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Transverse instability and riddled basins in a system of two coupled logistic maps

Yu. L. Maistrenko, V. L. Maistrenko, and A. Popovich
Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivska street, Kiev 252601, Ukraine

E. Mosekilde
Center for Chaos and Turbulence Studies, Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark
(Received 19 June 1997

Riddled basins denote a characteristic type of fractal domain of attraction that can arise when a chaotic
motion is restricted to an invariant subspace of total phase space. An example is the synchronized motion of
two identical chaotic oscillators. The paper examines the conditions for the appearance of such basins for a
system of two symmetrically coupled logistic maps. We determine the regions in parameter plane where the
transverse Lyapunov exponent is negative. The bifurcation curves for the transverse destabilization of low-
periodic orbits embedded in the chaotic attractor are obtained, and we follow the changes in the attractor and
its basin of attraction when scanning across the riddling and blowout bifurcations. It is shown that the appear-
ance of transversely unstable orbits does not necessarily lead to an observable basin riddling, and that the loss
of weak stability(when the transverse Lyapunov exponent becomes pgsitaes not necessarily destroy the
basin of attraction. Instead, the symmetry of the synchronized state may break, and the attractor may spread
into two-dimensional phase spa¢81063-651X98)05303-3

PACS numbds): 05.45+b

I. INTRODUCTION exhibits a burst in which it moves far away from the invari-
ant subspace, to be reinjected again into the proximity of this

A problem that arises in many fields of science is relatedsubspace. Besides a reinjection mechanism, the occurrence
to the behavior of a group of interacting entities or functionalof on-off intermittency hinges on the fact that the positive
units, each of which displays deterministic chaos or othewalue of the transverse Lyapunov exponent applies over long
forms of complex nonlinear dynamic behavior. Fujisaka andperiods of time. For shorter time intervals, the net contribu-
Yamadd 1] showed how two identical chaotic systems undertion to A, may be negative, and the trajectory is attracted to
variation of the coupling strength can attain a state of chaotithe chaotic sef9].
synchronization in which the motion of the coupled system If there is no reinjection mechanism, a trajectory started
takes place on an invariant subspace of total phase space. Fwar the invariant subspace may exhibit a superpersistent
two coupled identical one-dimensional maps, for instancechaotic transient in which the behavior initially resembles
the synchronized chaotic motion is one dimensional, and oche chaotic motion before the blowout bifurcation. Eventu-
curs along the main diagonal in phase plane. The transversdly, however, almost all trajectories will move away from
Lyapunov exponenk, provides a measure of the averagethis region and approach some other attra@omo to infin-
stability of the chaotic attractor perpendicularly to this direc-ity). Alternatively, the blowout bifurcation can lead to an
tion. attractor which is confined by nonlinear mechanisms to a

Chaotic synchronization was subsequently studied by nuregion of phase spadéhe absorbing areaituated inside the
merous investigatorf2—5], and a variety of applications for original basin of attraction, and this basin remains practically
chaos suppression, for monitoring of dynamical systems, andnchanged in the bifurcation. Variation of a parameter that
for different communication purposes have been suggestedauses the attractor to graar the basin to shrinkmay then
An important question concerns the form of the basin ofproduce a crisis in which the attractor abruptly disappears as
attraction for the synchronized state and the bifurcationst makes contact with the basin boundaf?].
through which this basin, or the attractor itself, undergoes Riddled basins of attraction may be observed on the other
gualitative changes. Particularly interesting are the phenonside of the blowout bifurcation, where the transverse
ena of riddled basins of attracti¢f—8] and on-off intermit-  Lyapunov exponent is numerically small and negative
tency[9], that can be observed on either side of the so-callefi6,7,13—15. Even though the chaotic set is now attractive on
blowout bifurcation[7], where the transverse Lyapunov ex- the average, particular orbitssually of low periodicity em-
ponenth\ ; changes sign. bedded in the chaotic attractor may be transversely unstable.

On-off intermittency is an extreme form of intermittent In this case we talk about weak attraction or attraction in the
bursting[10,11] that occurs in the presence of a small posi-Milnor sense[16]. The chaotic set in the invariant subspace
tive value of\; [9]. In this case the chaotic set on the in- then attracts a set of points of positive Lebesgue measure in
variant subspace is no longer transversely attracting on thghase space. However, arbitrarily close to any such point one
average. However, immediately above the bifurcation, a tramay find a positive Lebesgue measure set of points that are
jectory may spend a very long time in the neighborhood ofrepelled by the chaotic attractor.
the invariant subspace. From time to time, the repulsive char- The emergence of riddled basins of attraction occurs
acter of the chaotic set manifests itself, and the trajectoryhrough a so-called riddling bifurcatioggometimes referred
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to as a bubbling transitiofL3]), in which an orbit embedded X fo(X)+e(y—x)

in the synchronized chaotic attractor loses its transverse sta- Fi{y —>{ fa(y)+e(x—y)|’ @
bility. This phenomenon was recently been described in de-

tail by Lai et al.[17]. They suggested that the riddling bifur- wheref is the one-dimensional logistic map,

cation takes place as two repellers located symmetrically on f.ox—ax(1=x), xeR. ac[0.4], 2

either side of the invariant subspace approach the chaotic
attractor and collide with a saddle embedded in this attractognd ¢ < R! is the coupling parameter. We determine the re-

