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Mechanical deformation of atomic-scale metallic contacts: Structure and mechanisms

Mads R. So”rensen, Mads Brandbyge, and Karsten W. Jacobsen
CAMP, Department of Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark

~Received 27 May 1997!

We have simulated the mechanical deformation of atomic-scale metallic contacts under tensile strain using
molecular dynamics and effective medium theory potentials. The evolution of the structure of the contacts and
the underlying deformation mechanisms are described along with the calculated electronic conductance. Vari-
ous defects such as intersecting stacking faults, local disorder, and vacancies are created during the deforma-
tion. Disordered regions act as weak spots that reduce the strength of the contacts. The disorder tends to anneal
out again during the subsequent atomic rearrangements, but vacancies can be permanently present. The tran-
sition states and energies for slip mechanisms have been determined using the nudged elastic band method, and
we find a size-dependent crossover from a dislocation-mediated slip to a homogeneous slip when the contact
diameter becomes less than a few nm. We show that the results measured in a nanocontact experiment depend
significantly on the elastic stiffness of the experimental apparatus. For a soft setup, some of the atomic
rearrangements might not be detected, whereas others are amplified.@S0163-1829~98!01306-X#

I. INTRODUCTION

The mechanical behavior of nanosize metallic contacts is
of fundamental interest, for instance, in the field of tribology.
Since macroscopic surfaces usually are rough, a contact be-
tween two macroscopic bodies consists of a large number of
microscopic junctions. The process of moving two contact-
ing surfaces with respect to each other involves the creation,
deformation, and fracture of such junctions. Their mechani-
cal properties are therefore important for phenomena such as
adhesion, friction, and wear. Another interesting aspect of
metallic point contacts originates from the electronic trans-
port properties. As a contact between two metallic electrodes
shrinks to atomic size, the diameter of the constriction be-
comes comparable to the Fermi wavelength in metals, and
this gives rise to quantum features.

The opportunities for investigating single metallic con-
tacts of nanometer size have been greatly improved by the
inventions and refinements of experimental techniques such
as the scanning tunneling microscope1 ~STM! and the me-
chanically controllable break junction~MCBJ!.2 In STM ex-
periments, a tip-sample contact can be created by indenting a
tip into a sample surface or by applying a voltage pulse be-
tween the tip and sample. The contact can then be manipu-
lated by moving the tip with respect to the sample while
monitoring the electronic conductance.3–13 With the MCBJ
technique, a metallic wire is stretched and broken by bending
a flexible substrate on which the wire is attached. After-
wards, the two electrodes can be brought repeatedly in and
out of contact.2,14–16 Experiments have been performed un-
der various conditions, such as ultrahigh-vacuum or ambient
conditions, and at various temperatures, for instance, 4.2 K
or room temperature. In the experiments, the indentation-
retraction process is highly irreversible. During tip-surface
~electrode-electrode! separation, an atomic-size connective
neck can be pulled. The conductance of such contacts exhib-
its sudden changes~‘‘jumps’’ ! upon elongation or compres-
sion. More recently, the conductance and force have been
measured using a STM supplemented by a force sensor,11–13

and in these experiments, a clear correlation between jumps
in the force and jumps in the conductance was observed. The
conductance of nanosize metallic contacts has also been
studied with much simpler experimental methods. These
studies include simple tabletop experiments with macro-
scopic metal wires,17–19 pin-plate experiments,20 and mea-
surements on commercial or home-built electromechanical
relays.21 These experiments demonstrate that even for con-
tacts between macroscopic metallic bodies, the very last con-
nective junction before separation is of atomic dimensions.

Early molecular dynamics~MD! simulations by Landman
and co-workers predicted that when a metal tip is separated
from a metal sample after an indentation, a connective neck
can be pulled between the tip and sample, and during the tip
retraction, the neck is elongated until fracture.22 In the simu-
lations, the elongation of the neck consisted of a sequence of
alternating elastic and plastic stages accompanied by atomic
structural rearrangements. A similar irreversible loading-
unloading behavior and neck formation was found in simu-
lations by Sutton and co-workers.23 In later theoretical work,
the STM and MCBJ experiments have been modeled using
atomistic simulations combined with conductance calcula-
tions, which have been based on a tight-binding model,24–26

a free-electron model,6,9,25 or a semiclassical Sharvin
expression.20 The jumps in the conductance are generally
associated with atomic rearrangements where the structure
and cross-sectional area suddenly change, in agreement with
recent combined force and conductance measurements.11–13

Simpler models of the evolution of atomic-scale metallic
contacts have also been applied.27

In the present paper, we provide a detailed description of
the evolution of the atomic structure of metallic nanocontacts
and of the mechanical deformation processes that take place
during an elongation process. In today’s point contact experi-
ments, one is restricted to measurements of a few physical
quantities such as the conductance and force, and the chal-
lenge is to deduce as much information as possible about the
properties of the contact. By showing how the structures and
deformation mechanisms affect the measurable quantities in
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the simulations, our results should be useful in interpreta-
tions of experimental results. When comparing simulation
results directly to experiments, one should be careful in case
the experimental apparatus has a small stiffness. We have
modeled the effect of a finite stiffness of an experimental
setup, and it is shown that the results measured with a soft
setup are significantly different from those obtained with a
stiff setup.

II. COMPUTATIONAL METHODS

We have performed MD simulations of various metallic
nanocontacts. The starting point is a neck that has a perfect
fcc structure and a circular cross section with a diameter of
approximately 6.5 times the distance between nearest-
neighbor atoms (dNN), at the thinnest point. The shape of the
contact is such that the neck diameter increases as a cosine
function of z2zcenter, wherez denotes the coordinate along
the neck axis. The neck is attached to a slab at the top and at
the bottom, and periodic boundary conditions are applied in
all three dimensions. An example is shown in Fig. 1. We
have performed simulations for two metals, Au and Ni; two
temperatures, 12 K and 290 K; and three crystal orientations
of the neck axis,@111#, @110#, and@100#.

