
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Role of the Absorbing Area in Chaotic Synchronization

Maistrenko, Yu.L.; Maistrenko, V.L.; Popovich, A.; Mosekilde, Erik

Published in:
Physical Review Letters

Link to article, DOI:
10.1103/PhysRevLett.80.1638

Publication date:
1998

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Maistrenko, Y. L., Maistrenko, V. L., Popovich, A., & Mosekilde, E. (1998). Role of the Absorbing Area in Chaotic
Synchronization. Physical Review Letters, 80(8), 1638-1641. DOI: 10.1103/PhysRevLett.80.1638

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13725839?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevLett.80.1638
http://orbit.dtu.dk/en/publications/role-of-the-absorbing-area-in-chaotic-synchronization(71ad1c91-6ba3-43b8-a1b0-04993d5c3350).html


VOLUME 80, NUMBER 8 P H Y S I C A L R E V I E W L E T T E R S 23 FEBRUARY 1998

Role of the Absorbing Area in Chaotic Synchronization
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When two identical chaotic oscillators interact, one or more intervals of coupling parameters generally
exist in which the synchronized state is weakly stable and its basin of attraction is riddled with
holes that are repelled from it. Here, we discuss the role of the absorbing area for the emergence
of local vs global riddling and for controlling the dynamics, once the synchronization breaks down.
[S0031-9007(98)05306-X]

PACS numbers: 05.45.+b

Fujisaka and Yamada [1] have shown how two identical
chaotic oscillators under variation of the coupling parame-
ter can attain a state of chaotic synchronization in which
the motion of the coupled system is restricted to an invari-
ant subspace of total phase space. For two coupled one-
dimensional maps, for instance, the synchronized motion
is one dimensional and occurs along the main diagonal in
phase space. A variety of applications of this phenome-
non are presently being investigated, particularly in con-
nection with electronic communication and monitoring of
dynamical systems [2].

An interesting problem concerns the starting conditions
for which synchronization can be achieved. Recent
studies of chaotic dynamics restricted to low-dimensional
manifolds have led to the discovery of a variety of new
phenomena, including on-off intermittency [3] and riddled
basins of attraction [4,5].

If the transverse Lyapunov exponentl' is negative, the
synchronous state, on the average, attracts points from its
two-dimensional neighborhood [4]. In general, however,
there will be intervals of the coupling parameter for which
l' , 0 while, at the same time, certain orbits embedded
in the chaotic state are transversely unstable. The basin
of attraction may then be riddled with tongues in which
the trajectories are repelled from the low-dimensional
manifold [6,7]. The synchronized state will attract a set of
points of positive Lebesgue measure. Arbitrarily close to
any such point, however, one can find a positive measure
set of points that are repelled from this state, and the basin
of attraction is locally a fat fractal.

For the synchronized state to be an attractor in the
topological sense, all orbits on the chaotic set must be
transversely stable. The riddling bifurcation (also referred
to as the bubbling transition [5]) in which the first orbit
embedded in the chaotic attractor loses its transverse
stability has recently been investigated in detail by Lai
et al. [8]. They suggest that the bifurcation takes place
as two repellers located symmetrically on either side
of the invariant subspace approach the chaotic attractor
and collide with a saddle embedded in this attractor.
Alternatively, a point cycle embedded in the synchronized

state may lose its transverse stability in a period-doubling
bifurcation [9], and both types of local bifurcation may be
either soft or hard.

However, destabilization of orbits embedded in the
chaotic state is not sufficient for directly observable
riddling to occur. This will depend on the global dy-
namics of the system. Having left the locally repelling
regions in the neighborhood of the invariant manifold, the
trajectories may wander around in phase space without
ever approaching another attractor (or escaping to infin-
ity). Sooner or later, most of them will return to the
neighborhood of the invariant manifold. Some may again
be mapped into the repelling tongues while others will be
attracted by the manifold. This gives rise to a dynamics
with temporal bursting (attractor bubbling) and very long
transients. However, at the end, almost all initial condi-
tions close to the invariant manifold will end up in the
synchronized state.

Denoting the synchronized chaotic state byA, its d

neighborhood byUdsAd, and its basin of attraction by
B sAd, we may then distinguish between the following two
types of riddling: (i)BsAd is globally riddledif A attracts
a positive Lebesgue measure set of points fromUdsAd, but
not the full measure. The remaining points, i.e., the points
of UdsAd not belonging toB sAd, go to some other state.
In this case,A is referred to as a weak Milnor attractor
[10]. (ii) B sAd is locally riddled[7] if A attracts almost all
points inUdsAd; i.e., mesfB sAd > UdsAdg  mesUdsAd.
A is then said to be aMilnor attractor, and BsAd con-
tains no observable holes belonging to the basin of an-
other attractor. mesUdsAd denotes the Lebesgue measure
of UdsAd.

