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Fault Tolerant Control based on Active Fault Diagnosis

Henrik Niemann

Abstract— An active fault diagnosis (AFD) method will be
considered in this paper in connection with a Fault Tolerant
Control (FTC) architecture based on the YJBK parameteri-
zation of all stabilizing controllers. The architecture consists
of a fault diagnosis (FD) part and a controller reconfiguration
(CR) part. The FTC architecture can be applied for additive
faults, parametric faults, and for system structural changes.
Only parametric faults will be considered in this paper.

The main focus in this paper is on the use of the new
approach of active fault diagnosis in connection with FTC.
The active fault diagnosis approach is based on including
an auxiliary input in the system. A fault signature matrix
is introduced in connection with AFD, given as the transfer
function from the auxiliary input to the residual output. This
can be considered as a generalization of the passive fault
diagnosis case, where the diagnosis is only based on a residual
vector. The fault diagnosis is then derived by on-line tests by
using the residual vector.

I. INTRODUCTION

The area of fault tolerant control has received an increas-
ing interest in recent years. The reason is the growing com-
plexity of the control systems. This motivates the interest
in the design of fault tolerant control systems, where the
objective is to disallow one or several faults to develop into
an overall system failure. This has resulted in an increasing
research in the area of reliable and fault tolerant control of
dynamic systems. A good introduction to the area can be
found in [2], [18] and in the references herein. In the past
years, a number of theoretic results has also been presented
in this area, see e.g.[12], [20], [22], [23], [27].

One of the theoretic results that has been developed
in this area is the FTC architecture based on the YJBK
parameterization of all stabilizing controllers. A detailed
description of the FTC architecture can be found in [12],
[13], [14], [20]. The architecture consists of a fault diagnosis
part and a controller reconfiguration part. Both the fault
diagnosis part as well as for the controller reconfiguration
part, standard methods can be applied. The main focus in
[12], [13], [14], [20] has been on the CR part of the FTC
architecture.

The architecture based on the YJBK parameterization
results in a separation between the nominal (fault free)
part of the closed loop system and the faulty part of
the closed loop system. The equivalent separation between
performance and robust stability has been shown in [21]
when the YJBK controller parameterization is applied.

Minor attention has only attented until now the FD part
of this FTC architecture. Just like the CR part, standard
fault diagnosis methods can be applied directly. The FTC
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architecture directly gives a residual vector from where
the possible faults in the system must be detected and/or
isolated. Methods as e.g. CUSUM and GLR test, [1], can
directly be applied for the fault diagnosis. These methods
are known as passive fault diagnosis methods, i.e. the
diagnosis is only based on available signals in the system.
Instead, active fault diagnosis methods can be applied. Here,
an auxiliary vector input is applied in connection with the
fault diagnosis. Using a dedicated external input vector on
the system will in general result in a much better and faster
fault diagnosis. One active fault diagnosis method has been
described in [3], [4], [16], [17]. The active fault diagnosis
method described in [3], [4], [16], [17] is based on an off-
line design of the auxiliary signal applied on the system
followed by on-line tests.

The main focus in this paper will be a description of ac-
tive fault diagnosis methods in closed-loop systems and the
application of the method in the general FTC architecture.
Here, it will be shown how the use of active fault diagnosis
will increase the possibility for fault detection and isolation.

II. SYSTEM SETUP

Consider the following generalized nominal system:

ΣP :

⎧⎪⎪⎨
⎪⎪⎩

z = Gzww + Gzdd + Gzuu

e = Geww + Gedd + Geuu

y = Gyww + Gydd + Gyuu

(1)

where d ∈ R r is a disturbance signal vector, u ∈ R m the
control input signal vector, e ∈ R q is the external output
signal vector to be controlled, y ∈ R p is the measurement
vector, w ∈ R k and z ∈ R k are external input and output
vectors. The connection between the external output and
the external input is given by

w = θz

where θ is a diagonal matrix given by

θ = diag(θ1, · · · , θi, · · · , θk)

represent the parametric faults in the system. We will use
the notation θi �= 0 as a short form for

θ = diag(0, · · · , 0, θi, 0, · · · , 0)

i.e. θ j = 0, j �= i.
Note that the above description is also applied in con-

nection with description of systems including model uncer-
tainties, see e.g. [26]. Closing the loop from w to z in ΣP

by using θ, we get

ΣP,θ = Fu(ΣP,θ) (2)

2005 American Control Conference
June 8-10, 2005. Portland, OR, USA

0-7803-9098-9/05/$25.00 ©2005 AACC

ThA15.3

2224

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on January 15, 2010 at 06:17 from IEEE Xplore.  Restrictions apply. 



