains practically
unchanged in the bifurcation. Variation of a parameter that
causes the attractor to grow~or the basin to shrink! may then
produce a crisis in which the attractor abruptly disappears as
it makes contact with the basin boundary@12#.

Riddled basins of attraction may be observed on the other
side of the blowout bifurcation, where the transverse
Lyapunov exponent is numerically small and negative
@6,7,13–15#. Even though the chaotic set is now attractive on
the average, particular orbits~usually of low periodicity! em-
bedded in the chaotic attractor may be transversely unstable.
In this case we talk about weak attraction or attraction in the
Milnor sense@16#. The chaotic set in the invariant subspace
then attracts a set of points of positive Lebesgue measure in
phase space. However, arbitrarily close to any such point one
may find a positive Lebesgue measure set of points that are
repelled by the chaotic attractor.

The emergence of riddled basins of attraction occurs
through a so-called riddling bifurcation~sometimes referred
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to as a bubbling transition@13#!, in which an orbit embedded
in the synchronized chaotic attractor loses its transverse sta-
bility. This phenomenon was recently been described in de-
tail by Lai et al. @17#. They suggested that the riddling bifur-
cation takes place as two repellers located symmetrically on
either side of the invariant subspace approach the chaotic
attractor and collide with a saddle embedded in this attractor
~a so-called saddle-repeller pitchfork bifurcation!. Alterna-
tively, a point cycle embedded in the synchronized state may
lose its transverse stability through a period-doubling bifur-
cation. This situation, which appears to have been given less
attention, plays a significant role in the present analysis. In
both cases, i.e., for the pitchfork as well as for the period-
doubling bifurcation, the transition may be subcritical or su-
percritical depending on the sign of a certain quantifier. After
a supercritical bifurcation, the transversely destabilized orbit
will be surrounded by saddle points with unstable manifolds
along the invariant subspace of the synchronized state. This
leads to attractor bubbling and to the phenomenon of local
riddling @13,15#. In this case, the trajectories cannot escape
an area around the synchronized state until one or two addi-
tional ~global! bifurcations have occurred@18#.

The riddling bifurcation causes tongues of finite width to
open up along the transversely unstable directions from each
point on the repelling orbit@17#, and in these tongues trajec-
tories move away from the chaotic attractor. Similar tongues
open up from each preimage of the points on the repelling
orbit, and since the points of this orbit and their preimages
are dense in the invariant subspace, an infinite number of
tongues emerge, creating the characteristic riddled structure
in which the basin of attraction locally becomes a fat fractal.

Maistrenko and Kapitaniak@19# recently studied chaotic
synchronization and the formation of riddled basins of attrac-
tion for a system of two coupled piecewise linear maps. They
related the various phenomena to the different types of insta-
bility for the chaotic set in the invariant subspace. By virtue
of the simplicity of the map, they succeeded in deriving the
corresponding stability conditions. Also investigating
coupled piecewise linear maps, Pikovsky and Grassberger
@20# discovered that even when the coupled system exhibits a
stable synchronized behavior as indicated by the negative
value of the transversal Lyapunov exponent, the basin of
attraction may have full measure but be densely filled with
periodic orbits. Hence the synchronized attractor is sur-
rounded by a strange invariant set which is dense in an area
around the attractor, and the synchronized state is not asymp-
totically stable. Pikovsky and Grassberger@20# also observed
a bifurcation in which a synchronized one-dimensional at-
tractor explodes into a two-dimensional attractor that con-
tains the strange invariant set. Gardiniet al. @21# recently
investigated a one-parameter family of twisted, logistic
maps. Of special interest in the present context is their analy-
sis of the role of contact bifurcations~boundary crises! in
which the boundary of the absorbing area for a chaotic set
makes contact with the basin boundary. This type of global
bifurcations are involved in the transition from local to glo-
bal riddling @18#.

The purpose of the present paper is to study the emer-
gence of riddled basins in a two-dimensional mapF
5Fa,e :R2→R2 of the form

F: H x
yJ→ H f a~x!1«~y2x!

f a~y!1«~x2y!J , ~1!

where f a is the one-dimensional logistic map,

f a :x→ax~12x!, xPR1, aP@0,4#, ~2!

and«PR1 is the coupling parameter. We determine the re-
gions of weak stability in thea« plane for the synchronized
chaotic attractor, and calculate the transverse Lyapunov ex-
ponentl' as a function of« for characteristic values ofa
where the individual map shows a homoclinic bifurcation
~chaotic band merging!. These are the parameter values at
which f a(x) is known to display a chaotic attractor with an
absolutely continuous invariant measure.