(a so-called saddle-repeller pitchfork bifurcatiomlterna-  gions of weak stability in thee plane for the synchronized
tively, a point cycle embedded in the synchronized state maghaotic attractor, and calculate the transverse Lyapunov ex-
lose its transverse stability through a period-doubling bifur-ponent\, as a function ofe for characteristic values ad
cation. This situation, which appears to have been given lesghere the individual map shows a homoclinic bifurcation
attention, plays a significant role in the present analysis. Irfichaotic band merging These are the parameter values at
both cases, i.e., for the pitchfork as well as for the periodwhich f,(x) is known to display a chaotic attractor with an
doubling bifurcation, the transition may be subcritical or su-absolutely continuous invariant measure.

percritical depending on the sign of a certain quantifier. After  The formation of riddled basins of attraction is discussed,
a supercritical bifurcation, the transversely destabilized orbieind the bifurcation curves for the transverse destabilization
will be surrounded by saddle points with unstable manifoldsof low-periodic orbits embedded in the chaotic attractor are
along the invariant subspace of the synchronized state. Thietermined. For one-band, two-band, and four-band chaotic
leads to attractor bubbling and to the phenomenon of locadttractors we follow the changes in the attractor and its basin
riddling [13,15. In this case, the trajectories cannot escapé)f attraction that take place under passage of the riddling and

an area around the synchronized state until one or two add?€ Plowout bifurcations. It is shown that the loss of weak
tional (globa) bifurcations have occurred8]. stability does not necessarily affect the basin of attraction.

The riddling bifurcation causes tongues of finite width tolnstead, the chaotic attractor may spontaneously break the

open up along the transversely unstable directions from eac mmetry and spread into two-dimensional phase space. ltis

oint on the repelling orbit17], and in these tongues trajec- aiso ;hown that thg emergence of transye_:rsely unsta.ble'tra—
bol L 7 ectories, while being a necessary condition for basin rid-
tories move away from the chaotic attractor. Similar tongue

f h . £ 1h ) h li ling, is not sufficient for global riddling to occur. Finally,
open up from each preimage of the points on the repelling, o 5 sirate the phenomenon of intermingled basins of at-

orbit, and since the points of this orbit and their preimages,ction[6] for a situation where the system has two coexist-

are dense in the invariant subspace, an infinite number Qg four-band attractors, each displaying a riddled basin
tongues emerge, creating the characteristic riddled structurgycture.

in which the basin of attraction locally becomes a fat fractal.
Maistrenko and Kapitaniakl9] recently studied chaotic Il. WEAK STABILITY OF THE SYNCHRONIZED
synchronization and the formation of riddled basins of attrac- CHAOTIC STATE
tion for a system of two coupled piecewise linear maps. They ) . ) o
related the various phenomena to the different types of insta- 1he metric and topological properties of the logistic map
bility for the chaotic set in the invariant subspace. By virtue@'® Well studied22,23. It is known, for instance, that for
of the simplicity of the map, they succeeded in deriving thednya<[0,4]: f, has no more than a single attracting cycle.
corresponding  stability conditions. Also investigating The parameter sef={ae[0,4]: f, has an attracting cydle
coupled piecewise linear maps, Pikovsky and Grassbergd$ open and everywhere deng4]. At the same time, the
[20] discovered that even when the coupled system exhibits Barameter seét={a<[0,4]; f, has an absolutely continuous
stable synchronized behavior as indicated by the negativi@variant measuseis nowhere densg.e., it has a Cantor-like
value of the transversal Lyapunov exponent, the basin oftructure, and the measurg(K)>0 [25].
attraction may have full measure but be densely filled with Figure 1 shows part of the bifurcation diagram for the
periodic orbits. Hence the synchronized attractor is surlogistic map with the well-known period-doubling cascade of
rounded by a strange invariant set which is dense in an areftracting cyclesy,n. Increasing the parametarbeyond the
around the attractor, and the synchronized state is not asympccumulation pointa*=3.569 for this cascade, a reverse
totically stable. Pikovsky and Grassber2@] also observed cascade of homoclinic bifurcations of the cycles takes
a bifurcation in which a synchronized one-dimensional atplace at the parameter valuag. In a,, for instance, the
tractor explodes into a two-dimensional attractor that conunstable fixed pointxo=1—1/a undergoes its first ho-
tains the strange invariant set. Gardatial. [21] recently =~ moclinic bifurcation.
investigated a one-parameter family of twisted, logistic The bifurcation pointsa, can easily be determined nu-
maps. Of special interest in the present context is their analymerically (a; can also be calculated explicijlyThe first four
sis of the role of contact bifurcationdoundary crisgsin  are given by
which the boundary of the absorbing area for a chaotic set