Let the system be controlled by a stabilizing feedback
controller given by:

ΣK :
{

u = Ky (3)

III. THE YJBK PARAMETERIZATION

Before describing a general FTC architecture for descrip-
tor systems, the YJBK parameterization is shortly intro-
duced. The YJBK parameterization has also been applied
in connection with FTC in [12], [14], [20], [27].

A. The Primary YJBK Parameterization

The (primary) YJBK parameterization was first derived
by Youla et al. and independently by Kucera. It has been
described in [24], [25] and later used in many cases in
connection with feedback control.

Let a coprime factorization of the system Gyu(s) from (1)
and a stabilizing controller K(s) from (3) be given by:

Gyu = NM−1 = M̃−1Ñ, N,M, Ñ,M̃ ∈ R H∞

K = UV−1 = Ṽ−1Ũ , U,V,Ũ ,Ṽ ∈ R H∞
(4)

where the eight matrices in (4) must satisfy the double
Bezout equation given by, see [21]:(

I 0
0 I

)
=

(
Ṽ −Ũ
−Ñ M̃

)(
M U
N V

)

=
(

M U
N V

)(
Ṽ −Ũ
−Ñ M̃

) (5)

Based on the above coprime factorization of the system
Gyu(s) and the controller K(s), we can give a parameteriza-
tion of all controllers that stabilize the system in terms of
a stable parameter Q(s), i.e. all stabilizing controllers are
given by [21], [26]:

K(Q) = (U + MQ)(V + NQ)−1, Q ∈ R H∞ (6)

or by using a left factored form:

K(Q) = (Ṽ + QÑ)−1(Ũ + QM̃), Q ∈ R H∞ (7)

Using the Bezout equation, the controller given either by
(6) or by (7) can be realized as an LFT in the parameter Q,

K(Q) = Fl

((
UV−1 Ṽ−1

V−1 −V−1N

)
,Q

)
= Fl(JK ,Q) (8)

B. The Dual YJBK Parameterization

In the same way, it is possible to derive a parameter-
ization in terms of a stable parameter S of all systems
that are stabilized by one controller, i.e. the dual YJBK
parameterization. The parameterization is given by [21]:

Gyu(S) = (N +VS)(M +US)−1, S ∈ R H∞ (9)

or by using a left factored form:

Gyu(S) = (M̃ + SŨ)−1(Ñ + SṼ), S ∈ R H∞ (10)

An LFT representation of (9) or (10) is given by:

Gyu(S) = Fl

((
NM−1 M̃−1

M−1 −M−1U

)
,S

)
= Fl(JG,S)

(11)
It has been shown in e.g. [21], that the dual YJBK

parameter S transfer function can be calculated by using
the primary YJBK parameterization. It turns out that S is
given by:

S = Fu(JK ,Gyu(S)) (12)

IV. PASSIVE FAULT DIAGNOSIS

It has been shown in [5] that it is possible to parameterize
all residual generators by using the YJBK parameterization.
All residual signals rq for the ΣP,θ given by (2) can be
described by

rq = QFDI,O(M̃y− Ñu) = QFDIr (13)

where QFDI,O is a stable and proper filter of suitable
order. QFDI,O needs to be designed such that the residual
signal/vector rq satisfies the following conditions, [19]:

• Fault detection

rq(t) = 0 for θ = 0, ∀(d(t),u(t))
rq(t) �= 0 for θ �= 0, ∀(d(t),u(t)) �= (0,0)

• Fault isolation

rq(t) = 0 for θ = 0, ∀(d(t),u(t))
rq,i(t) �= 0 for θi �= 0, ∀(d(t),u(t)) �= (0,0)
rq, j(t) = 0 for θ j = 0, j �= i, ∀(d(t),u(t))

Note that the definitions of fault detection and fault iso-
lation given above are not unique. Depending on how many
faults that can appear simultaneously, different definitions
can be given, [19]. It is also important to point out that it is
not always possible to design QFDI,O so that it is possible to
obtain exact fault detection or exact fault isolation. Instead,
different forms of approximative fault detection and/or fault
isolation need to be considered, [5].