Initially, the positions of the atoms are relaxed to a local
minimum of the potential energy using a minimization tech-
nique similar to steepest descent, and after that, the system is
equilibrated at the specified temperature for 100 ps. The
stretching of the contact is simulated by constant temperature
MD, where the length of the simulation box~in the z direc-
tion! is increased at a constant rate. The temperature is kept
fixed using a Langevin algorithm with fluctuating forces and
frictional forces for all atoms in the system.28,29 A time step
of Dt55.4310215 s is used in the numerical integration of
the equations of motion.30 The box length is increased by 1
31024 Å in each time step, corresponding to a velocity of 2
m/s. The interatomic forces and energies are calculated using
semiempirical potentials derived from the effective medium
theory~EMT!.31–33 In the EMT, the total energy of a system
of atoms is written in the form

Etot5(
i

FEc,i~ni !1
1

2(j Þ i
V~r i j !G , ~1!

where the sum is over all atoms in the system. The energy
term Ec,i(ni) for an atom is a function of an ‘‘embedding
electron density,’’ni , which is calculated as a superposition
of density contributions from the surrounding atoms,

ni5(
j Þ i

Dnj~r i j !. ~2!

Many-body effects, which are very important in metallic sys-
tems, are included in the description through theEc,i term.
The EMT potentials provide an approximate and computa-
tionally efficient description of the bonding in metallic sys-
tems, and they have been applied successfully in studies of,
e.g., diffusion and surface relaxations and reconstructions.32

We do not find any important differences between the
results obtained at 12 K and 290 K, respectively, in our
simulations, but this should not be taken as an indication that
there is no temperature dependence in a nanocontact experi-
ment, since there is a large difference in time scale between
a MD simulation and an experiment. In a typical STM ex-
periment, the tip is retracted by a velocity of 100 Å/s, which
is eight orders of magnitude slower than in our simulations.
Thus, a process that occurs in an experiment at a given tem-
perature might not take place in a MD simulation at the same
temperature; for instance, diffusion processes might be ne-
glected. Since the time scale in the simulations is short and
the temperatures are far below the melting point, the results
are not much different from those of a local minimization.
The results presented in the figures below are from the simu-
lations at 12 K where the thermal fluctuations are smallest.

A. Common neighbor analysis

The MD simulations produce a large amount of data. We
obtain the positions and momenta of all the atoms in the
system at each time step, and from the data, any piece of
information about the evolution of the atomic structure is
available, but it is not straightforward to communicate this
information in a clear and concise manner. We have found it
useful to analyze the structure of the contacts using the com-
mon neighbor analysis~CNA! method.34,35 In the CNA, a set
of three integers,jkl , is assigned to each pair of neighbor
atoms. A pair of neighbor atoms is also called a ‘‘bond.’’
Two atoms are considered to be neighbors if they are within
a certain distance,r cut, of each other. The first index,j , is
the number of atoms that are neighbors to both atoms in the
pair; these are called the common neighbors. The second
index,k, is the total number of bonds between thej common
neighbors. The third index,l , is the number of bonds in the
longest continuous chain formed by thek bonds between the
common neighbors. We have used a fixed cutoff distance,
r cut, of 1.2dNN .

We have calculated CNA indices for a number of atomic
configurations extracted from the MD simulations. For the
perfect, initial contacts, there are only pairs of type 421, 311,
211, and 200 present; these pairs are characteristic of com-
pact fcc clusters. In perfect fcc bulk, all pairs are of type 421.
During the deformation process, some of the pairs are con-
verted into other types of pairs, indicating the presence of

FIG. 1. A Au nanocontact oriented along the@111# direction.
The contact has a length of 33 layers and consists of 6798 atoms.
The diameter of the circular cross section at the thinnest point is
18.6 Å.
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defects. The most important ones are the 422 pairs, which
are signatures of hcp ordering. In perfect hcp bulk, 50% of
the pairs are of type 422 while the other 50% are of type 421.
We also look at pairs that are of type 411, 433, 544, or 555.
In the literature, the latter three types of pairs have been
ascribed to icosahedral ordering~or distorted icosahedral
ordering!,34,36but in the present context, we will merely con-
sider them as indicators of a local environment that is differ-
ent from fcc and hcp ordering.37

B. Conductance and area

Based on the atomic configurations generated by the MD
simulations, we calculate the electronic conductance of the
Au contacts during the stretching process. To calculate the
conductance, a one-electron potential is generated from the
atomic coordinates in the following way. The electronic den-
sity is constructed as a sum of free-atom electron densities.
The potential is then generated from the density using the
local density approximation~LDA !. We describe the macro-
scopic electrodes by a free-electron model, which is reason-
able in the case of Au, and join the contact and electrodes in
a smooth manner.38 We neglect scattering from the ionic
cores and cut off the generated potential at an energy of
2(EF1W) relative to the vacuum level, whereEF ~5.5 eV!
and W ~5.5 eV! are the Fermi energy and work function,
respectively.39 This non-self-consistent potential gives a
good description of the corrugation near the boundary, which
is essential. The quantum transmission of electrons through
the three-dimensional potential is calculated using a numeri-
cal exact, recursive multichannel method. The electronic
wave functions are expanded in plane waves using a (xy)
supercell perpendicular to the contact with side lengthsLx
5Ly540 Å. A three-dimensional grid with grid size 0.8 Å
and 400 plane waves~channels! is employed. The conduc-
tance is then determined from the Landauer expression link-
ing the total transmission for electrons atEF and the
conductance,40,41

G5G0 Ttot~EF!. ~3!

The quantum unit of conductance,G0, is 2e2/h, wheree is
the electronic charge andh is Planck’s constant. For further
details about the computational procedure, we refer to Ref.
42 and references therein.