makes contact with the basin boundary. This type of global 8,=3.6785735104283. . .,

bifurcations are involved in the transition from local to glo- 0. —3.592 572 184 1068
bal riddling [18]. 1= 9. Ce
The purpose of the present paper is to study the emer- a,=3.574 804 938 759@. . . ,

gence of riddled basins in a two-dimensional mé&p
=F,.:R*—R? of the form a;=3.570 985 940 3415. . . .
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1.0 vo=F(X)—2e=a(1l—2x)—2e¢. (4)

Along the diagonal, the coupling vanishes, and the dy-
namics coincides with that of the one-dimensional map
fa(x). Let ICR?! be a chaotic attractor fof,(x), then A
={x=yel} will be a one-dimensional invariant chaotic set
for the coupled map system attracts points from its one-
dimensional neighborhood along the diagonal. Does it also
attract points from its two-dimensional neighborhood
Us(A)? In other words, iA an attractor in the plane? The
answer to this question clearly depends on the values of the
transverse eigenvalues at all the different point#\of

As a first approach to addressing this problem we may
evaluate the transverse Lyapunov exponent

0.5

0.0 L] ; o U
3.54 3.59 a 3.64 3.69 1§
A =lim = In|f2(Xn) — 2¢], (5)
FIG. 1. Bifurcation diagram for the individual map,:x * New N AZ1 | arn |

—ax(1—x) for 3.54<a=<3.69. At each of the homoclinic bifurca-
tion pointsa, , the map has an absolutely continuous invariant meawhere{x,=f2(x)._,} is a typical itinerary orA. If the setA
sure. has an absolutely continuous invariant measure, e.g., for the
above mentioned parameters valags the value ofx | will
At a=a,, f, has an attracting intervall'; be the same for almost all trajectories AnIf A is nega-
=[f.(ap/4);(ag/4)] consisting of two subintervalsl',  tive, we expect thah is attracting on the average in a two-
=[f.(ap/4);x,]U[Xq;(a0/4)] which are permuted one into dimensional neighborhood. This type of stability is referred
the other under the action @f . Moreover,f, has an abso- to as weak stability or stability in the Milnor senEE5].
lutely continuous invariant measurelily. Hence the map is Indeed, as shown by Alexander and co-worKélsin the
chaotic. Similarly, fora=a,, f, has an attracting cyclEn case thatA is a finite union of intervals and the invariant
of 2" intervals consisting of 2" subintervals that are pair- measure off, on A is absolutely continuous, the condition
wisely permuted under the action 6f . Moreover, having M <0 guarantees thak attracts a positive Lebesgue mea-
an absolutely continuous invariant measurgjs chaotic in sure set of points from any.t.wo_-d|mens_|onal nelghporh_ood
T . Us(A). Moreover, weal_< stability in the Milnor sense implies
The main diagonajx=y! is a one-dimensional invariant that the measure of points _attractedﬁtcapproach the whole
manifold of the two-dimensional mdp. This implies that a measure ol 5(A) as the width of the neighborhood-0,

point on the diagonal will be mapped into another point on€-

this line, or, in other wordsk({x=y})C{x=y}. The exis- B(AYAU <A

tence of such a one-dimensional invariant manifold is clearly lim #BA)NUAA) =1. (6)
a consequence of the restrictions imposed by the symmetric 50 HUs(A)

coupling of two identical one-dimensional maps. Any small _ _ _
mismatch between the maps leads, in general, to the disaptere B(A) denotezs the basin of attraction Af i.e., the set
pearance of the one-dimensional manifold, with the resul®f points x,y) e R for which thew limit is contained inA.

that the dynamics becomes two dimensional. The transition in whichk, changes sign is referred to as a
By subtracting the two one-dimensional maps in By, ~ blowout bifurcation[8]. . .
one finds a transversal life+y=1—2¢/a} that also maps Figure 2 shows the regions of parameter space in which

onto the main diagonal under the actionfof26]. This line A, <0, so that the synchronized attractol(@s least weakly
is the preimage of the main diagonal, and part of the linestable. The figure was obtained by performing 1000 scans of
(which maps into the attractive interval on the main diago-\, (&) for different values of with a corresponding resolu-
nal) will belong to the basin of attraction for stable solutionstion on thee axis. The stability regions clearly reflect the
on the diagonal. By adding the two one-dimensional maps iromplexity of the bifurcation structure. In particular, we no-
Eq. (1), one can show that the preimage of the transversdice the irregular variation witfa in the chaotic regime. For
line is a circle centered inx(y) =(1/2,1/2) and with radius Values ofa below the accumulation poira*=3.569, the
(a2—2a+4e)YYav2. individual map displays an attracting cycle, and the synchro-
For any point on the main diagon&[a]8 has an eigendi- nized behavior is also periodic. In this case there is no dis-