V. FAULT TOLERANT CONTROLLER ARCHITECTURE

In the sequel, the architecture for fault tolerant controllers
for systems with parametric faults will shortly be described.

A fault tolerant controller mainly consists of two parts, a
fault diagnosis (FDI) part and a controller reconfiguration
(CR) part. The fault diagnosis part consist of a residual gen-
erator and a decision/evaluation block. Based on the output
from the decision block, the controller is reconfigured by
using the YJBK parameter. This means that the CR part
of the feedback controller is a modification of the existing
controller. Thus, a controller change when a fault appears
in the system is not a complete shift to another controller,
but only a modification of the existing controller by adding
a correction signal in the nominal controller. However, it
should be pointed out that it is possible to modify the
controller arbitrarily by designing the YJBK parameter Q,
see e.g. [15]. The reconfiguration can be derived in different
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way. It could be a direct redesign, a selection between a
number of pre-designed controllers etc.

All together, the complete architecture is shown in Fig.
1. Here QFDI,O is the YJBK parameter used in connection
with fault diagnosis and QRC is the YJBK parameter used in
connection with controller reconfiguration. This architecture
shows that it is possible to combine both fault diagnosis and
controller reconfiguration in the same architecture and use
the same input and output vectors for both the FDI part and
the CR part.

Decision

QFDI,O

Ñ M̃

QCR

Ṽ−1 Ũ

ΣP,θ

+-

+

�

�

�

�
�

� � �

�

�
��

�

�

�

�

yu

r

η

rq

d e

Fig. 1. A fault tolerant controller architecture.

The above controller architecture applied for FTC shown
in Fig. 1 has a fixed structure with respect to the number
of measurement signals and control signals. This will not
in general be the case in real applications. This type of
system change has not directly been included in the system
description given by (1). However, it is possible to include
change of sensors and/or actuators in the FTC architecture
given above. This has been considered in connection with
a regular system in [14].

The design of the reconfiguration part of the fault tolerant
controller can be derived by considering the closed loop
transfer function from external input d to external output e.
The closed loop transfer function is given by:

e = Tedd (14)

where

Ted = Ged(θ)+ Geu(θ)(U + MQCR)((V −Gyu(θ)U)

+(N −Gyu(θ)M)QCR)−1Gyd(θ)

The closed loop transfer function Ted(s) can then be
rewritten as an LFT of the open loop transfer function with
QCR in the feedback loop given by:

Ted = Fl(P,QCR) (15)

and P is given by

Ped = Ged(θ)+ Geu(θ)U(V −Gyu(θ)U)−1Gyd(θ)

Peη = Geu(M−U(V −Gyu(θ)U)−1(N −Gyu(θ)M))

Prd = (V −Gyu(θ)U)−1Gyd(θ)

Prη = −(V −Gyu(θ)U)−1(N −Gyu(θ)M)

The design of the QCR can be considered either as a
stabilization problem or as a performance design problem.

The above FTC design problems has been investigated in
details in connection with the proposed controller architec-
ture for standard continuous-time systems in [12] and for
sampled-data systems in [14].

VI. ACTIVE FAULT DIAGNOSIS

The general FTC architecture shown in Fig. 1 is based on
passive fault diagnosis as griefly described in Section IV.
However, without any modifications, it is possible to apply
an active fault diagnosis method in the FTC architecture.

The idea of active fault diagnosis is to disturb the system
by auxiliary input signals. Based on the signal and the mea-
surement signal, faults are detected/isolated by using on-line
tests. The method is related with system identification.