We have also found it useful to monitor the smallest
cross-sectional area of the contact~perpendicular to the con-
tact axis!. The area of a cross section is calculated by a
procedure used by Bratkovskyet al. in Ref. 25. Each atom is
represented by a sphere with a volume of the fcc bulk
Wigner-Seitz cell~radiusr s). At eachz position of interest, a
slice with a thickness of an interlayer distance is centered.
The area is calculated as the total volume of the atomic
spheres overlapping with the slice divided by the thickness
of the slice.

III. RESULTS OF MOLECULAR DYNAMICS
SIMULATIONS

In this section, we present the results of the simulations of
the nanocontacts. We have simulated two different metals:
Au and Ni. Au was an obvious choice since it has been used

widely in experiments. Furthermore, the electronic structure
of Au with a closedd shell and a simple band structure
justifies the use of a free-electron model for the conductance
calculations. The choice of Ni as an alternative metal was
based on the differences in quantities such as defect forma-
tion energies and elastic constants. For instance, the shear
modulus and Young’s modulus of Ni are much larger than
those of Au. The simulation of the Au@111# contact is dis-
cussed thoroughly. First, we describe the gross features of
the deformation of the contact with focus on measurable
quantities such as the tensile force and electronic conduc-
tance. Second, we describe in detail how the atomic structure
of the contact evolves, and we characterize the mechanical
processes that take place. The Au@110# and Au@100# contacts
are discussed more briefly with emphasis on features that are
new compared to the Au@111# simulation. For each contact
type ~crystal orientation! we present and discuss the results
of a single simulation, but the same general behavior has
been observed in other similar simulations. Finally, the Ni
results are compared to the Au results with respect to the
strength, stiffness, and shape of the contacts.

A. Au†111‡ contact

In agreement with previous simulations, we find that the
deformation of the contact in general proceeds by a sequence
of atomic rearrangements separated by stages of elastic de-
formation. This behavior is reflected in the tensile force, con-
ductance, and~smallest! cross sectional area, as shown in
Fig. 2 for a Au@111# contact. In the elastic stages, the atomic
structure remains basically unchanged while the contact is
elongated. Meanwhile, the force increases smoothly, ap-

FIG. 2. Tensile force,F, conductance,G, and area,A, as a
function of elongation for a Au@111# nanocontact. Each value ofF
is an average over 1 ps corresponding to 0.02 Å, whereas a data
point for A andG is calculated from a single atomic configuration
for each 0.1 Å.

57 3285MECHANICAL DEFORMATION OF ATOMIC-SCALE . . .



proximately linearly, and the conductance and area decrease
smoothly. At certain points, when the tension in the wire has
reached a high level, the system becomes mechanically un-
stable, and the atoms rearrange themselves into a different
structure. A rearrangement almost always shows up as a
sharp decrease~a jump! in the force@see labels 1–18 in Fig.
2~a!#. In most cases, a rearrangement also induces a sharper
decrease of the conductance. There are, however, structural
changes that do not affect the area at the thinnest point of the
neck, or the conductance, much. For instance, the force
jumps labeled 6, 9, 10, or 15 do not have simultaneous,
marked changes of conductance. We find that the force is a
sensitive probe of changes in the atomic structure.

The separation~i.e., the elongation! between two succes-
sive force jumps is in general smaller than an interlayer dis-
tance. The elongation length between the 1st and the 17th
jump is about 16.1 Å, which gives an average separation of
1.0 Å. This is less than half of the interlayer distance of 2.3
Å. On the other hand, some force jumps are more pro-
nounced than others. If one only considers the major jumps
~1–4, 7, 11, 13–14, 16!, an average separation of 1.9 Å is
found. At the end of the elongation, just before the breakage,
the contact has a single atom at the thinnest point, and the
conductance is close toG0. The pulloff force required to
break the final one-atom contact is around 1.1 nN in reason-
able agreement with the value of 1.560.2 nN reported by
Rubio et al.13

Results for the common neighbor analysis of the Au@111#
contact are shown in Fig. 3. There is a clear correlation be-
tween the number of CNA pairs in Fig. 3 and the force and
conductance in Fig. 2. At the time of a force jump, the num-
ber of pairs of type 422 suddenly changes, indicating a struc-
tural change. In between the force jumps, the number of 422

pairs is fairly constant. The number of pairs of the types 411,
433, 544, or 555 behaves similarly, except that it fluctuates
more in some stages.43

There are occasionally some ‘‘spikes’’ in the number of
411/433/544/555 pairs in Fig. 3~b!. The spikes are associated
with atomic rearrangements, and they could indicate that
some intermediate, disordered structures are present. We
have relaxed the extracted atomic configurations from the
~low-temperature! MD simulations to a local potential en-
ergy minimum to make sure that we are dealing with struc-
tures that are at least metastable and not just configurations
that were accidentally extracted at the time of one of the
atomic rearrangements. We find that after the relaxations,
some of the spikes have disappeared, while others remain,
however reduced in amplitude. In other words, some of the
configurations have turned into ordered structures similar to
the structures that are present after the rearrangements, while
others have ended up in disordered structures. The presence
of the latter structures indicates that the mechanical rear-
rangements from one ordered structure to another might be
incomplete and rather be composed of two rearrangements
with a disordered structure in between. It is possible, how-
ever, that these intermediate structures might to some extent
anneal out at higher temperatures and longer time scales.

