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Quantum Transport: The Link between Standard Approaches in Superlattices
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Mikroelektronik Centret, Bldg 345 east, Danmarks Tekniske Universitet, 2800 Lyngby, Denmark
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Theories describing electrical transport in semiconductor superlattices can essentially be divided in
three disjoint categories: (i) transport in a miniband; (ii) hopping between Wannier-Stark ladders; and
(iii) sequential tunneling. We present a quantum transport model, based on nonequilibrium Green
functions, which, in the appropriate limits, reproduces the three conventional theories and describes the
transport in the previously inaccessible region of the parameter space. [S0031-9007(97)04960-0]

PACS numbers: 73.61.– r, 72.10.–d, 72.20.Ht

Ever since the pioneering work of Esaki and Tsu [1],
which drew attention to the rich physics and potential
device applications of semiconductor superlattices, these
man-made structures have remained a topic of intense re-
search. Semiconductor superlattices have proven to be a
fruitful platform for studying a wide range of transport
phenomena, such as their intrinsic negative differential
conductivity [2], the formation of electric field domains
[3], Bloch oscillations [4], as well as dynamical localiza-
tion [5] and absolute negative conductance [6] under ex-
ternal irradiation, just to mention a few.

These phenomena depend crucially on the relations of
the energy scales involved, namely, the zero-field mini-
band width (which is 4 times the interwell couplingT1),
the scattering rateGyh̄, and the potential drop per pe-
riod (; eFd, whereF is the applied static field andd is
the superlattice period). Three distinct approaches have
been used to describe transport in the parameter space
spanned bysT1, eFd, Gd: miniband conduction (MBC)
[1,7], Wannier-Stark hopping (WSH) [8], and sequential
tunneling (ST) [9,10]. While the ranges of validity of the
different approaches have been addressed qualitatively be-
fore [11–14], no explicit calculations have been presented
where the different ranges can be identified and the tran-
sition between them can be studied. In the present Letter
we present such a calculation, based on nonequilibrium
Green functions. The calculated current-field relations are
shown to reflect the results from the simple approaches
(MBC, WSH, and ST, which will be reviewed below) in
their respective ranges of validity sketched in the “phase
diagram” presented in Fig. 1. While similar diagrams
have been obtained in Refs. [13,14] from more phe-
nomenological arguments, we will derive the borderlines
from our Green function analysis here.

Now, we introduce the model assumptions which will
be used in each of the following approaches. We restrict
ourselves to the lowest miniband of the superlattice. Our
basis sets are orthonormal wave functionsCnszdeisk?rdyA
where thez direction denotes the growth direction. The
Cnszd  Csz 2 ndd are localized in welln (for example,
one may use the Wannier functions). Herer andk denote
two-dimensional vectors within thesx, yd plane (with area
A) which is assumed to be separable from thez direction.

For parabolic dispersionEk  h̄2k2y2m (with the effec-
tive massm of the conduction band) we thus have a con-
stant density of statesr0  myp h̄2 per area and period.
The single-particle part of the Hamiltonian within nearest
neighbor coupling is then given by

ĤSL
n,m  sdn,m21 1 dn,m11dT1 1 dn,msEk 2 neFdd .

(1)

Furthermore we consider a phenomenological scattering
process atd potentials with densityNd and matrix element
dn,mVyA, leading to a scattering rate1yt0  G0yh̄ 
NdpV 2r0yh̄ between thek states within a given well.
Finally, we assume that the inscattering term is deter-
mined by a Fermi distributionnFsEd  h1 1 expfsE 2

mdykBTegj21 with electron temperatureTe and chemical
potentialm. This assumption establishes internal energy
relaxation without specifying the corresponding processes
in detail. It has been implicitly used in the standard ap-
proaches [7,8,10] as well.