First, let’s consider the general FTC architecture in Fig. 1.
Consider the residual vector r as a function of the external
input d and the controller correction vector η, see Fig. 2.

From Fig. 2 and (15) we have that the residual vector rq

is given by

rq = QFDI,OS(θ)QFDI,Iηq + QFDI,OPrdd

= SQ(θ)ηq + QFDI,OPrdd
(16)

by using that Prη = S from (12). Further, QFDI,I and QFDI,O

are a pre- and a post filter equivalent with the filter used
in the passive case. Both S and Prd are functions of the
parametric fault vector θ. Using (12) together with the
system setup ΣP in (1), S(θ) is given by, [7]:

S(θ) = M̃Gywθ(I − (Gzw + GzuUM̃Gyw)θ)−1GzuM (17)

and Prd is given by

Prd(θ) = (V −Gyu(θ)U)−1Gyd(θ)

= M̃(I −Gywθ(I −Gzwθ)−1GzuUM̃)−1

(Gyd + Gywθ(I −Gzwθ)−1Gzd)

(18)

In the fault free case, i.e. θ = 0, we have that (16) is
given by

rq = QFDI,OM̃Gydd (19)
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Fig. 2. The controller structure including pre- and post-fi ltering matrices
at the external input η and at the residual vector r, respectively.

i.e. the dual YJBK parameter S is identical zero. This shows
the separation between the nominal closed loop system and
the faulty part of the closed loop feedback system. Using the
dual YJBK parameterization, a faulty closed loop system is
closed loop stable if and only if the nominal closed loop
system is stable and the dual YJBK parameter is stable, [12],
[14], [21]. Consequently, if the faulty closed loop system
is unstable, the closed loop system can be stabilized only
by closing a loop around the dual YJBK parameter S(θ).
This can be done by designing a YJBK controller QCR that
stabilizes the closed loop given by

(I−QCRS(θ))−1 (20)

For further details, see e.g. [12], [14].
The dimension of S(θ) is p×m, i.e. the same dimension

as Gyu.
As it can be seen from (16), (17), S(θ) is very important

in connection with residual signal rq. Equivalent with the
definition of fault signature for additive faults, [6], S(θ) will
be called the fault signature matrix for parametric faults, [9].
The reason is that both fault detection and fault isolation
using an active method will be based directly on the fault
signature matrix S(θ). This strong dependency of S(θ) in
connection with FDI will be investigated in details in the
following.

A. Active Fault Detection

Let’s consider fault detection based on the equation for
the residual vector in (16). Based on the definitions of
fault detection given in Section IV, the definition of fault
detection based on the fault signature matrix can then be
given by:

• Fault detection

SQ(θ) = 0 for θ = 0
SQ(θ) �= 0 for θ �= 0

It is clear from this definition that the fault detection
based on the fault signature matrix results in a direct fault
detection, i.e. the detection based on a zero or a non-zero
fault signature matrix. Note that this direct fault detection
is independent of the design of filters, assuming that the
two filters are non-zero and stable. This means that the
two filters must be designed with respect to minimizing the
effect from the d on the residual vector rq and maximize the
effect from ηq on rq with bounded performance degradation
.

B. Active Fault Isolation

The fault isolation case is more complicated than fault
detection. The main reason is that all elements in S(θ) will
in general depend on all parametric faults. This means that
it will be impossible to isolate the single parametric faults
be evaluating the single elements in S(θ), i.e. direct fault
isolation. Further, it will also depend on which parametric
faults that can occur simultaneously and which cannot.

As in the fault detection case, we want to come up with
conditions for fault isolation based directly on the fault
signature matrix S(θ) or SQ(θ).

First, let’s consider the fault signature matrix without any
pre- and post-filters for a preliminary analysis. As pointed
out above, all elements in S(θ) will in general depend on all
parametric faults in θ. For simplifying the analysis, assume
that only a single parametric fault can occur at the time.
The general case can be derived in the same way. For
each parametric fault θi, define an associated fault signature
matrix set Si for a specified frequency interval ω̄, such that
the fault signature matrix S(θi) is included in the Si for all
possible values of the i′th fault, i.e.