The purpose of the present Letter is to show how the
emergence of locally riddled basins of attraction depends
on the existence of a so-called absorbing areaAsAd
inside the basin of attractionB sAd. If such an area
exists, the nonlinearities of the system restrain trajectories
started withinAsAd from coming into contact with the
basin boundary. Variation of a parameter that causes
the absorbing area to increase in size (or the basin of
attraction to shrink) may then lead to a crisis where the
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two boundaries touch one another. After this crisis, the
basin of attraction will be globally riddled.

We shall also show that the existence of an absorbing
area within the basin of attraction is essential for what
happens in the blowout bifurcation, wherel' becomes
positive. In the presence of an absorbing area, the
blowout bifurcation will be gradual. The symmetry of
the synchronized state will break, and the attractor will
spread into the two-dimensional phase space with a
more or less pronounced peak of the invariant density
near the invariant manifold. This corresponds to a so-
called nonhysteric blowout bifurcation [5]. Without the
restraining borders of the absorbing area, the blowout
bifurcation is similar to an explosion, leading to the abrupt
collapse of the synchronized state (hysteric blowout).

Let us consider a system of two coupled logistic maps
of the form

Fa,´ :

(
x
y

)
!

(
fasxd 1 ´sy 2 xd
fasyd 1 ´sx 2 yd

)
, (1)

where fa : x ! axs1 2 xd, x [ R1, a [ f0, 4g is the
one-dimensional logistic map, and́ [ f22, 2g is the
coupling parameter.

In order to delineate the regions in parameter space in
which the synchronized state is asymptotically stable, we
have determined the regions of transverse stability for the
main low-periodic cycles. For anN-periodic synchronous
state gN  hx1, x2, . . . , xN j, the criterion for transverse
stability is

NY
n1

jf 0
asxnd 2 2´j , 1 . (2)

Considering, for instance, the fixed pointPsx0, x0d with
x0  1 2 1ya, the condition (2) gives the stability region
2sa 2 1dy2 , ´ , 2sa 2 3dy2. The slanting line de-
noted fixed point in the middle of Fig. 1 represents the
lower edge of this zone. The upper boundary falls out-
side the range of coupling strengths considered in the fig-
ure. Hence, the fixed point is transversely stable to the
right of thefixed pointline.

The period-2 cycle arises ata  3 and hereafter alter-
nates betweenx1,2  fa 1 1 6

p
sa 1 1d sa 2 3dgy2a.

The condition for transverse stability, in this case, gives
two intervals for ´ of which the interval to the left of
´  2

1
2 is determined by

2
1
2 f1 1

p
sa 1 1d sa 2 3d 1 1g , ´

, 2
1
2 f1 1

p
sa 1 1d sa 2 3d 2 1g . (3)

The borderlines of this interval are represented by the
curves denoted period 2 in Fig. 1. Similarly, the curves
denoted period 4, period 6, and period 8 delineate the
regions of transverse stability for these cycles. With
the values ofa considered in the figure, period-3 cycles
have not yet appeared in the individual map. Hence,
synchronized behavior with this periodicity cannot occur.

FIG. 1. Riddling bifurcation curves delineating the parameter
region of absolute stability.

Cycles of higher periodicity are not likely to be first to
become unstable [11].

The logistic map is known to exhibit a positive mea-
sure Cantor set of parameter valuesa [ f3, 4g for which
a chaotic attractor exists. In particular, this is the case
for a  a0  3.678 573 510 428 32 . . . , where the fixed
point x0  1 2 1ya undergoes its first homoclinic bifur-
cation and fora  a1  3.592 572 184 106 97 . . . , where
the period-2 cycleg2  hx1, x2j undergoes the first homo-
clinic bifurcation. Ata  a0, fasxd displays a one-band
chaotic attractorG  G0, which consists of two subbands
having contact inx0. Similarly, for a  a1, fasxd pro-
duces a two-band chaotic attractorG  G1, which con-
sists of four subbands having pairwise contact in the
period-2 pointsx1 andx2.

G0 has an absolutely continuous invariant measure,
and almost all trajectories on the synchronized chaotic
set A0  hx  y [ G0j will exhibit the same Lyapunov
exponent. Figure 2 shows the variation of the transverse
Lyapunov exponent

l'  lim
N!`

1
N

NX
n1

ln j f 0
asxnd 2 2´j , (4)

with ´ for a  a0. Here, hxn  fn
a sxdj`

n1 is a typical
itinerary of fasxd. The transverse Lyapunov exponent
is negative from ´ > 21.54 to ´ > 20.48, and, in
this interval, the synchronous state is at least weakly
attracting in the Milnor sense [10]. The points where
l' changes sign are referred to as blowout bifurcations.
The region of strong stability is restricted to the interval
between´ > 21.31, where the period-6 orbit becomes
transversely unstable in a subcritical period-doubling
bifurcation, and´ > 21.24, where the period-2 orbit

1639



VOLUME 80, NUMBER 8 P H Y S I C A L R E V I E W L E T T E R S 23 FEBRUARY 1998

FIG. 2. Transverse Lyapunov exponent as a function of the
coupling parameter.

becomes transversely unstable in a supercritical period
doubling.