Miniband conduction.—For zero electric field Eq. (1)
is diagonalized by a set of Bloch functionswqszd P

n einqdCnszd and the dispersion relation is given by the

FIG. 1. Regimes where the different transport models are
valid for low electron densities and low temperatures. (For
illustrative purpose we have translated the conditiona ¿ b in
the text toa . 2b, wherea andb denote the respective energy
scales involved.)
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minibandEsqd  2T1 cossqdd. The stationary Boltzmann
equation for the distribution functionfsq, kd is then

eF
h̄

≠fsq, kd
≠q


nFfEsqd 1 Ekg 2 fsq, kd

tfEsqd 1 Ekg
, (2)

where the relaxation-time approximation corresponds to
our assumption on scattering mentioned above. For our
scattering model, we obtain the relaxation timetsEd  t0

for E $ 2jT1j and tsEd  pt0y arccoss2Ey2jT1jd for
22jT1j # E , 2jT1j. Equation (2) is solved numerically
and the current is calculated from

JsFd 
e

4p3h̄

Z
d2k

Z pyd

2pyd
dq fsq, kd

dEsqd
dq

. (3)

The electron density per period is given by

N2D 
d

4p3

Z
d2k

Z pyd

2pyd
dq fsq, kd (4)

and is used to determine the chemical potential [which is
field dependent due to the energy dependence oftsEd] for
a given electron density. This approach can be extended
beyond the relaxation-time approximation [15,16], but the
generic features remain unchanged.

Wannier-Stark hopping.—In the presence of an electric
field, the eigenstates of the Hamiltonian become the local-
ized Wannier-Stark states,

fnszd 
X
n

Jn2n

µ
2T1

eFd

∂
Cnszd , (5)

with energy En  2neFd where Jnszd is the Bessel
function of the first kind. Scattering causes hopping
between the different states. Within Fermi’s golden rule,
the current is given by

JsFd 
X
l.0

l
e
t0

X
n

∑
Jn

µ
2T1

eFd

∂
Jn2l

µ
2T1

eFd

∂∏2 1
2p2

3
Z

d2k fnFsEkd 2 nFsEk 1 leFddg . (6)

Here the term
P

fJnJn2lg2 arises due to the spatial overlap
of the Wannier-Stark functions, and the Fermi functions
reflect our assumption regarding inscattering. The electron
density per period is given by

N2D  r0kBTe ln

∑
1 1 exp

µ
m

kBTe

∂∏
, (7)

which relatesm to N2D . Again, it is possible to generalize
this approach to more realistic scattering mechanisms
[17,18].

Sequential tunneling.—In this approximation the phase
information is lost after each tunneling event between ad-
jacent wells. The scattering within a well is treated self-
consistently by solving for the spectral functionsAsE , kd;
in this work we use the self-consistent Born approximation
[19] for the self-energy. The transitions to neighboring

wells are calculated in lowest order of the coupling yield-
ing [14,19,20],

JsFd 
e

2p2

Z
d2k

Z dE

2p h̄
T2

1 AsE , kdAsE 1 eFd, kd

3 fnFsE d 2 nFsE 1 eFddg . (8)

The carrier density is given by

N2D 
1

2p2

Z
d2k

Z dE

2p
nFsE dAsE , kd . (9)

This approach gives quantitative agreement with experi-
ments in weakly coupled structures when realistic models
for impurity and interface scattering are employed [10,14].

The important issue to recognize is that these three
approaches treat scattering, external field, and coupling
within different approximations. MBC does not properly
include field-induced localization because of its inherent
assumption of extended states, WSH treats scattering in
lowest order perturbation theory (in particular, there is
no broadening of the states), and ST is explicitly low-
est order in the interwell coupling. In contrast to these
shortcomings, a full quantum transport theory, based on
nonequilibrium Green functions [21], is able to treat scat-
tering, electric field, and coupling on equal footing. Such
an approach was performed in Ref. [13] using a basis of
Wannier-Stark states and restricting the analysis to a high
electron temperature. Here we work within the basis
Cnszd and consider the general situation which allows an
analysis of transitions between the simplified approaches
MBC, WSH, and ST.