In the 1st rearrangement, a partial slip has occurred in
three nonparallel close-packed$111% planes in a region
above the center of the contact. In a fcc lattice there are four
different sets of$111% planes, which lie parallel to the sides
of a regular tetrahedron. One set of planes, the~111! planes,
are perpendicular to thez axis. The other three sets of planes
are inclined to thez direction, and they are the active slip
planes in which slip can occur to relieve the tensile stress in
a contact during elongation. The three-plane slip is illustrated
schematically in Fig. 4~a!. The 2nd rearrangement is an al-
most exact mirror image of the first one, taking place in the
lower part of the contact. At the time of the 1st rearrange-
ment, the number of 422 pairs increases from zero to around
350, and during the 2nd rearrangement, it increases by al-
most the same amount to a total of nearly 700. The number
of 411/433/544/555 pairs increases from zero to 15 and 30,
respectively, and it is entirely an increase of 433 pairs. The
increase in the number of 422 pairs is due to the formation of
stacking faults caused by the slips in the three$111% planes.
Around an intrinsic stacking fault, the atoms in two$111%
layers find themselves in a hcp environment. A snapshot of
the contact after the 2nd rearrangement is shown in Fig.
5~A!. The atoms forming the non-fcc pairs are located in the

FIG. 3. CNA results for a Au@111# nanocontact. The number of
various types of pairs are shown as a function of elongation.~a! The
number of pairs of type 422.~b! The number of pairs of type 411,
433, 544, or 555.

FIG. 4. Schematic illustration of selected slip processes.~a! A
three-plane slip.~b! A simple single-plane slip.~c! A slip in two
nonparallel slip planes.
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two slip regions, one above and one below the center of the
contact. The atoms forming 422 pairs are located around the
slip planes~three sides of a tetrahedron!, and the atoms form-
ing 433 pairs are found at the intersection lines of the slip
planes~three edges of a tetrahedron!.

The structural defects created by the three-plane slip af-
fect the electronic potential that determines the conductance.
Inhomogeneities~scattering centers! are introduced in the
potential at points where the local density of atoms is re-
duced@Fig. 6~A!#. The largest inhomogeneities are located at

the corners of the ‘‘slip tetrahedra;’’ smaller ones are present
at the edges of the tetrahedra.

We believe that the occurrence of a three-plane slip is a
nanoscale effect driven by a reduction of the slip area. If a
slip were to occur in a single plane for a@111# contact, the
slip area would be very large, since the inclination angle
between the possible slip planes and thez direction is only
19.5°. Instead, the slip area is reduced by slipping in three
planes, which form three sides of a tetrahedron inside the
contact. For a wire of macroscopic dimensions, a dislocation
can be regarded as a line defect and the size of the slip area
is not important, but for nanocontacts, a slip is spread out
over a significant part of the slip area and therefore it is
favorable to reduce the area.

It has been common practice in the literature to discuss
the structure and deformation of a nanocontact in terms of
layers of atoms~perpendicular to thez axis!. The elongation
has been described as happening in a layer-by-layer fashion.
It is an intuitively appealing picture, but we find that it, in
general, is somewhat oversimplified. For instance, for a
three-plane slip, the atomic rearrangements extend over
many layers in the contact, and as a result, a profile of the
layer-by-layer structure would appear to be disordered in a
large region of the contact. But disorder is not a proper de-
scription in this case since we are dealing with well defined
defects, namely, stacking faults. We shall use the term ‘‘ac-
tive zone’’ to refer to the region in the contact where the
local atomic environment, given by the relative positions of
the neighbor atoms, has been changed by the rearrangement.

Turning to the 3rd atomic rearrangement, a snapshot of a
configuration after the rearrangement is shown in Fig. 5~B!.
The rearrangement is localized at the center of the contact.
Some of the defects in the region are removed by the pro-
cess; this is reflected as a decrease in the number of the 422
pairs in Fig. 3~a!. Disregarding the irregular layer structure
due to the stacking faults, it is reasonable to use the layer-
by-layer terminology and state that two layers of atoms are
rearranged into three layers. This accounts for an unusually

FIG. 5. Snapshots of atomic configurations of a Au@111# nano-
contact. The atoms are colored according to their local environment
as determined by CNA. Atoms that form at least one ‘‘bond’’ of
type 411, 433, 544, or 555 are colored gray. Atoms that do not form
any of these bonds but form at least one bond of type 422 are
colored black. The remaining atoms are colored white. Only atoms
in the ‘‘active’’ central region are shown.

FIG. 6. Contours of the one-electron potential in a cross section
through two configurations of a Au@111# contact. In configuration
A, inhomogeneities~scattering centers! are present, in particular at
the corners of the two slip-tetrahedra, and to a smaller extent at the
edges of the tetrahedra, where two stacking faults meet. In configu-
ration D, a large inhomogeneity is present slightly above the center
of the contact. This scattering center corresponds to a vacancy in an
otherwise perfectly ordered region.
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dramatic decrease in the cross-sectional area of approxi-
mately 1/3 during the rearrangement.

The following seven rearrangements~4–10! are difficult
to characterize in simple terms. Slips play an important role
in most cases, but they are accompanied by other atomic
displacements, of which many are irregular compared to,
e.g., the collective motion during a slip. The active zone
extends in most cases over a large region in the upper part of
the contact. The remarkable net result is that after the 10th
rearrangement, the upper half of the contact appears to have
a completely well ordered fcc structure@Fig. 5~D!#. There is,
however, a vacancy present inside the contact and it clearly
shows up in the one-electron potential used for the conduc-
tance calculations@Fig. 6~D!#. The effect of such a scattering
source on the conductance has been investigated in Ref. 42.
Along the way, there are stages in which the contact contains
locally disordered structures. This is in particular the case
between the 7th and 9th processes, and to a smaller extent
between the 4th and 6th processes. The disorder shows up in
a higher number of 411/433/544/555 pairs in Fig. 3~b!. As an
example, a snapshot of the system between the 8th and the
9th rearrangements is seen in Fig. 5~C!. The atomic rear-
rangements preferably take place at disordered regions, and
the rearrangements tend to reduce the amount of disorder.
The vacancy, which shows up in the potential in Fig. 6~D!, is
created during the 7th–9th rearrangements and it remains
there for the rest of the elongation. At longer time scales and
higher temperatures, vacancies might migrate to the surface
by diffusion.