An investigation [9] of the form of the basin of
attraction for different values of the coupling parameter
shows that to the left of the range of strong stability we
have an interval of global riddling with a dense set of
repelling tongues leading to divergent orbits. Immediately
to the right of this range, on the other hand, while
the basin of attraction exhibits a fractal boundary, one
cannot observe tongues emanating from the synchronized
state and leading the trajectories to diverge. Here, the
global dynamics ofFa,´ is such that points that are
repelled from the synchronized state never reach the basin
boundary. The trajectories are restricted to move within
the absorbing area, and this area falls completely within
the basin boundary. Hence, we observe the phenomenon
of local riddling.

Global analyses of noninvertible maps use the method
of critical curves [12]. Similar to the manner in which the
iterates of the critical point(s) for a one-dimensional map
restrict the regions of phase space in which the stationary
trajectory can move, the successive images of the critical
curves restrain the dynamics of our two-dimensional map
Fa,´. Together, these images define the absorbing area
with the properties (i) that once a trajectory has entered
this area, it can never leave again, and (ii) all points from
the neighborhood will be mapped into the absorbing area
in a finite number of iterations.

The critical curvesL0 are defined as the locus of
jDFj  0, with DF denoting the Jacobian matrix ofFa,´.
For our two-coupled logistic maps, we have

L0 

Ω
sx, yd [ R2 : y 

2sa 2 ´dx 2 sa 2 2´d
4ax 2 2sa 2 ´d

æ
.

(5)

The boundary≠A of the absorbing area may be con-
structed following the procedure described by Abraham
et al. [13]: If L  A > L0, then for a suitable inte-
ger m,

≠A 
m[

k1

Fk
a,´sLd . (6)

Figure 3 shows the results of such a construction for
a  a0 and´  21.234. Bounded by the curve sections
Lm, m  1, 2, . . . , 8, the absorbing area clearly falls in-
side the basin boundary≠B , as represented by the fractal
curve. As long as no other attractor exists inside the ab-
sorbing area, only local riddling will arise. Aśis further
increased, a crisis occurs (approximately at´  21.2) in
which the border of the absorbing area comes into contact
with the basin boundary. Hereafter, the riddling is global
until, for ´ > 20.48, the blowout bifurcation occurs, and
the synchronized attractor instantaneously disappears.

When the riddling bifurcation is supercritical, as in
the present case, yet another invariant region comes into
play. Immediately after the transverse period-doubling
at ´  21.237, almost all trajectories repelled from the
synchronized state will be confined to a so-called mixed
absorbing area [14] by the unstable manifold of the
period-4 saddle cycle. This mixed absorbing area is
shown crosshatched in Fig. 3.

For a  a1, one can find an interval of́ in which the
order of bifurcations is different. The blowout bifurca-
tion here occurs while an absorbing area still exists in-
side the basin of attraction. In the whole interval from
the riddling bifurcation to the blowout bifurcation, we
then observe a locally riddled basin of attraction. At the
same time, the blowout bifurcation takes a very differ-
ent form. Instead of a sudden explosion, the bifurcation
manifests itself as a gradual transition from the synchro-
nized chaotic attractorA1  hx  y [ G1j to an approxi-
mately two-dimensional attractorA0

1, which is bounded
by the absorbing area. This is demonstrated in Fig. 4 for
´  21.03.

FIG. 3. The absorbing area falls inside the basin boundary.
Note also the so-called mixed absorbing area insideAsAd.
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FIG. 4. The blowout bifurcation (at́ > 21.04) leads to an
attractor in two-dimensional phase space.

Just after the blowout, the probability for the system
to move in the neighborhood of the synchronized state
is large. From time to time, significant bursts may be
observed in which the trajectory moves far out in phase
space without, however, coming into contact with the
basin boundary. This is a typical example of on-off
intermittency [3].

We conclude that, besides the riddling bifurcation (at
´sad) and the blowout bifurcation (at́ sbd), the contact
bifurcation (or crisis at́ scd) in which the boundary of the
absorbing area touches the basin boundary is important
in accounting for the phenomena observed in connection
with the breakdown of chaotic synchronization. If´scd

occurs beforé sbd, the system will display local riddling
betweeń sad and´scd, and global riddling betweeńscd and
´sbd. In this case, the blowout bifurcation takes the form
of an abrupt explosion. On the other hand, if´scd occurs
after ´sbd, there is no global riddling, and the blowout
bifurcation is gradual.

A more complicated scenario can arise if other at-
tracting states exist inside the absorbing area [9]. The
problem of the existence of such attractors is extremely
complicated from the view of the mathematical theory of
dynamical systems. It is associated with the possible ex-
istence of parameter intervals with nonremovable homo-
clinic tangencies [15].

We thank T. Kapitaniak, L. Gardini, G.-I. Bischi,
and C. Mira for a number of illuminating discussions.
J. Laugesen is acknowledged for assistance with the
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