S(θi) ∈ Si, for ∀θi ∈ Θi, ω ∈ ω̄ (21)

The frequency interval ω̄ can be a single frequency ω0, a
number of frequencies ω1,ω1, . . ., an interval [ω1, ω2] or the
hole frequency range [0, ∞[. Further, the frequency intervals
ω̄ might be different for the different fault signature matrix
sets. It is further assumed that the fault signature matrix
sets satisfy:

Si ∩S j = /0, ∀θi ∈ Θi, ∀θ j ∈ Θ j, i �= j, ω ∈ ω̄

Based on this, we get directly
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• Complete fault isolation of θi

S(θ) = 0 for θ = 0
S(θ) ∈ Si for θi �= 0, ω ∈ ω̄
S(θ) ∈/ S j for θi �= 0, θ j = 0, ∀ j �= i, ω ∈ ω̄

The FDI approach just described is directly based on the
use of the fault signature matrix. This will not in general
give elements in S(θ) that only depend on a reduced number
of parametric faults. If the single elements in S(θ) only
depend on a reduced number of parametric faults, the fault
isolation can be derived by checking the single elements
in S(θ) if they are zero or not, i.e. equivalent with the
fault detection based on S(θ). This will be much more easy
compared with isolation based on dynamic separation.

Instead of using the fault signature matrix directly in
connection with fault isolation, let’s consider the fault
signature matrix given by (17), where the pre- and post-
filters QFDI,I and QFDI,O, have been included. The design
of QFDI,I and QFDI,O must be done such that an isolation
(separation) of the parametric faults can be done directly by
considering SQ(θ), when it is possible. Using the fact that
both M̃Gyw and GzuM are two stable transfer functions, it
is possible to design QFDI,I and QFDI,O such that

GzuMQFDI,I =
(

ΞI

HI

)

QFDI,OM̃Gyw =
(

ΞO HO
) (22)

where ΞI and ΞO are two stable diagonal matrices of
dimension m×m and p× p, respectively, and HI , HO are two
stable transfer matrices of suitable dimensions. Note that if
GzuM is right invertible, we can obtain diagonalization of
GzuM by the design of QFDI,I . Equivalent, if M̃Gyw is left
invertible, a diagonalization of M̃Gyw can be obtained by
the design of QFDI,O.

Using the QFDI,I and QFDI,O satisfying (22), gives directly

SQ(θ) =
(

ΞO HO
)

θ(I −Tzw,clθ)−1
(

ΞI

HI

)
(23)

As it can be seen from (23), it will not in the general
case be possible to obtain a complete diagonalization of the
input and output transfer functions. If it is not possible to
diagonalize either the input or the output transfer functions
by the design of QFDI,I or QFDI,O, it will not be possible to
obtain a complete fault separation in SQ(θ).

Assume that p ≥ 2 or m ≥ 2. Further, it is assumed in
this paper that p ≥ m. The parametric fault matrix θ is then
arranged such that the first p−1 (or less) faults belong to
the first fault set Ω1. The next faults belong to the second
fault set Ω2 etc. Only faults belonging to a specific fault set
can occur simultaneously. Using a QFDI,O,1 satisfying (22)
with respect to the first fault set Ω1 gives the following fault
signature matrix:

SQ,Ω1(θ) =
(

ΞO HO
)

θ(I−Tzw,clθ)−1GzuMQFDI,I (24)

Assume that the first fault set Ω1 includes p−1 parametric
faults. Then, let SQ,Ω1(θ) be partitioned into

SQ,Ω1(θ) =
(

SQ,Ω1,1(θ)
SQ,Ω1,2(θ)

)

where SQ,Ω1,1(θ) is the first p− 1 rows in SQ,Ω1(θ) with
respect to the faults in fault set Ω1 and SQ,Ω1,2(θ) is the
last row in SQ,Ω1(θ).