rectionu,=(1,1) along the diagonal, and an eigendirectiontinction between weak and asymptotar strong stability.
U,=(1,—1) perpendicular to it. The corresponding eigen- In each of the periodic windows in the regiar>a*, the
values are distinction between weak and strong stability likewise disap-

pears. Moreover, for am-periodic synchronous state

={X1,X5...Xy}, the criterion for transverse stability

vi=fi(X)=a(1l—2x) (3)
N

IT 1#/(x))—28|<1, (@)
and n=1
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a
4.0 4 — , (a)
g
| b 4 7
a ; .
P
35 W ¥
-2.0 € 2.0
X
FIG. 2. Region in parameter plane in which the transversal
Lyapunov exponenk ; <O. (b)
y
is satisfied if and only if the coupling parametebelongs to 13
the union ofN (possibly overlappingintervals, each includ-
ing one point fromy,. Some of these intervals correspond n e
to positive values fok, and some of them correspond 4o
<0. \ P

The stability intervals are clearly seen in Fig. 2. We no-
tice, for instance, the stability regions for the period-6 solu-
tion arounda=3.63, for the period-5 solution arouna 35
=3.74, and for the period-3 solution in the interval around l'f
a=3.84. For each of these windows we also observe the
signature of the period-doubling cascade in which they end.
In a similar manner, the two-band chaotic attractor existing
for a=a,, may give rise to a twe intervals with\ <O,
and the four-band chaotic attractor existing fora, may X
have four(partly overlappingintervals fore with weak sta-
bility.

FIG. 3. The two generic forms for the repelling tongues that

develop from each point on a transversally unstable periodic cycle.
11l. FORMATION OF RIDDLED BASINS OF ATTRACTION

The condition\, <0 guarantees that almost all trajecto- | ml=Clg|"2mlval 1 o(|¢)), t3)
ries onA are transversally attracting. However, there can still .
be an infinite set of trajectories in the neighborhooddhat Whgre §=X+y=2x, and 7=—X+ty are new coordinates
are repelled from it. As we shall see, this situation is quited€fined along and perpendicular to the diagonal, respec-

generic for our system of coupled logistic maps. To obtain ariVely- C is an arbitrary constant, depending on the initial
attractor in the usualtopologica) sense, we must ascertain conditions. ExpressiofB) is obtained as the solution to the

that all trajectories o\ are transversally attracting. Illzneagzer:j mﬂ'ﬂ_F arOlfnd the fixed point. It fOHOW.S ffrom
Consider, for example, the fixed poiR{(xgy,Xg). Insert- 9. (8) that the integral curves are tangent to thexis for

ing Xo=1—1/a into Eq.(4) and requiring that the magnitude | v2| <[] and tangent to thg axis for|v;|>|vy|. These two

- P situations are illustrated in Fig. 3.
of v, be less than 1, we find a coupling interya| Now consider a neighborhodd 5(P) of the fixed point,

a—1 a—3 and assume thatis small enough for the linear approxima-
<e<— ——, tion (8) to apply. Then, except for the fixed point itself, all
2 2 points belonging to the unstable manif@e 0 will leaveU 4

, , i . under the action oDF. Moreover, all points(¢,») in the
in which the fixed point is transversally stablealf-3 ande region

falls outside this interval, both; andv, will be numerically

larger than 1, andP will be a repelling node. Mo={ (& n):|p|<C|gm2mlnily  (C fixed)  (9)
Under the action oF, ., a trajectory starting close to the

fixed point moves away from it along an integral curve. Un-will also leaveU ;5 under the action oDF. If |v,|<|v4|, the

der sufficiently general conditions/{# v,), these integral regionIl, is the unity of two tongue$I{”) andII{”’, ap-

curves take the asymptotic form proaching the fixed point from either side in a cUspg.
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U%(A) and, hence, again leave the neighborhood\dh a
finite number of iterations. This type of dynamics gives rise
y to the characteristic temporal bursting of on-off intermit-
tency. As long as the transverse Lyapunov exponent is posi-
tive, the bursts will never stop, and in reality we have an
) attractor in two-dimensional phase space with a more or less

E(P) pronounced maximum of its invariant density in the neigh-
P borhood of the original one-dimensional attractor. sbe-

' . comes negative, the bursts tend to stop. However, this tran-
sition may not be very sharp, and one may still see some
bursting even for negative values »f (attractor bubbling
It should be noted that more than one attractor may exist
inside the absorbing area. If this is the case, one may observe
E global riddling of the basins of attraction for these coexisting

_ states.