The formation of riddled basins of attraction is discussed,
and the bifurcation curves for the transverse destabilization
of low-periodic orbits embedded in the chaotic attractor are
determined. For one-band, two-band, and four-band chaotic
attractors we follow the changes in the attractor and its basin
of attraction that take place under passage of the riddling and
the blowout bifurcations. It is shown that the loss of weak
stability does not necessarily affect the basin of attraction.
Instead, the chaotic attractor may spontaneously break the
symmetry and spread into two-dimensional phase space. It is
also shown that the emergence of transversely unstable tra-
jectories, while being a necessary condition for basin rid-
dling, is not sufficient for global riddling to occur. Finally,
we illustrate the phenomenon of intermingled basins of at-
traction@6# for a situation where the system has two coexist-
ing four-band attractors, each displaying a riddled basin
structure.

II. WEAK STABILITY OF THE SYNCHRONIZED
CHAOTIC STATE

The metric and topological properties of the logistic map
are well studied@22,23#. It is known, for instance, that for
any aP@0,4#: f a has no more than a single attracting cycle.
The parameter setL5$aP@0,4#: f a has an attracting cycle%
is open and everywhere dense@24#. At the same time, the
parameter setK5$aP@0,4#; f a has an absolutely continuous
invariant measure% is nowhere dense~i.e., it has a Cantor-like
structure!, and the measurem(K).0 @25#.

Figure 1 shows part of the bifurcation diagram for the
logistic map with the well-known period-doubling cascade of
attracting cyclesg2n. Increasing the parametera beyond the
accumulation pointa* >3.569 for this cascade, a reverse
cascade of homoclinic bifurcations of the cyclesg2n takes
place at the parameter valuesan . In a0 , for instance, the
unstable fixed pointx05121/a undergoes its first ho-
moclinic bifurcation.

The bifurcation pointsan can easily be determined nu-
merically~a0 can also be calculated explicitly!. The first four
are given by

a053.678 573 510 428 32 . . . ,

a153.592 572 184 106 97 . . . ,

a253.574 804 938 759 20 . . . ,

a353.570 985 940 341 61 . . . .
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At a5a0 , f a has an attracting interval G0
5@ f a(a0/4);(a0/4)# consisting of two subintervalsG0
5@ f a(a0/4);x0#ø@x0 ;(a0/4)# which are permuted one into
the other under the action off a . Moreover,f a has an abso-
lutely continuous invariant measure inG0 . Hence the map is
chaotic. Similarly, fora5an , f a has an attracting cycleG2n

of 2n intervals consisting of 2n11 subintervals that are pair-

wisely permuted under the action off a
2n

. Moreover, having
an absolutely continuous invariant measure,f a is chaotic in
G2n.

The main diagonal$x5y% is a one-dimensional invariant
manifold of the two-dimensional mapF. This implies that a
point on the diagonal will be mapped into another point on
this line, or, in other words,F($x5y%),$x5y%. The exis-
tence of such a one-dimensional invariant manifold is clearly
a consequence of the restrictions imposed by the symmetric
coupling of two identical one-dimensional maps. Any small
mismatch between the maps leads, in general, to the disap-
pearance of the one-dimensional manifold, with the result
that the dynamics becomes two dimensional.

By subtracting the two one-dimensional maps in Eq.~1!,
one finds a transversal line$x1y5122«/a% that also maps
onto the main diagonal under the action ofF @26#. This line
is the preimage of the main diagonal, and part of the line
~which maps into the attractive interval on the main diago-
nal! will belong to the basin of attraction for stable solutions
on the diagonal. By adding the two one-dimensional maps in
Eq. ~1!, one can show that the preimage of the transversal
line is a circle centered in (x,y)5(1/2,1/2) and with radius
(a222a14«)1/2/a&.

For any point on the main diagonal,Fa,« has an eigendi-
rection ū15(1,1) along the diagonal, and an eigendirection
ū25(1,21) perpendicular to it. The corresponding eigen-
values are

n15 f a8~x!5a~122x! ~3!

and

n25 f a8~x!22«5a~122x!22«. ~4!