Based on (24), the faults in Ω1 can now be isolated. This
will require a three step procedure: first a fault detection,
secondly a fault set isolation and finally a fault isolation in
the specific fault set. The three steps are as follows:

• Fault detection

SQ(θ) = 0 for θ = 0
SQ(θ) �= 0 for θ �= 0

• Fault isolation of the fault set Ω1

SQ,Ω1,2(θ) = 0 θ �= 0, θ ∈ Ω1

SQ,Ω1,2(θ) �= 0 θ �= 0, θ ∈/ Ω1

• Fault isolation of the faults in the fault set Ω1.
The i’th fault in the fault set Ω1 occurs in the system
if and only if:

SQ,Ω1,1,i, j(θ) �= 0 θi �= 0, i = 1, · · · , p−1, ∀ j

The i’th fault in the fault set Ω1 does not occur in the
system if and only if:

SQ,Ω1,1,i, j(θ) = 0 θi = 0, i = 1, · · · , p−1, ∀ j

where SQ,Ω1,1,i, j(θ) is the (i, j) element in SQ,Ω1,1(θ).
Note that the last row in SQ,Ω1(θ) given by SQ,Ω1,2(θ)

is used for detection of faults in other fault sets than Ω1.
From the definition of the fault sets, the faults related to
the last row in SQ,Ω1(θ) will not belong to the specific
fault set. Further note that faults that do not belong to the
specified fault set will either result in a non-zero last row of
SQ,Ω1(θ) or result in all rows in SQ,Ω1(θ) will be non-zero.
The reason is that if the faults in θ are isolable, then the
faults not belonging to the specific fault set will affect the
non-diagonal matrix H0. As a result of this, a single fault
that does not belong to the specific fault set might therefore
affect all rows in SQ,Ω1(θ).

A block diagram of the complete fault isolation setup
based on fault sets is shown in Fig. 3.

VII. CONCLUSION

Fault tolerant control based on using active fault diagno-
sis has been considered in this paper. The FTC architecture
is based on the YJBK parameterization. It is shown that the
setup gives a direct separation in terms of the fault signature
matrix. The fault signature matrix can be applied directly
for fault detection, by using the fact that the fault signature
matrix is non-zero in the faulty case. Fault isolation is a
little more complicated, but including pre- and post filters
around the fault signature matrix, it is possible to obtain
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QFDI,I S(θ) QFDI,O,1
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Fig. 3. Fault detection and isolation based on fault occurrence in fault
sets. r is the residual vector for fault detection, rΩ1 ,1 is the residual vector
for fault isolation in fault set Ω1, rΩ1 ,2 is the residual signal applied for
isolation of the fault sets, rΩl ,1 is the residual vector for fault isolation in
fault set Ω1 and rΩl ,2 is the residual signal applied for isolation of the
fault sets.

direct fault isolation. If direct fault isolation is not possible,
a dynamic fault isolation needs to be used instead.

Using both input and output signals in the active fault
diagnosis approach, the active fault diagnosis approach
can be considered as a generalization of the passive fault
diagnosis approach. The passive approach is based on a
residual vector, whereas the active approach is based on a
matrix. The possibility for fault detection and isolation will
increase compared with the passive approach. Further, in
the active approach, the system is disturbed by auxiliary
input vector to make an early fault detection/isolation. In
the passive approach, we must wait until we get a non-zero
residual vector. The system must be activated by external
disturbance.

One of the consequences of the active approach is that ad-
ditive faults cannot be detected or isolated by this approach.
The reason is that the faults must affect the fault signature
matrix to be detected or isolated. This is equivalent with
the requirement that the faults must affect the closed-loop
stability via the dual YJBK matrix, i.e. the fault signature
matrix. In a pure linear system, additive faults will not affect
the closed-loop stability.

A more detailed analysis of the AFD in closed-loop
systems is given in [9] for the nominal case and in [8].
The focus in this paper and in [9] has been based on a
closed-loop setup. However, it has been shown in [10], that
the setup can also be applied directly on both open-loop
systems as well as on reconfigurated closed-loop systems.
As a direct result of this, AFD based on a nominal feed-
back controller might not be affected by a later controller
reconfiguration. This is important in connection with FTC.

Some application of AFD using a closed-loop setup can
be found in [11].
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