Scenario 2

If the nonlinear mechanisms are too weak to restrict the
motion to an absorbing area inside the basin of attraction for
the synchronized state, the alternative is that almost all

FIG. 4. The riddling bifurcation produces a dense set of repelpoints leavingu'5(A) go to another attractor. This could be
ling tongues. an attracting point cycle, a chaotic attractor or infinity. On
the other hand, provided that, <0, the measure of the

3(@)]. If |v,|>|v4|, on the other hand, the tonguB$™ and ~ Complementary set)3C U ;\U;; of points that are attracted

11§ are tangent to the diagonal in the fixed point. Both of!0 A and never leavé) ; approaches the measure d for

these situations can arise in our system of two coupled logis?—0 [6]- This result applies at least as longAss a one-

tic maps. dimensiona_l attractor consisting o_f a finite number of inter-
We can now conclude the following with respectfto In vals and with an gbsolutely continuous myanant measure.
a sufficiently small neighborhodd 4(P), the integral curves Undgr these condmons we expect t_he basin of attraction to
of the mapF form invariant regions consisting of a pair of attain a globally riddled structure with h.oles that belong to
tongueslI") andT1(). For any fixedC these tongues can the basin of another attractor. Mathematically expressed, this

be obtained through smooth perturbations of the tongue- pg‘es l;h:t' ifor 3”?’510; (13 ;he cigjmplemnednt(azr)y get
I1{") andI1{~) obtained in the linear case, and hence have o(ANB(A) is everywhere dense ir,, a

0. . . . ; . <u[B(A)NUs(A)1<u[UsA)].
smﬂar Fopologlcal properties: The_y !|e on ellther S'd.e of the /ILrE c(on)trast(ig t)h]is {Lh[e c(szgsg]of strofa absolute stability
main diagonal{x=y} and touch it in the fixed point. If is characterized b)y/ the existence of &0 such that
|vo|>|vq|, IH) andI1(7) are tangent to the diagonal ™.

s ) . . .
Let us now suppose that the fixed poRitxg,x,) belongs B(A)DU s=Uj. This requires that all trajectories @nare
. A transversely stable.
to the chaotic attractoA on the main diagonal, and that . o
. . : ' In order to determine the boundaries in parameter space
has an absolutely continuous invariant measure. The flxe{glor

point P will then have infinitely many preimages, and the set .. the regions of absolute stability for }he _synchronized cha-
of these preimages will be dense A It can al'so be ex- otic attractor, we may start by considering the transverse

u ) (+) stability of the various point cycles embedded in this attrac-
peEted _that the SM&_Of pre|mag(_as of the tongud$ an_d tor. We have already seen that the conditions for transverse
1) will be dense in some neighborhood Af (except in

some half-neighborhopds_ of gnd _po.ints for thg int(_arvals tha?_t%t;llhzt_y Tfr?; ;Taentig);e?ingo:jrgnoig ‘gf?xeé)/s;rif in(a':he
spanud_the attractprThis situation is illustrated in Fig. 4. iqqie of the stability diagram of Fig. 5 represents the lower

Uj is the locally repelling set of the attractés and each e of this zone. The upper end falls outside the range of
point from U\ A leaves the neighborhodd 5(A) in a finite  coupling strengths considered in the figure. Hence, the fixed
number of iterations. It is important to note that this repellingpoint is transversely stable to the right of the period-1 line.
property has a local character. Our analysis says nothingestabilization of the fixed point happens in a pitchfork bi-
about the fate of the trajectories once they have left theyrcation.

neighborhoodJ ;. This depends on the global dynamics of  The stability intervals for a point cycle of peridd are

F, and two different scenarios may occur. formally given by Eq.(7). The period-2 cycle arises at
Scenario 1 =3, and hereafter alternates between the points
Having left the locally repelling regiobl'y(A), the trajec-

tories wander around in phase space. However, they are re- a+1+\(a+1)(a-3)

stricted by nonlinear mechanisms to move within an absorb- X12=Y1= — %8 _ (10

ing area[21] that lies strictly inside the basin of attraction.

The trajectories can never approach an attractor outside the

absorbing area, and global riddling of the basin of attraction Evaluating the conditions for transverse stability for this
cannot occur. Sooner or later most of the trajectories willcycle gives two intervals foe of which the interval to the
return toU 4(A). Some of them may again be mapped intoleft of ¢=—1/2 is given by
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- pEIE
' / 015l 2048
a ¢ / 3
N -1
-2 -1 0 g 1 2
ko N\ B FIG. 6. Variation of the transverse Lyapunov exponentwith
2 é the coupling parameter for a=a,. The synchronized chaotic at-
359 - tractor is absolutely stable f¢approximately —1.31<e<—1.24.
-1.6 € -1.0

fixed point. Fora=a,, however, the synchronized chaotic
FIG. 5. Bifurcation curves for the transverse destabilization Ofstate is no longer asymptotically stable to the left of the

various low-periodic cycles embedded in the synchronized chaoti@€0d-1 curve.
attractor.