Along the diagonal, the coupling vanishes, and the dy-
namics coincides with that of the one-dimensional map
f a(x). Let I ,R1 be a chaotic attractor forf a(x), then A
5$x5yPI % will be a one-dimensional invariant chaotic set
for the coupled map system.A attracts points from its one-
dimensional neighborhood along the diagonal. Does it also
attract points from its two-dimensional neighborhood
Ud(A)? In other words, isA an attractor in the plane? The
answer to this question clearly depends on the values of the
transverse eigenvalues at all the different points ofA.

As a first approach to addressing this problem we may
evaluate the transverse Lyapunov exponent

l'5 lim
N→`

1

N (
n51

N

lnu f a8~xn!22«u, ~5!

where$xn5 f a
n(x)n51

` % is a typical itinerary onA. If the setA
has an absolutely continuous invariant measure, e.g., for the
above mentioned parameters valuesan , the value ofl' will
be the same for almost all trajectories onA. If l' is nega-
tive, we expect thatA is attracting on the average in a two-
dimensional neighborhood. This type of stability is referred
to as weak stability or stability in the Milnor sense@16#.

Indeed, as shown by Alexander and co-workers@6#, in the
case thatA is a finite union of intervals and the invariant
measure off a on A is absolutely continuous, the condition
l',0 guarantees thatA attracts a positive Lebesgue mea-
sure set of points from any two-dimensional neighborhood
Ud(A). Moreover, weak stability in the Milnor sense implies
that the measure of points attracted toA approach the whole
measure ofUd(A) as the width of the neighborhoodd→0,
i.e.,

lim
d→0

m„B~A!ùUd~A!…

mUd~A!
51. ~6!

HereB(A) denotes the basin of attraction ofA, i.e., the set
of points (x,y)PR2 for which thev limit is contained inA.
The transition in whichl' changes sign is referred to as a
blowout bifurcation@8#.

Figure 2 shows the regions of parameter space in which
l',0, so that the synchronized attractor is~at least! weakly
stable. The figure was obtained by performing 1000 scans of
l'(«) for different values ofa with a corresponding resolu-
tion on the« axis. The stability regions clearly reflect the
complexity of the bifurcation structure. In particular, we no-
tice the irregular variation witha in the chaotic regime. For
values ofa below the accumulation pointa* >3.569, the
individual map displays an attracting cycle, and the synchro-
nized behavior is also periodic. In this case there is no dis-
tinction between weak and asymptotic~or strong! stability.

In each of the periodic windows in the regiona.a* , the
distinction between weak and strong stability likewise disap-
pears. Moreover, for anN-periodic synchronous stategN
5$x1 ,x2 ...xN%, the criterion for transverse stability

)
n51

N

u f 8~xn!22«u,1, ~7!

FIG. 1. Bifurcation diagram for the individual mapf a :x
→ax(12x) for 3.54<a<3.69. At each of the homoclinic bifurca-
tion pointsan , the map has an absolutely continuous invariant mea-
sure.
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is satisfied if and only if the coupling parameter« belongs to
the union ofN ~possibly overlapping! intervals, each includ-
ing one point fromgN . Some of these intervals correspond
to positive values for«, and some of them correspond to«
,0.

The stability intervals are clearly seen in Fig. 2. We no-
tice, for instance, the stability regions for the period-6 solu-
tion around a53.63, for the period-5 solution arounda
53.74, and for the period-3 solution in the interval around
a53.84. For each of these windows we also observe the
signature of the period-doubling cascade in which they end.
In a similar manner, the two-band chaotic attractor existing
for a5a1 , may give rise to a two« intervals withl',0,
and the four-band chaotic attractor existing fora5a2 may
have four~partly overlapping! intervals for« with weak sta-
bility.

III. FORMATION OF RIDDLED BASINS OF ATTRACTION

The conditionl',0 guarantees that almost all trajecto-
ries onA are transversally attracting. However, there can still
be an infinite set of trajectories in the neighborhood ofA that
are repelled from it. As we shall see, this situation is quite
generic for our system of coupled logistic maps. To obtain an
attractor in the usual~topological! sense, we must ascertain
that all trajectories onA are transversally attracting.