Nonequilibrium Green functions (NGF).—Here the
current and electron density are given by [19,21]

JsFd 
e

2p2

Z
d2k

2
h̄

RehT1G,
n11,nst, t, kdj , (10)

N2D 
1

2p2

Z
d2k G,

n,nst, t, kd , (11)

where G,
m,nst, t0, kd  ikay

n st0, kdamst, kdl, and ay
n st, kd

and anst, kd are the creation and annihilation operators
for the stateCnszdeisk?rdyA in well n. We also need
the retarded Green function,Gret

m,nst, t0, kd  2iQst 2

t0d khamst, kd, ay
n st0, kdjl, where hA, Bj denotes the anti-

commutator. In the stationary state the Green functions
depend only on the time differencet  t 2 t0, and we
define the Fourier transformation via [21]

Gm,nsE , kd 
Z

dt eifE 2eFdsn1mdy2g sty h̄d

3 Gm,nst, t 2 t, kd . (12)

Without scattering between thek states and atT1  0
the Green functions are diagonal in the well index:
Gret

m,nsE , kd  dm,ngret
n sE , kd with the free particle Green
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function gret
n sE , kd  1ysE 2 Ek 1 i01d. The full

Green function is then determined by the Dyson equation,

Gret
m,nsE , kd  gret

m

√
E 1 eFd

m 2 n
2

, k

!

3

"
dm,n 1

X
l

S
ret
m,l

√
E 1 eFd

l 2 n
2

, k

!

3 Gret
l,n

√
E 1 eFd

l 2 m
2

, k

!#
.

(13)

Within the self-consistent Born approximation for the
scattering the self-energy can be written as

Sret
m,nsE , kd  dm,nS̃ret

n sE , kd 1 T1dm11,n 1 T1dm21,n ,
(14)

with S̃ret
n sE , kd  NdyA

P
k0 V 2Gret

n,nsE , k0d. If the scat-
tering termS̃ret

n is neglected, the solution corresponds to
the Wannier-Stark states (5). On the other hand, neglect-
ing the couplingT1 gives the spectral functions used in the
sequential tunneling model. Equations (13) and (14) are
solved self-consistently forGret. ThenG, is calculated
via the Keldysh equation [21],

G,
m,nsE , kd 

X
m1

Gret
m,m1

µ
E 1 eFd

m1 2 n
2

, k
∂

3 S̃,
m1

∑
E 1 eFd

µ
m1 2

m 1 n
2

∂
, k

∏
3 Gadv

m1,n

µ
E 1 eFd

m1 2 m
2

, k
∂

. (15)

According to our general assumption about inscattering we
replaceS̃,

msE , kd by its equilibrium value22inFsE d 3

ImhS̃ret
m sE , kdj. Finally, the current and electron density

are calculated via Eqs. (10) and (11). The extension of
this model to more realistic scattering processes is straight-
forward by using the respective self-energies in Eqs. (14)
and (15) and relaxing the assumption about inscattering,
although the calculations become very tedious (see, e.g.,
Ref. [22] where NGF has been applied to the resonant tun-
neling diode).

In Fig. 2 we display the evolution of the current-field
relations for the different models from weakly to strongly
coupled superlattices. The curves for MBC, ST, and NGF
are qualitatively similar for all couplings. For low electric
fields the current increases linearly with the electric field.
Then there is a peak at intermediate fields, and negative
differential conductivity occurs at higher field. For small
T1 as well as for high fields the result from ST is in
quantitative agreement with the NGF result, while the
results deviate for largerT1. In contrast, the result from
MBC is in quantitative agreement with the NGF result
for large T1 and smalleFd. The WSH result diverges
for eFd ! 0 [17], but approaches the NGF result for

FIG. 2. Current-field relations calculated from nonequilibrium
Green functions (NGF) in comparison with the standard
approaches forN2D  0.2G0r0 and kBTe  0.2G0. For T1 
1.5G0 the current-field relation is also shown over a wider field
range in the inset. Here, one can see explicitly that the NGF
result leaves the MBC curve foreFd * T1 and approaches the
ST and WSH curves for large fields.

large fields. These results as well as further calculations
for kBTe , G, N2D , r0G are summarized by Fig. 1,
depicting the respective regions in parameter space, where
the different approaches approximate the NGF result.