IV. NUMERICAL RESULTS

—3[1+(a+1)(a—3)+1] Figure 6 shows a scan of the transverse Lyapunov expo-

nent\, as a function of the coupling parameter o a,.
1 o For this value ofa, the individual map exhibits a one-band
<e<—ili+y(atrl)(a-3)-1]. D chaotic attractor consisting of two subinterva{ and1{?
at the moment when they merge. The poigts— 1.544 and
The borderlines of this interval are represented by the twa = —0.478 wherex, changes sign are the blowout bifurca-
curves denoted “period 2” in Fig. 5. The period-2 cycle is tion points. Between these points, the synchronized chaotic
transversely stable between these curves. To the right thetate is at least weakly stable. On either side of the points we
destabilization happens through a period-doubling bifurcahave a so-called chaotic saddl&3,27]. Also indicated in
tion and to the left through a pitchfork bifurcation. Fig. 6 is the interval frone=—1.31 toe=—1.24 in which
Similarly, the curves denoted “period 4,” “period 6,” the chaotic attractor is absolutely stable.
and “period 8” bound the regions of transverse stability for  Figures Ta)—7(e) portray the basins of attraction for the
these cycles. The minimum of the curve for the period-6synchronized chaotic stafg, at various values of. In each
cycle falls close toa=3.626, where this cycle first arises. of these figures initial conditions leading to the chaotic at-
With the values ofa considered in the figure, the period-3 tractor are plotted as grey points, and initial conditions lead-
cycle has not yet appeared in the individual map. Hencéng to another attractafor infinity) are left blank.
synchronized behavior with this periodicity cannot occur, Figure 7a) shows the basin of attraction far=—1.4,
and the figure delineates the regions of transverse stabilitie., a little to the left of the region of absolute stability. In
for the most important cycles of period less than or equal tahis region the synchronized period-6 cycle is transversally
N=8. There are reasons to believe that transverse destabilinstable, and the figure reveals the characteristic appearance
zation of cycles of higher periodicity generally does not playof a globally riddled basin with a dense set of tongues with
a major role, and this is strongly supported by our numericapoints that are repelled from the attractor emanating from the
calculations. From the information in Fig. 5 we can thereforeperiod-6 cycle and its preimages. As previously noted, the
determine the regions of absolute stability for the synchrobasin of attraction includes a section of a transversal line that
nized chaotic attractor in each of the intervalssa<apsand  maps into the attracting interval of the main diagonal, as well
ap=a. as sections of the circle that is the preimage of the transversal
On both sides these regions are bounded by the transverbre. From each of these structures we have a similar dense
destabilization of the period-2 cycle which occurs before deset of repelling tongues, contributing all together to the com-
stabilization of the period-8 and period-4 cycles. For higheiplexity of the basin.
values ofa, destabilization of the period-6 cycle limits the  Figure {b) shows the basin of attraction for a coupling
region of absolute stability for the synchronized chaotic atparameter immediately to the right of the region of strong
tractor, and there is also a region in parameter space whestability (¢=—1.2). Here the in-phase period-2 cycle is
destabilization of the period-4 cycle is the first to take placetransversely unstable. However, while the basin has a fractal
Below the homoclinic bifurcation poind,, destabilization boundary, there are no tongues in it belonging to the basin of
of the fixed point has no significance because the two-bandnother attractor. This is characteristic of a locally riddled
chaotic attractor existing in this range does not contain théasin of attraction where trajectories repelled from the syn-
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FIG. 7. Basins of attraction for the one-band chaotic attra8tpwith different values of the coupling constant fara,: (a) global
riddling for e=—1.4, (b) local riddling for e=—1.2, (c) global riddling fore=—1.1, (d) global riddling fore=—1.0, and(e) global
riddling close to the blowout bifurcation far= —0.5. The basin of attraction is plotted grey.
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2 : 125

vl | y

0 .47\/.'1 04 Y

-1
-2 -1 0 ¢ 1 2
FIG. 8. Variation of the transverse Lyapunov exponentwith
the coupling parameterfor a=a,. Here we have two intervals of
weak stability. The synchronized attractor is absolutely stable for '0'(_)8

(approximately —1.46<e<—1.16.

a=a,,e=-13.

(@)

chronized chaotic state never reach the basin boundary, and 1.25

sooner or later return to the neighborhood of the attractor. In
this case the synchronized state may be referred to as a Mil-
nor attractor, i.e., it attracts all points from its neighborhood
except a set of zero measure.

As ¢ is further increased, a transition occurs in which
trajectories repelled from the main diagonal start to make
contact with the basin boundary. As illustrated in Figc)7 Y
we then recover the globally riddled structure. Here
—1.1, and the synchronized state is a weak attractor in the
Milnor sense, i.e., there is a finite measure of points in its
neighborhood that are repelled from it.