Consider, for example, the fixed pointP(x0 ,x0). Insert-
ing x05121/a into Eq.~4! and requiring that the magnitude
of n2 be less than 1, we find a coupling interval@18#

2
a21

2
,«,2

a23

2
,

in which the fixed point is transversally stable. Ifa.3 and«
falls outside this interval, bothn1 andn2 will be numerically
larger than 1, andP will be a repelling node.

Under the action ofFa,« , a trajectory starting close to the
fixed point moves away from it along an integral curve. Un-
der sufficiently general conditions (n1Þn2), these integral
curves take the asymptotic form

uhu5Cuju lnun2u/ lnun1u1O~ uju!, ~8!

where j5x1y22x0 and h52x1y are new coordinates
defined along and perpendicular to the diagonal, respec-
tively. C is an arbitrary constant, depending on the initial
conditions. Expression~8! is obtained as the solution to the
linearized mapDF around the fixed point. It follows from
Eq. ~8! that the integral curves are tangent to theh axis for
un2u,un1u and tangent to thej axis for un2u.un1u. These two
situations are illustrated in Fig. 3.

Now consider a neighborhoodUd(P) of the fixed point,
and assume thatd is small enough for the linear approxima-
tion ~8! to apply. Then, except for the fixed point itself, all
points belonging to the unstable manifoldj50 will leaveUd
under the action ofDF. Moreover, all points~j,h! in the
region

P05{ ~j,h!:uhu<Cuju lnun2u/ lnun1u} ~C fixed! ~9!

will also leaveUd under the action ofDF. If un2u,un1u, the
region P0 is the unity of two tonguesP0

(1) and P0
(2) , ap-

proaching the fixed point from either side in a cusp@Fig.

FIG. 2. Region in parameter plane in which the transversal
Lyapunov exponentl',0.

FIG. 3. The two generic forms for the repelling tongues that
develop from each point on a transversally unstable periodic cycle.
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3~a!#. If un2u.un1u, on the other hand, the tonguesP0
(1) and

P0
(2) are tangent to the diagonal in the fixed point. Both of

these situations can arise in our system of two coupled logis-
tic maps.

We can now conclude the following with respect toF: In
a sufficiently small neighborhoodUd(P), the integral curves
of the mapF form invariant regions consisting of a pair of
tonguesP (1) andP (2). For any fixedC these tongues can
be obtained through smooth perturbations of the tongues
P0

(1) and P0
(2) obtained in the linear case, and hence have

similar topological properties: They lie on either side of the
main diagonal$x5y% and touch it in the fixed point. If
un2u.un1u, P (1) andP (2) are tangent to the diagonal inP.

Let us now suppose that the fixed pointP(x0 ,x0) belongs
to the chaotic attractorA on the main diagonal, and thatA
has an absolutely continuous invariant measure. The fixed
point P will then have infinitely many preimages, and the set
of these preimages will be dense inA. It can also be ex-
pected that the setUd

u of preimages of the tonguesP (1) and
P (2) will be dense in some neighborhood ofA ~except in
some half-neighborhoods of end points for the intervals that
spand the attractor!. This situation is illustrated in Fig. 4.

Ud
u is the locally repelling set of the attractorA, and each

point from Ud
u\A leaves the neighborhoodUd(A) in a finite

number of iterations. It is important to note that this repelling
property has a local character. Our analysis says nothing
about the fate of the trajectories once they have left the
neighborhoodUd . This depends on the global dynamics of
F, and two different scenarios may occur.

Scenario 1
Having left the locally repelling regionUd

u(A), the trajec-
tories wander around in phase space. However, they are re-
stricted by nonlinear mechanisms to move within an absorb-
ing area@21# that lies strictly inside the basin of attraction.
The trajectories can never approach an attractor outside the
absorbing area, and global riddling of the basin of attraction
cannot occur. Sooner or later most of the trajectories will
return toUd(A). Some of them may again be mapped into

Ud
u(A) and, hence, again leave the neighborhood ofA in a

finite number of iterations. This type of dynamics gives rise
to the characteristic temporal bursting of on-off intermit-
tency. As long as the transverse Lyapunov exponent is posi-
tive, the bursts will never stop, and in reality we have an
attractor in two-dimensional phase space with a more or less
pronounced maximum of its invariant density in the neigh-
borhood of the original one-dimensional attractor. Asl' be-
comes negative, the bursts tend to stop. However, this tran-
sition may not be very sharp, and one may still see some
bursting even for negative values ofl' ~attractor bubbling!.
It should be noted that more than one attractor may exist
inside the absorbing area. If this is the case, one may observe
global riddling of the basins of attraction for these coexisting
states.