The 11th and the 12th rearrangements can be described as
local order-disorder and disorder-order processes. In the 11th
rearrangement, the ordering is destroyed in four~111! layers
@Fig. 5~E!#, and in the 12th process, the atoms in this active
zone orders into five~111! layers@Fig. 5~F!#. The addition of
an extra~111! layer gives rise to an extrinsic stacking fault,
as visualized by the black atoms in Fig. 5~F!.

The next rearrangement, the 13th, actually consists of two
processes. In the middle of the contact, there is a local rear-
rangement where four~111! layers turn into five layers, but
at the same time, thereverseof the 3rd rearrangement, i.e.,
the three-plane slip, occurs in the lower part of the contact.
The rearrangements can be understood in the following way.
The three-plane slip results in a rather unfavorable, strained
structure, as mentioned above, and it takes a certain tensile
force to keep this structure from ‘‘slipping back’’ to the per-
fect structure. As the contact gets thinner, the contact be-
comes unable of supporting a high tensile force. The 13th
rearrangement begins in the middle of the contact where the
local rearrangement induces a decrease in the tensile force to
a low value@see the ‘‘dip’’ in the force in Fig. 2~a!#. At this
point, the tensile force is too small to keep the unfavorable
structure; the defected structure becomes unstable and disap-
pears by a reverse three-plane slip.

The 14th and the 15th rearrangements are local order-
disorder and disorder-order processes, respectively, similar
to the 11th and 12th rearrangements. After the 16th rear-
rangement and for the rest of the elongation, the structure at
the narrowest point of the contact appears disordered. This is
hardly surprising, considering the small thickness of the con-
tact and the high state of stress. A snapshot of the system just
before the final rupture is shown in Fig. 7~a!.

There is a noteworthy correlation between the degree of
ordering of the atomic structure and the strength of the nano-
contact. The peak values of the tensile force just before the
rearrangements tend to be smaller for disordered contacts
~e.g., the 5th, 6th, 8th, 9th, and 12th rearrangements! com-
pared to well-ordered contacts of similar thickness. The issue
of the tensile strength of nanocontacts is discussed further in
Sec. III D.

B. Au†110‡ contact

The deformation of the Au@110# contact differs substan-
tially from that of the Au@111# contact. For a contact oriented
along the @110# direction, two sets of close-packed$111%

FIG. 7. Snapshots of atomic configurations from MD simula-
tions of Au nanocontacts. The pictures show, from two different
viewpoints, the final configuration just before rupture of three dif-
ferent contacts:~a! Au@111#, ~b! Au@110#, and~c! Au@100#.
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planes lie parallel to thez axis, and these planes are inactive
with respect to slip. The remaining two sets of$111% planes
are the possible active slip planes. The inclination angle be-
tween the active slip planes and thez direction is relatively
large, 54.7°, and therefore, the slip area for a single-plane
slip is relatively small for a@110# contact, as opposed to a
@111# contact. The elongation can be divided into two stages.

In the first stage, which consists of the first 11 rearrange-
ments, the deformation takes place by slip in the two active
sets of slip planes. The 1st and 2nd rearrangements are ordi-
nary partial slips, each occurring in a single$111% slip plane.
The slips leave behind two intersecting stacking faults@Fig.
8~A!#. Most of the slips are of this type, but others are more
unusual. In the 3rd, 4th, and 8th rearrangements, a cluster of
atoms in the contact slips simultaneously intwo nonparallel

slip planes at the stacking faults. The 1st and 4th processes
are illustrated schematically in Figs. 4~b! and 4~c!, respec-
tively. The contact maintains a relatively ordered structure,
apart from stacking faults and intersections between stacking
faults. Due to the nature of the atomic rearrangements, the
shape of the contact evolves asymmetrically. The cross sec-
tion at the thinnest point becomes very oblong as opposed to
the initial spherical shape@Fig. 8~B!#.

When there are only two atoms in the thin direction of the
smallest cross section, the nature of the deformation changes.
In the second stage, the deformation consists of local, irregu-
lar rearrangements at the narrowest point of the contact. Af-
ter the 14th rearrangement, the central region of the contact
gets into a state of permanent disorder, which lasts until the
contact breaks@Fig. 8~C! and Fig. 7~b!#.

The difference between the two regimes is reflected in the
force and conductance~Fig. 9! as well as the results of the
CNA method ~Fig. 10!. In the slip regime, the force and
conductance curves have a fairly regular sawtooth shape and
staircase shape, respectively. The distances between the re-
arrangements are quite similar with an average of 1.0 Å; this
is smaller than the interlayer distance of 1.4 Å. In the second
regime, the shape of the force curve is more irregular, and
the area decreases smoothly. The disorder shows up in the
CNA results as an increase in the number of pairs of type
411, 433, 544, or 555@Fig. 10~b!#. The absolute number of
these pairs is only around 20–50, but it is significant since
the pairs are located in the narrowest region of the contact.

C. Au†100‡ contact

For the Au@100# contact, the first six rearrangements are
dominated by multiple slips in several different$111% planes,
but on top of that, there are other, more irregular atomic
displacements. The active zone extends over 6–8 layers.

FIG. 8. Snapshots of atomic configurations of a Au@110# nano-

contact from two different viewpoints. Left: Seen from the@11̄0#
direction. Right: Seen from the@001# direction.

FIG. 9. Tensile force, conductance, and area as a function of
elongation for a Au@110# nanocontact.
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During the elongation process, there are stages during which
the contact is locally disordered. Although all four sets of
$111% planes can work as active slip planes for a@100#-
oriented contact, we find that slip mainly occurs in two sets
of planes, and this leads to an oblong cross section of the
contact, as for the Au@110# contact. The central region be-
comes permanently disordered in the last part of the simula-
tion.