Now we want to justify these ranges of validity by
studying the quantum mechanical correlation between the
wells n andm given by the retarded Green function. For
a constant scattering self-energyS̃ret

n sE , kd  2iGy2, of
Eqs. (13) and (14), we have found an analytic solution

Gret
m,nsE , kd 

X
a

Jm2as 2T1

eFd dJn2as 2T1

eFd d

E 2 eFds m1n
2 2 ad 2 Ek 1 i

G

2

,

(16)

which is a superposition of broadened Wannier-Stark
states. The Wannier-Stark ladder becomes resolved if
eFd ¿ G. This defines the region of validity for the
WSH approach, as indicated by the right region in Fig. 1.
By Fourier transforming we obtain

Gret
m,nst, t 2 t, kd  2 iQstdin2meihfsm1ndy2geFd2Ek j sty h̄d

3 e2Gty2 h̄Jm2n

∑
4T1

eFd
sin

µ
eFd
2h̄

t

∂∏
.

(17)

Here the termsGret
n61,n become of the order ofGret

n,n when
jJ0j ø jJ61j, i.e., j4T1yseFdd sinseFdty2dj ø

p
2. This

can be used as an estimate for the boundary between lo-
calization and delocalization. Because of the exponen-
tial factor in Eq. (17) onlyt , 2h̄yG is of relevance.
If eFd . G the magnitude of the sine takes the aver-
age valueø1y

p
2. Then we find2jT1j ø eFd. If, on

the other hand,eFd , G we may replace sinsxd ø x and
have2jT1j ø G at the timet 

p
2 h̄yG. From these es-

timates we conclude that the states are essentially delo-
calized if 2jT1j ¿ G and2jT1j ¿ eFd. In this case the
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FIG. 3. Current-field relations for (a) high electron density
(N2D  2G0r0 and kBTe  0.2G0) and (b) high electron tem-
perature (kBTe  3G0 and N2D  0.2G0r0) for the different
approaches. Note that the MBC result deviates from the NGF
result ateFd * N2Dyr0 in (a).

miniband states form a useful basis as indicated in the up-
per left part of Fig. 1. On the other hand, for2jT1j ø G

or 2jT1j ø eFd the correlation functionsGret
m,n vanish for

m fi n and the states are essentially localized so that the
sequential limit can be used, as indicated in the lower part
of Fig. 1.

For larger electron densities the agreement between the
different approaches becomes better as shown in Fig. 3(a).
These results together with further calculations indicate
that ST is also valid ifN2Dyr0 * 2jT1j, and MBC is
also valid ifN2Dyr0 * G andN2Dyr0 * eFd. A similar
trend is found for higher electron temperatures [Fig. 3(b)].
This agrees with the analytic findings of Ref. [13] where
it is shown that NGF gives the same result as MBC in the
limit kBTe ¿ jT1j, eFd.

In conclusion, we have explicitly shown that a transport
calculation based on nonequilibrium Green functions con-
tains the simple approaches MBC, WSH, and ST as limit-
ing cases. For low temperature and low electron density
the ranges of validity of the simplified approaches are
depicted in Fig. 1, while for higher electron densities or
temperatures, these ranges are enlarged. The essential

message of our analysis is that for wide regions in parame-
ter space (but not everywhere) a simplified theory can be
found, which approximates the full theory satisfactorily.
This should have important consequences for practical de-
vice modeling, where other complications, such as realistic
scattering mechanisms, must be considered as well.

A. W. acknowledges financial support by the Deutsche
Forschungsgemeinschaft.
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