Scenario 2
If the nonlinear mechanisms are too weak to restrict the

motion to an absorbing area inside the basin of attraction for
the synchronized state, the alternative is that almost all
points leavingUd

u(A) go to another attractor. This could be
an attracting point cycle, a chaotic attractor or infinity. On
the other hand, provided thatl',0, the measure of the
complementary setUd

s,Ud\Ud
u of points that are attracted

to A and never leaveUd approaches the measure ofUd for
d→0 @6#. This result applies at least as long asA is a one-
dimensional attractor consisting of a finite number of inter-
vals and with an absolutely continuous invariant measure.
Under these conditions we expect the basin of attraction to
attain a globally riddled structure with holes that belong to
the basin of another attractor. Mathematically expressed, this
implies that, for anyd.0, ~1! the complementary set
Ud(A)\B(A) is everywhere dense inUd , and ~2! 0
,m@B(A)ùUd(A)#,m@Ud(A)#.

In contrast to this, the case of strong~or absolute! stability
is characterized by the existence of ad.0 such that
B(A).Ud5Ud

s . This requires that all trajectories onA are
transversely stable.

In order to determine the boundaries in parameter space
for the regions of absolute stability for the synchronized cha-
otic attractor, we may start by considering the transverse
stability of the various point cycles embedded in this attrac-
tor. We have already seen that the conditions for transverse
stability for the fixed point are2(a21)/2,«,2(a
23)/2. The slanting line denoted ‘‘fixed point’’ in the
middle of the stability diagram of Fig. 5 represents the lower
edge of this zone. The upper end falls outside the range of
coupling strengths considered in the figure. Hence, the fixed
point is transversely stable to the right of the period-1 line.
Destabilization of the fixed point happens in a pitchfork bi-
furcation.

The stability intervals for a point cycle of periodN are
formally given by Eq.~7!. The period-2 cycle arises ata
53, and hereafter alternates between the points

x1,25y1,25
a116A~a11!~a23!

2a
. ~10!

Evaluating the conditions for transverse stability for this
cycle gives two intervals for« of which the interval to the
left of «521/2 is given by

FIG. 4. The riddling bifurcation produces a dense set of repel-
ling tongues.
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2 1
2 @11A~a11!~a23!11#

,«,2 1
2 @11A~a11!~a23!21#. ~11!

The borderlines of this interval are represented by the two
curves denoted ‘‘period 2’’ in Fig. 5. The period-2 cycle is
transversely stable between these curves. To the right the
destabilization happens through a period-doubling bifurca-
tion and to the left through a pitchfork bifurcation.

Similarly, the curves denoted ‘‘period 4,’’ ‘‘period 6,’’
and ‘‘period 8’’ bound the regions of transverse stability for
these cycles. The minimum of the curve for the period-6
cycle falls close toa53.626, where this cycle first arises.
With the values ofa considered in the figure, the period-3
cycle has not yet appeared in the individual map. Hence
synchronized behavior with this periodicity cannot occur,
and the figure delineates the regions of transverse stability
for the most important cycles of period less than or equal to
N58. There are reasons to believe that transverse destabili-
zation of cycles of higher periodicity generally does not play
a major role, and this is strongly supported by our numerical
calculations. From the information in Fig. 5 we can therefore
determine the regions of absolute stability for the synchro-
nized chaotic attractor in each of the intervalsa1<a,a0 and
a0<a.

On both sides these regions are bounded by the transverse
destabilization of the period-2 cycle which occurs before de-
stabilization of the period-8 and period-4 cycles. For higher
values ofa, destabilization of the period-6 cycle limits the
region of absolute stability for the synchronized chaotic at-
tractor, and there is also a region in parameter space where
destabilization of the period-4 cycle is the first to take place.
Below the homoclinic bifurcation pointa0 , destabilization
of the fixed point has no significance because the two-band
chaotic attractor existing in this range does not contain the

fixed point. Fora>a0 , however, the synchronized chaotic
state is no longer asymptotically stable to the left of the
period-1 curve.