The most remarkable feature of the simulation is the for-
mation of an unusually long chain of single atoms in the
middle of the contact. Just before the final rupture, the chain
consists of six atoms@Fig. 7~c!#. This is a rare structure in the
simulations. As a result of this atomic structure, there is a
plateau in the conductance curve atG0 over an elongation
length of about 10 Å. At this point we note that the interac-
tions between the atoms in the simulation are described using
an approximate method, and it is not clear how well the
method works for the very low-coordinated atoms in the
chain. Directional bonding effects might not be sufficiently
accurately described. For comparison, we have determined
the equilibrium interatomic distance,d, and force constant
per atom,K, for an infinite, one-dimensional chain of Au
atoms using density functional theory~DFT! calculations
within the local density approximation with a plane wave
basis set and pseudopotentials.44 For this worst-case ex-
ample, the results of the DFT calculations ared52.54 Å and
K58.8 eV/Å2. The EMT potentials yieldd52.47 Å andK
515.0 eV/Å2. It is also possible that the long chain would
not be stable at longer time scales and higher temperatures.

D. Differences between Au and Ni

The last part of the elongation process is particularly in-
teresting in the context of conductance quantization. For Au
contacts, we find a plateau in the conductance curve around
G0 when there is just a single atom in the thinnest cross

section of the contact; however, the lengths of the plateaus
are very different, as mentioned above. Steps at higher con-
ductance values can also be seen~e.g., close to 3G0 in Fig.
2!, but scattering from the boundary and vacancies will typi-
cally downshift or smear out these plateaus somewhat,42 in
accordance with experiments.

For Ni, the electronic structure is more complicated due to
thed states and it is not reasonable to describe the electrodes
by a free-electron model. Experiments show no statistical
tendency for quantized conductance values in the case of
Ni.19,45 Electronic effects might well be the reason why
quantized conductance is not observed in Ni as opposed to
Au. Returning to the mechanical behavior, we do find, how-
ever, that the mechanical behavior of Ni is different from
that of Au in the final part of the elongation. Contacts of Au
tend to be longer and smoother in the central region than in
Ni contacts, and Au contacts can be stretched longer than Ni
contacts~also when correcting for the difference in lattice
constant!. We often observe Ni contacts break at a cross
section of two atoms, or more; this is seldom observed for
Au contacts.

There are also some other quantitative differences be-
tween Au and Ni contacts, for instance, with respect to the
strength and stiffness of the contacts. The tensile strength
can be determined experimentally from measurements of the
conductance and tensile force by dividing the force with the
area estimated from the conductance. We find that the tensile
strength of Au contacts is around 4–6 GPa, in good agree-
ment with experimental measurements,11–13whereas Ni con-
tacts are significantly stronger with strengths in the range of
10–20 GPa. The elastic stiffness of the contacts depends on
the kind of metal through the Young’s modulus, which is
higher for Ni than for Au by approximately a factor of 3.
Contacts of Ni are thus much stiffer than contacts of Au.

IV. DISLOCATION GLIDE OR HOMOGENEOUS SLIP

As described above, a slip between close-packed$111%
planes is an important mechanism for the deformation of the
nanocontacts. A slip can take place by~at least! two distinct
mechanisms:~1! a glide of a dislocation and~2! a homoge-
neous shear of one plane of atoms over another plane of
atoms. Stalder and Du¨rig have recently suggested that there
should be a crossover from a dislocation-mediated slip to a
homogeneous slip when the radius of a contact becomes
smaller than a few nm.46 The reason for the crossover is that
the energy of a dislocation in the middle of a cylinder of
radiusR scales asRln(R/r0), whereas the energy required for
a homogeneous slip scales asR2. In this section, we investi-
gate the slip mechanisms in detail using the nudged elastic
band~NEB! method.47,48 The NEB method has been applied
recently for modeling the formation of a contact between a
Au tip and a Au surface.49

As an example, we consider the Au@110# contact. The 1st
atomic rearrangement is a slip, which takes place in a single
$111% plane@Fig. 4~b!#, and a stacking fault is introduced in
the contact. If we compress the contact after the slip has
occurred, there is a hysteresis effect: The contact keeps the
structure containing the stacking fault beyond the point at
which the slip occurred. For further compression, a ‘‘re-
verse’’ slip takes place at a contact length,z2, which is

FIG. 10. CNA results for a Au@110# nanocontact.
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smaller than the length,z1, at which the original slip oc-
curred. By the reverse slip, the stacking fault is removed, and
the original perfect structure is recovered. In Fig. 11~a! and
Fig. 11~b! are shown the tensile force and potential energy,
respectively, for an elongation-compression hysteresis loop
at T50 K.

The hysteresis reflects that for a contact with a length in
the hysteresis range betweenz2 andz1, there exist two dif-
ferent ~meta!stable atomic configurations: a ‘‘slipped’’ and
an ‘‘unslipped’’ configuration, each corresponding to a local
minimum of the potential energy. Initially, the unslipped sys-
tem has the lowest energy, but as the contact is elongated,
the slipped system becomes the most favorable. The reason
for the hysteresis is that the two configurations are separated
by an energy barrier~activation energy!, and the contact will
stay in a given configuration for a certain time, even when
the other configuration has become more energetically favor-
able. AtT50 K, the transition from one configuration to the
other occurs when the barrier vanishes. This happens when

the energy minimum corresponding to the initial configura-
tion vanishes, i.e., when the initial configuration becomes
unstable. At a finite temperature,T, the transition occurs
with a rate proportional to exp@2Ea/(kBT)#, whereEa is the
energy barrier andkB is the Boltzmann constant. Hysteresis
effects in the loading-unloading behavior have been ob-
served in experiments as well as in previous simulations.11,20

In general the situation is more complicated than sketched
above, since there is not just one possible process but rather
a variety of possible processes with different rates.