For e=—1.0[Fig. 7(d)], a new structure in the basin of
attraction becomes manifest. Here we observe two lines par-
allel to the main axes and crossing the diagonal at a period-2
point. Each of these lines are invariant with respect to the -0.05

second iterate oF , .. A similar set of curves are found to
cross the diagonal at the other point of the in-phase period-2

-0.

1.25

orbit. Finally, in Fig. 7e), e=—0.5, and we are close to the 1.25
blowout bifurcation ate =0.478. Here the measure of the
points that are attracted to the synchronized chaotic state
becomes very small, and the majority of initial conditions
lead to diverging orbits.
Figure 8 shows a scan of the transverse Lyapunov expo-
nent\, for a=a; where the individual mag, exhibits a
two-band chaotic attractor. Inspection of the figure shows y
that we now have two regions of weak stability for the syn-
chronized chaotic state, one for positive values and one for
negative values aof. In the region of negative coupling con-
stants, blowout bifurcations occur at=—1.472 ande=
—1.0385. The region of absolute stability extends from
—1.464 toe=—1.156. At both ends of this region, the in-
phase period-2 cycle becomes transversally unstable.
Figures %a)—9(c) show typical examples of the basins of

-0.05

attraction observed in this region. At the same time, they -0.05

illustrate an interesting change in the chaotic dynamics. In
Fig. @) (e=—1.3) we have an absolutely stable two-band

1.2
X 5

attractor A; on the main diagonal. There are holes in the FIG. 9. Basins of attraction for different values of the coupling
basin of attraction. However, these holes do not emanatearameter fora=a,: (& fractal basin boundary for absolutely

from points embedded in the attractor. Hence the basin is néttable attractorb) locally riddled basin for weakly stable attractor,
riddled, but has a fractal boundary. and(c) two-dimensional attractor restricted to the absorbing area.
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lg=a,,e=033 125 g =g, e =114 @)

y y
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-0.15 -0.0(5) 03 ;
-0.15 x 1.1 -0. X 25
FIG. 10. Basin of attraction foa=a; ande=0.33. 1.25

Figure 9b) was obtained foe =—1.1, i.e., immediately
after the loss of global stability in the riddling bifurcation at
e=—1.156. This provides a new example of a locally
riddled basin. Trajectories that are repelled from the main
diagonal do not reach the basin boundary, but sooner or later
return to the neighborhood of the synchronized states /s
increased slightly more, we observe a spontaneous breaking Yy
of the symmetry as the chaotic attractor spreads into two-
dimensional phase space. The basin of attraction, on the
other hand, only changes a little. This is shown in Fi@) 9
for e = —1.03. The two-dimensional attractdy is bounded
in phase space to an absorbing area defined by the iterates of
the critical curves fofF, . [21,28. The absorbing area lies
fully within the basin of attraction, and as long as there is no
contact between the two boundaries, the two-dimensional at- -0.05
tractor continues to exist. With further increase @f(ap- -0.05 X 1.25
proximately ate=—0.95 a crisis takes place in which the
borderline of the absorbing area touches the basin boundary, G, 12. Basins of attraction far=a,: (a) locally riddled basin
and the two-dimensional attractor suddenly disappears.  yith fractal basin boundary, ar@) two coexisting eight-band cha-

Figure 10 shows an example of the basins of attractloQ,t,C attractors.
one can observe in the other parameter window of weak
stability fora=a,. Heree=0.33.

For a=a,, a scan of the transverse Lyapunov exponent 125 = —
shows four(partly overlapping regions of weak stability. a=a,e=-0
This is illustrated in Fig. 11. The largest region extends from

2

a-=a,

1 y
- e
< 0 . T/—\ //\

-1.462W1.013 v v
1 -0.05
-0.05 X 1.25
-2 -1 0 g 1 2

FIG. 13. The basin of attraction for the synchronous chaotic
FIG. 11. Variation of the transverse Lyapunov exponknt  state is riddled with holes that belong to the basin of a coexisting
with the coupling parameter for a=a,. periodic cycle.
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FIG. 14. Chaotic attractors off the main diagon@) sketch of the one-dimensional magx), (b) its bifurcation diagram{c) the
corresponding longitudinal Lyapunov exponent, @ddthe transversal Lyapunov exponent.

the blowout bifurcation at=—1.462 to the blowout bifur- It is easy to show that for ang the two mutually perpen-
cationate = —1.0134. Within this region we find a region of dicular straight linex=x, andy=x, both remain invariant
strong stability delineated by the riddling bifurcationseat under two iterations of _;, i.e., F2,({x=xX,}) C{x=x,}
=—1.461 ande=—1.015. In both of these bifurcations, the andF?,({y=x,}) C{y=x,}. Herex,, as given by Eq(10),
in-phase period-8 cycle becomes transversely unstable. s the larger of the two amplitudes , for the period-2 cycle

Figure 12a) shows the locally riddled basin of attraction , .
with fractal boundaries that one can observe der—1.14. Let g:x—g(x), xe R! denote the one-dimensional map
In Fig. 12b) the coupling parameter is increased 4&=  thatF2, induces along these lines, i.e.,

—1.0132. This is immediately after the blowout bifurcation.