IV. NUMERICAL RESULTS

Figure 6 shows a scan of the transverse Lyapunov expo-
nentl' as a function of the coupling parameter fora5a0 .
For this value ofa, the individual map exhibits a one-band
chaotic attractor consisting of two subintervalsI 1

(1) and I 1
(2)

at the moment when they merge. The points«>21.544 and
«>20.478 wherel' changes sign are the blowout bifurca-
tion points. Between these points, the synchronized chaotic
state is at least weakly stable. On either side of the points we
have a so-called chaotic saddle@13,27#. Also indicated in
Fig. 6 is the interval from«>21.31 to«>21.24 in which
the chaotic attractor is absolutely stable.

Figures 7~a!–7~e! portray the basins of attraction for the
synchronized chaotic stateA0 at various values of«. In each
of these figures initial conditions leading to the chaotic at-
tractor are plotted as grey points, and initial conditions lead-
ing to another attractor~or infinity! are left blank.

Figure 7~a! shows the basin of attraction for«521.4,
i.e., a little to the left of the region of absolute stability. In
this region the synchronized period-6 cycle is transversally
unstable, and the figure reveals the characteristic appearance
of a globally riddled basin with a dense set of tongues with
points that are repelled from the attractor emanating from the
period-6 cycle and its preimages. As previously noted, the
basin of attraction includes a section of a transversal line that
maps into the attracting interval of the main diagonal, as well
as sections of the circle that is the preimage of the transversal
line. From each of these structures we have a similar dense
set of repelling tongues, contributing all together to the com-
plexity of the basin.

Figure 7~b! shows the basin of attraction for a coupling
parameter immediately to the right of the region of strong
stability («521.2). Here the in-phase period-2 cycle is
transversely unstable. However, while the basin has a fractal
boundary, there are no tongues in it belonging to the basin of
another attractor. This is characteristic of a locally riddled
basin of attraction where trajectories repelled from the syn-

FIG. 5. Bifurcation curves for the transverse destabilization of
various low-periodic cycles embedded in the synchronized chaotic
attractor.

FIG. 6. Variation of the transverse Lyapunov exponentl' with
the coupling parameter« for a5a0 . The synchronized chaotic at-
tractor is absolutely stable for~approximately! 21.31,«,21.24.

2718 57MAISTRENKO, MAISTRENKO, POPOVICH, AND MOSEKILDE



FIG. 7. Basins of attraction for the one-band chaotic attractorA0 with different values of the coupling constant fora5a0 : ~a! global
riddling for «521.4, ~b! local riddling for «521.2, ~c! global riddling for «521.1, ~d! global riddling for «521.0, and~e! global
riddling close to the blowout bifurcation for«520.5. The basin of attraction is plotted grey.
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chronized chaotic state never reach the basin boundary, and
sooner or later return to the neighborhood of the attractor. In
this case the synchronized state may be referred to as a Mil-
nor attractor, i.e., it attracts all points from its neighborhood
except a set of zero measure.

As « is further increased, a transition occurs in which
trajectories repelled from the main diagonal start to make
contact with the basin boundary. As illustrated in Fig. 7~c!,
we then recover the globally riddled structure. Here«5
21.1, and the synchronized state is a weak attractor in the
Milnor sense, i.e., there is a finite measure of points in its
neighborhood that are repelled from it.

For «521.0 @Fig. 7~d!#, a new structure in the basin of
attraction becomes manifest. Here we observe two lines par-
allel to the main axes and crossing the diagonal at a period-2
point. Each of these lines are invariant with respect to the
second iterate ofFa,« . A similar set of curves are found to
cross the diagonal at the other point of the in-phase period-2
orbit. Finally, in Fig. 7~e!, «>20.5, and we are close to the
blowout bifurcation at«50.478. Here the measure of the
points that are attracted to the synchronized chaotic state
becomes very small, and the majority of initial conditions
lead to diverging orbits.

Figure 8 shows a scan of the transverse Lyapunov expo-
nent l' for a5a1 where the individual mapf a exhibits a
two-band chaotic attractor. Inspection of the figure shows
that we now have two regions of weak stability for the syn-
chronized chaotic state, one for positive values and one for
negative values of«. In the region of negative coupling con-
stants, blowout bifurcations occur at«>21.472 and«>
21.0385. The region of absolute stability extends from«>
21.464 to«>21.156. At both ends of this region, the in-
phase period-2 cycle becomes transversally unstable.