We have used the NEB method for calculating a mini-
mum energy path~MEP! for the transition between the two
metastable configurations for a number of different contact
lengths@Fig. 11~d!#. The MEP is such that at any point along
the path, the potential energy increases for displacements
perpendicular to the path. In the NEB method, a discretized
path of 26 replicas of the system is constructed by linear
interpolation between the initial and final configurations, and
then optimized iteratively. The energy barrier for a transition
is given by the maximum energy along the MEP~at the
transition state! minus the energy at the initial configuration.
The energy barriers for the forward and backwards slips are
shown in Fig. 11~c!.

Our results offer an explanation why there is a good quan-
titative agreement between the MD simulations and experi-
ments regarding the tensile strength, despite the large differ-
ence in time scales. At room temperature, a time scale
difference of 108 between MD simulations and experiments
is equivalent to an increase in activation energy of about 0.5
eV. But it can be seen from Fig. 11~c! that such a change in
activation energy can be induced by a change in elongation
on the order of 0.6 Å, which corresponds to a reduction in
maximum force of only about 20%. This estimate indicates
that the increased time available for thermal activation in an
experiment, compared to a MD simulation, does not reduce
the tensile strength very much at room temperature or below
for contacts of the present thickness.

The MEP obtained from the NEB calculation allows us to
study in detail the motion of the atoms during a slip. The
illustration of the transition state in Fig. 12~a! shows that the
atoms at the slip plane move in an inhomogeneous manner.
The slip occurs by glide of a Shockley partial dislocation
nucleated at the surface of the contact.50 To investigate the
question of size effects in the slip mechanisms, we have
performed calculations for thinner Au@110# contacts with an
otherwise similar shape, and the results support the notion of
a size dependent crossover from dislocation glide to a homo-
geneous slip. For the contacts with diameters of 6.5dNN or
5.5dNN , the slip mechanism is a dislocation glide, but for
contacts with diameters of 4.5dNN @see Fig. 12~b!# or
3.5dNN , the slip is homogeneous. The simulations suggest
that the crossover diameter is around 1563 Å.

V. EFFECTS OF A SOFT CANTILEVER
IN AN EXPERIMENT

When comparing the simulation results to experimental
measurements of force and conductance, caution is required
in cases where the experimental setup has a small elastic
stiffness. Rubioet al. have measured simultaneously the
force and conductance during the formation and rupture of

FIG. 11. A loading-unloading hysteresis loop for a slip process
in a Au@110# contact.~a! The tensile force and~b! potential energy
during elongation and compression atT50 K. ~c! The potential
energy barrier for the forward and backwards slip.~d! The potential
energy along the MEP for four different contacts.
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atomic-sized Au contact using the following procedure.13 A
sample of Au was mounted at the free end of a cantilever
beam. A STM tip of Au was indented into the surface and
then retracted. The indentation created a contact between the
tip and sample, and during the tip retraction, the contact was
stretched until it broke. The deflection of the cantilever was
measured by an atomic force microscope~AFM!, and the
force was determined as the deflection of the cantilever mul-
tiplied by the effective spring constant of the cantilever. In
order to get sufficiently large deflections for forces in the nN
range, a soft cantilever was required. Rubioet al. used can-
tilevers with spring constants of 25 N/m~Fig. 1 in Ref. 13!
and 35 N/m~Fig. 2 in Ref. 13!. These values are on the order
of the intrinsic effective spring constant of the nanocontact.
In this section, we show that the results measured with a soft
cantilever are significantly different from those that would
have been obtained with a stiff setup.

In an experiment of the type described above, the length
of the nanocontact cannot be directly controlled as opposed
to the MD simulations. The inset in Fig. 13 shows a sketch
of an ~idealized! experimental setup. Instead of pulling the
contact itself, one pulls a spring attached to the contact, and
the mechanical response of the combined system consisting
of the nanocontact and the apparatus~represented by the
spring! is measured. The MD simulation results correspond
to an infinitely large spring constant.

We model the influence of the cantilever as follows. The
displacement of the upper end of the spring and the displace-
ment of the nanocontact are denotedzs andzn , respectively.
Only the former can be directly controlled. From the MD
simulations, we have calculated the tensile force as a func-
tion of the displacement of the nanocontact,F(zn). Let us
assume that we start the experiment with an unstretched con-
tact and an unstretched spring. We now increasezs stepwise,
and in each step we determine a new~larger! value ofzn such
that the system is balanced. In other words, for each value of
zs, we increase~in small steps! zn until the neck forceF(zn)

equals the spring forcek3(zs2zn). By this procedure, we
can ‘‘transform’’ the simulated force curves and conductance
curves,F(zn) andG(zn), into the experimental curves,F(zs)
andG(zs).

Results of the model are shown in Fig. 13 for a spring
constant ofk525 N/m. The original simulation data are for
the Au@111# nanocontact~Fig. 2!. There are basically two
effects of adding the spring to the system. First, in the elastic
stages, the neck is stretched at a lower rate, because the
spring is also stretched at the same time. Second, the spring-
contact system becomes unstable when the magnitude of the
slope of the force curve~during the atomic rearrangements!
exceeds the spring constant. This happens during the atomic
rearrangements, and as a result, the contact is suddenly~dis-
continuously! stretched by a finite amount. Figure 13~a!
shows how the length of the contact changes at a noncon-
stant rate, even though the end of the spring is pulled at a
constant rate. It implies that certain ranges ofzn @andF(zn)
andG(zn)# are not probed.