The basin of attraction remains practically unaffected by this

change. However, the dynamics of the coupled map system (g(x),xz)EFz_l(x,xz). (13)
spontaneously breaks the symmetry, and the synchronized

four-band attractor is replaced by two mutually symmetric
two-dimensional eight-band attractors.

Finally, Fig. 13 shows the basin of attraction for the syn-
chronized four-band attractor in the second parameter win
dow of weak stabilitya=a,, e=—0.2). For these param-
eter values the synchronized chaotic state coexists with
stable period-2 point cycle, and the basin of attraction for th
chaotic state is riddled with holes that belong to the basin o
attraction of the point cycle.

Figure 14a) portrays the functiorg(x) for a=3.6, and
Fig. 14b) shows the bifurcation diagram obtained by vary-
ing a over the interval from 3.4 to 3.74. Figures(&$and
14(d) provide scans of the corresponding longitudinal and
flansversal Lyapunov exponenks and A, , respectively.
(x) has a finite interval over which it is unimodal, and Fig.
4(b) demonstrates that it produces a transition to chaos in
accordance with the usual Feigenbaum scenario. Magnifica-
tions of Figs. 14c) and 14d) show that\ is positive fora

V. INTERMINGLED BASINS OF ATTRACTION =3.6, and\, is negative. Hence for this value @f the

Consider the mag, , for e=—1: numerical calculations indicate thaft(x) displays a two-
band chaotic attractor.
Eo X ax(1—=x)—=(y—x) 17 By virtue of its symmetry with respect to the main diag-
1ty - ay(l-y)—(x—-y)|" (12 onal, the mag~_, displays two one-dimensional four-band
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()

FIG. 15. (Color Intermingled basins of attraction for two coexisting chaotic attract@soverview, and(b) detail around one of the
points of the period-2 cycle.
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invariant chaotic set#\; and A,. Figure 15 displays the average transversal eigenvalue is numerically less than unity.
basins of attraction for each of these sets. &et3.6 ande Our analysis has led us to propose two different routes for
= —1, the synchronized state on the main diagonal is a chahe development of the basin of attraction, depending on the
otic saddle, and almost all trajectories that remain finite eisequence in which an essential boundary crisis and the blow-
ther approact\; or A,. However, for both of these sets the out bifurcation occur. Related to these scenarios is an impor-
basin of attraction is riddled with holes that belong to thetant distinction between locally and globally riddled basins.
basin of the other set. Hence, the basins of attraction exhibithe boundary crisis is associated with the fact that we deal
an intermingled structure with one half measure set of pointsvith noninvertible maps. Inside the basin of attraction we
that are attracted té\;, and one half measure set that is may then find an invariant are#e absorbing arg¢ahat is
attracted toA,. Figure 1%b) shows a magnification of the bounded by the iterates of the critical curves Fy, . Tra-
intermingled basin structure in a region around,k,). jectories repelled from the synchronized chaotic state are re-
stricted by the nonlinearities of the system to move within
this invariant area, and hence do not reach the basin bound-
) o o ary. Under these conditions the riddling is local. Variation of
We performed a relatively detailed investigation of the 3 parameter may cause the borderline of the absorbing area
formation of riddled basins of attraction for a system of twotg make contact with the basin boundary, and global riddling
coupled logistic maps. The same phenomenon is likely tgan arise.
arise in almost all cases of symmetrically coupled, identical The existence of an invariant region bounded by the iter-
nonlinear oscillators when chaotic synchronization can begtes of the critical curves also allows the emergence of a
achieved. In order to determine the regions of asymptoti¢wo-dimensional attractor. In contrast to the riddling phe-
stability for the synchronized chaotic state, we calculated th@yomenon that depends critically on the attractor lying in an
bifurcation curves for the transverse destabilization of thenyariant subspace of total phase space, the two-dimensional

main low-periodic cycles embedded in the attractor. Thes@ttractor persists even if the symmetry is broken.
bifurcations are either of period-doubling type,& —1) or

they are pitchforks ¥,=+1). Intuitively, there are good
reasons to suppose that destabilization of cycles of low peri-
odicity plays a critical role[17,29. For point cycles of
higher periodicity, the transversal eigenvalue will presum- We thank T. Kapitaniak, L. Gardini, and G.-I. Bischi for a
ably approach the average eigenvalue for the attractor asraumber of illuminating discussions, particularly concerning

VI. DISCUSSION
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