Figures 9~a!–9~c! show typical examples of the basins of
attraction observed in this region. At the same time, they
illustrate an interesting change in the chaotic dynamics. In
Fig. 9~a! («521.3) we have an absolutely stable two-band
attractorA1 on the main diagonal. There are holes in the
basin of attraction. However, these holes do not emanate
from points embedded in the attractor. Hence the basin is not
riddled, but has a fractal boundary.

FIG. 8. Variation of the transverse Lyapunov exponentl' with
the coupling parameter« for a5a1 . Here we have two intervals of
weak stability. The synchronized attractor is absolutely stable for
~approximately! 21.46,«,21.16.

FIG. 9. Basins of attraction for different values of the coupling
parameter fora5a1 : ~a! fractal basin boundary for absolutely
stable attractor,~b! locally riddled basin for weakly stable attractor,
and ~c! two-dimensional attractor restricted to the absorbing area.
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Figure 9~b! was obtained for«521.1, i.e., immediately
after the loss of global stability in the riddling bifurcation at
«>21.156. This provides a new example of a locally
riddled basin. Trajectories that are repelled from the main
diagonal do not reach the basin boundary, but sooner or later
return to the neighborhood of the synchronized state. As« is
increased slightly more, we observe a spontaneous breaking
of the symmetry as the chaotic attractor spreads into two-
dimensional phase space. The basin of attraction, on the
other hand, only changes a little. This is shown in Fig. 9~c!
for «521.03. The two-dimensional attractorA18 is bounded
in phase space to an absorbing area defined by the iterates of
the critical curves forFa,« @21,28#. The absorbing area lies
fully within the basin of attraction, and as long as there is no
contact between the two boundaries, the two-dimensional at-
tractor continues to exist. With further increase of« ~ap-
proximately at«520.95! a crisis takes place in which the
borderline of the absorbing area touches the basin boundary,
and the two-dimensional attractor suddenly disappears.

Figure 10 shows an example of the basins of attraction
one can observe in the other parameter window of weak
stability for a5a1 . Here«50.33.

For a5a2 , a scan of the transverse Lyapunov exponent
shows four~partly overlapping! regions of weak stability.
This is illustrated in Fig. 11. The largest region extends from

FIG. 11. Variation of the transverse Lyapunov exponentl'

with the coupling parameter« for a5a2 .

FIG. 12. Basins of attraction fora5a2 : ~a! locally riddled basin
with fractal basin boundary, and~b! two coexisting eight-band cha-
otic attractors.

FIG. 13. The basin of attraction for the synchronous chaotic
state is riddled with holes that belong to the basin of a coexisting
periodic cycle.

FIG. 10. Basin of attraction fora5a1 and«50.33.
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the blowout bifurcation at«>21.462 to the blowout bifur-
cationat«>21.0134. Within this region we find a region of
strong stability delineated by the riddling bifurcations at«
>21.461 and«>21.015. In both of these bifurcations, the
in-phase period-8 cycle becomes transversely unstable.

Figure 12~a! shows the locally riddled basin of attraction
with fractal boundaries that one can observe for«521.14.
In Fig. 12~b! the coupling parameter is increased to«5
21.0132. This is immediately after the blowout bifurcation.
The basin of attraction remains practically unaffected by this
change. However, the dynamics of the coupled map system
spontaneously breaks the symmetry, and the synchronized
four-band attractor is replaced by two mutually symmetric
two-dimensional eight-band attractors.

Finally, Fig. 13 shows the basin of attraction for the syn-
chronized four-band attractor in the second parameter win-
dow of weak stability~a5a2 , «520.2!. For these param-
eter values the synchronized chaotic state coexists with a
stable period-2 point cycle, and the basin of attraction for the
chaotic state is riddled with holes that belong to the basin of
attraction of the point cycle.

V. INTERMINGLED BASINS OF ATTRACTION

Consider the mapFa,« for «521:

F21 : H x
yJ→ H ax~12x!2~y2x!

ay~12y!2~x2y!J . ~12!