The nonadiabatic deformation of the contact has very no-
ticeable consequences for the measured force and conduc-
tance curves, as shown in Fig. 13~b! and Fig. 13~c!. The
slope of the force curve becomes smaller in the elastic
stages. More importantly, when the length of the contact
suddenly changes due to the instabilities in the spring-
contact system, intermediate peaks in the force curve may
not be probed. Regarding the conductance curve, the pla-
teaus appear more horizontal during the elastic deformation,
and the conductance jumps by a larger amount during an

FIG. 12. The transition state for a slip in two Au@110# contacts.
The atoms in the$111% layers on each side of the slip plane are
shown as white and black circles, respectively. The arrows show the
displacement vector of the white circles.~a! A dislocation-mediated
slip for a contact diameter of 6.5dNN . The thick line is a guide to
the eye and it indicates an approximate location of the dislocation
line. The arrows illustrate the Burgers vector of a Shockley partial
dislocation, which moves from the left to the right in the picture.
The dislocation is a screw dislocation since the Burgers vector is
parallel to the dislocation line.~b! A homogeneous slip for a contact
diameter of 4.5dNN .

FIG. 13. The effect of a cantilever in an experiment. The thin
solid lines show the MD simulation results from Fig. 2, and they
correspond to an infinitely large effective spring constant of the
cantilever. The circles are for a spring constant of 25 N/m~same as
in Fig. 1 in Ref. 13!. ~a! The elongation of the contact,zn , ~b! the
tensile force, and~c! the conductance are shown as a function of
spring displacement,zs. Inset: Sketch of the model of the experi-
ment.
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instability, because a range ofG(zn) is skipped. Thus, a
rather smooth conductance curve may transform into a
stepped curve. The intermediate force peaks that are not de-
tected, most often correspond to disordered contacts since
these are generally weaker than well-ordered contacts. An-
other effect of the spring is that hysteresis effects in the
loading-unloading behavior are exaggerated, since the spring
is also elongated or compressed. Since information is lost in
the experiment due to the instabilities, the measured results
can not be ‘‘transformed’’ into the results that would have
been obtained with a stiff cantilever.

VI. CONCLUSIONS

In conclusion, we find a variety of different atomic rear-
rangement mechanisms dependent on the size, shape, crystal
orientation, and degree of structural order of the contacts.
For relatively thick contacts, the deformation preferentially
takes place by slip in one or several close-packed$111%
planes. When slip occurs in several nonparallel planes, de-
fects and disorder can be introduced. When disordered re-
gions are present, the subsequent deformation mechanisms
tend to involve the atoms in these regions, thereby changing
the atomic structure and in general reducing the amount of
disorder. In this way, disorder often anneals out again during
the elongation process, but vacancies can be created and re-
main in the contacts. In this regime, the active zone extends
over relatively many atomic layers in the contact. We ob-
serve a size-dependent crossover for the single-plane slip
mechanism. For thicker contacts, the slip occurs by glide of
a dislocation nucleated at the surface of the contact, whereas
for thinner contacts, the slip is a homogeneous shear of one
plane of atoms over another plane. The crossover takes place
at a contact diameter around 1563 Å.

When the wire has become relatively thin, the nature of
the deformation changes. The atomic rearrangements be-
come more irregular and localized; the active zone typically
extends over 2–4 layers. Contacts with an oblong cross sec-
tion, perpendicular to thez direction, tend to become perma-

nently disordered in the narrowest region for the last part of
the elongation until rupture of the contact. This mainly hap-
pens for contacts oriented along the@110# or the@100# direc-
tion, whereas contacts oriented along the@111# direction are
more rotationally symmetric. Disordered contacts tend to be-
come longer and thinner than ordered contacts in the last part
of the elongation. We find that contacts with regions of struc-
tural disorder are weaker than well-ordered contacts of simi-
lar thickness.

We have shown that caution is required when comparing
results of computer simulations to experimental results ob-
tained with a setup that has a stiffness comparable to the
stiffness of the nanocontact. A small stiffness can, for in-
stance, arise from a soft cantilever or from the flexibility of
macroscopic wires. As an effect of a soft apparatus, the
length of the nanocontact cannot be controlled directly. Due
to instabilities in the cantilever-contact system, there are con-
tact lengths that are not probed during an experiment, and as
a consequence, one may not detect all atomic rearrange-
ments. Conductance plateaus become more flat, and jumps in
conductance or force become more pronounced. Well-
ordered contact structures, which are relatively strong, will
tend to be probed rather than weaker, disordered structures.
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41M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B

31, 6207~1985!.
42M. Brandbyge, K. W. Jacobsen, and J. K. No”rskov, Phys. Rev. B

55, 2637~1997!.
43The fluctuations in the number of pairs are in themselves indica-

tors of an unusual atomic environment. The fluctuations can be
caused by atoms moving in and out of the cutoff range for
neighbor atoms. This happens when there are subpeaks in the
radial distribution function~RDF! at the cutoff distance. For a
contact with a perfect fcc structure, there are no such peaks,
since the cutoff distance is chosen to be exactly in between the
positions of the first and second peaks of the RDF in fcc bulk.

44B. Hammer and J. K. No”rskov, Surf. Sci.343, 211 ~1995!, and
references therein.

45L. Olesen, Ph.D. thesis, University of Aarhus, 1996.
46A. Stalder and U. Du¨rig ~unpublished!.
47M. Villarba and H. Jo´nsson, Surf. Sci.317, 15 ~1994!.
48G. Mills, H. Jónsson, and G. K. Schenter, Surf. Sci.324, 305

~1995!.
49M. R. So”rensen, K. W. Jacobsen, and H. Jo´nsson, Phys. Rev. Lett.

77, 5067~1996!.
50This kind of dislocation nucleation and propagation has also been

observed for sliding friction between a Cu tip and a Cu surface
in M. R. So”rensen, K. W. Jacobsen, and P. Stoltze, Phys. Rev. B
53, 2101~1996!.

3294 57SO” RENSEN, BRANDBYGE, AND JACOBSEN