It is easy to show that for anya the two mutually perpen-
dicular straight linesx5x2 andy5x2 both remain invariant
under two iterations ofF21 , i.e., F21

2 ($x5x2%),$x5x2%
andF21

2 ($y5x2%),$y5x2%. Herex2 , as given by Eq.~10!,
is the larger of the two amplitudesx1,2 for the period-2 cycle
g2 .

Let g:x→g(x), xPR1 denote the one-dimensional map
that F21

2 induces along these lines, i.e.,

„g~x!,x2…[F21
2 ~x,x2!. ~13!

Figure 14~a! portrays the functiong(x) for a53.6, and
Fig. 14~b! shows the bifurcation diagram obtained by vary-
ing a over the interval from 3.4 to 3.74. Figures 14~c! and
14~d! provide scans of the corresponding longitudinal and
transversal Lyapunov exponentsl i and l' , respectively.
g(x) has a finite interval over which it is unimodal, and Fig.
14~b! demonstrates that it produces a transition to chaos in
accordance with the usual Feigenbaum scenario. Magnifica-
tions of Figs. 14~c! and 14~d! show thatl i is positive fora
53.6, andl' is negative. Hence for this value ofa the
numerical calculations indicate thatg(x) displays a two-
band chaotic attractor.

By virtue of its symmetry with respect to the main diag-
onal, the mapF21 displays two one-dimensional four-band

FIG. 14. Chaotic attractors off the main diagonal:~a! sketch of the one-dimensional mapg(x), ~b! its bifurcation diagram,~c! the
corresponding longitudinal Lyapunov exponent, and~d! the transversal Lyapunov exponent.
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FIG. 15. ~Color! Intermingled basins of attraction for two coexisting chaotic attractors:~a! overview, and~b! detail around one of the
points of the period-2 cycle.
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invariant chaotic setsA1 and A2 . Figure 15 displays the
basins of attraction for each of these sets. Fora53.6 and«
521, the synchronized state on the main diagonal is a cha-
otic saddle, and almost all trajectories that remain finite ei-
ther approachA1 or A2 . However, for both of these sets the
basin of attraction is riddled with holes that belong to the
basin of the other set. Hence, the basins of attraction exhibit
an intermingled structure with one half measure set of points
that are attracted toA1 , and one half measure set that is
attracted toA2 . Figure 15~b! shows a magnification of the
intermingled basin structure in a region around (x2 ,x2).

VI. DISCUSSION

We performed a relatively detailed investigation of the
formation of riddled basins of attraction for a system of two
coupled logistic maps. The same phenomenon is likely to
arise in almost all cases of symmetrically coupled, identical
nonlinear oscillators when chaotic synchronization can be
achieved. In order to determine the regions of asymptotic
stability for the synchronized chaotic state, we calculated the
bifurcation curves for the transverse destabilization of the
main low-periodic cycles embedded in the attractor. These
bifurcations are either of period-doubling type (n2521) or
they are pitchforks (n2511). Intuitively, there are good
reasons to suppose that destabilization of cycles of low peri-
odicity plays a critical role@17,29#. For point cycles of
higher periodicity, the transversal eigenvalue will presum-
ably approach the average eigenvalue for the attractor as a
whole. Since riddling arises in a region wherel',0, the

average transversal eigenvalue is numerically less than unity.
Our analysis has led us to propose two different routes for

the development of the basin of attraction, depending on the
sequence in which an essential boundary crisis and the blow-
out bifurcation occur. Related to these scenarios is an impor-
tant distinction between locally and globally riddled basins.
The boundary crisis is associated with the fact that we deal
with noninvertible maps. Inside the basin of attraction we
may then find an invariant area~the absorbing area! that is
bounded by the iterates of the critical curves forFa,« . Tra-
jectories repelled from the synchronized chaotic state are re-
stricted by the nonlinearities of the system to move within
this invariant area, and hence do not reach the basin bound-
ary. Under these conditions the riddling is local. Variation of
a parameter may cause the borderline of the absorbing area
to make contact with the basin boundary, and global riddling
can arise.

The existence of an invariant region bounded by the iter-
ates of the critical curves also allows the emergence of a
two-dimensional attractor. In contrast to the riddling phe-
nomenon that depends critically on the attractor lying in an
invariant subspace of total phase space, the two-dimensional
attractor persists even if the symmetry is broken.
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