
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Iterative List Decoding

Justesen, Jørn; Høholdt, Tom; Hjaltason, Johan

Published in:
Proceedings of Information Theory Workshop on Coding and Complexity

Link to article, DOI:
10.1109/ITW.2005.1531863

Publication date:
2005

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Justesen, J., Høholdt, T., & Hjaltason, J. (2005). Iterative List Decoding. In Proceedings of Information Theory
Workshop on Coding and Complexity DOI: 10.1109/ITW.2005.1531863

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13725804?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/ITW.2005.1531863
http://orbit.dtu.dk/en/publications/iterative-list-decoding(0f7d33c0-8562-4302-8662-b39b8963ce95).html


In the Proc. of IEEE ISOC ITW2005 on Coding and Complexity; editor M.J. Dinneen; co-chairs U. Speidel and D. Taylor; pages 90-93

0-7803-9481-X/05/$20.00   c  2005 IEEE

Iterative List Decoding
Jørn Justesen

COM
Technical University of Denmark
DK-2800 Kgs Lyngby, Denmark

Email: jju@com.dtu.dk

Tom Høholdt
Department of Mathematics

Technical University of Denmark
DK-2800 Kgs Lyngby, Denmark
Email: T.Hoeholdt@mat.dtu.dk

Johann Hjaltason
Department of Mathematics

Technical University of Denmark
DK-2800 Kgs Lyngby, Denmark

Email: jh@emergens.dk

Abstract— We analyze the relation between iterative decoding
and the properties of the extended parity check matrix. By con-
sidering a modified version of bit flipping, which produces a list
of decoded words, we derive several relations between decodable
error patterns and parameters of the code. By developing a tree
of codewords at minimal distance form the received vector, we
also obtain new information about the code.

I. INTRODUCTION

We consider hard-decision iterative decoding of a binary
��� �� �� code. For a received vector, �, we calculate an
extended syndrome � � �� �, where � is a parity check
matrix, but usually has more than ��� rows. Our approach is
based on one of the common versions of bit flipping (BF) [1],
where the schedule is such that the syndrome is updated after
each flip. In each step we flip a symbol chosen among those
positions that reduce the weight of the extended syndrome,
which we refer to briefly as the syndrome weight, �. A
decoded word is reached when � � �. In this paper we
consider a variation of the common algorithm in the form of
a tree-structured search. Whenever there is a choice between
several bits, all possibilities are tried in succession. The result
of the decoding algorithm is, in general, a list of codewords,
obtained as leaves of the search tree. The bit flipping algorithm
leads naturally to a solution in the form of a list of codewords
at the same distance from � [2]. This list decoding concept
is somewhat different from list decoding in the usual sense
of all codewords within a certain distance from y. These
concepts are useful both for designing decoding algorithms
and for understanding the mechanisms of iterative decoding.
By imposing a suitable set of limitation on the search we
can still maintain a low complexity. Considering the decoding
of the ���� ��� ��� projective geometry code in detail, we find
that a suitably modified BF algorithm can produce a maximum
likelihood result or even a list of all codewords at minimum
distance from the received vector.

II. EXTENDED PARITY CHECK MATRICES AND

SYNDROMES

We consider a regular LDPC code given by a parity check
matrix, possibly with more than � � � rows, and the cor-
responding syndromes. All syndromes associated with single
errors, i.e. the columns of the parity check matrix, have the
same low weight, �. For any pair of columns there is at most

one row where both have a one. Thus an error pattern of weight
	 has syndrome weight �, where

	� � 	�	 � �� � � � 	� (1)

We assume that the rows of � satisfy a similar condition.
As the number of errors increases, so does the average

weight of the syndrome, but the spread of possible values of �
also increases, since it depends on the number of rows where
multiple ones occur among the columns under consideration.
It follows that the minimum distance of the code is lower
bounded by

� � � 	 � (2)

A unique closest codeword is found by the BF algorithm if

	 
 �� 	 ���
 (3)

We refer to a coset as ���	� when the weight of the coset
leader is 	, and the syndrome weight is �. These parameters
serve as a first coarse characterization of the coset. A more
detailed description relevant to the BF algorithm is based on
the distribution of parity failures. Each position is checked by
those rows of the parity check matrix that have a one in the
corresponding column. We refer to the number of these rows
that give a one in the syndrome, ���, as the number of parity
failures for position , and this is the information used for
selecting which bit to flip. The vector ��� can be obtained
by adding the rows corresponding to ones in the syndrome
(using integer addition).

Lemma 1: If for a given syndrome and some position ,
��� � 	, any error pattern of weight 	 with that syndrome
must include position .
Proof: At most one of the rows that check a given position can
have a one in any of the error positions. Since these are the
only rows that can produce parity failures, a correct position
has at most 	 parity failures.

A coset may be characterized by the parity failure distribu-
tion, ��, which indicates the number of positions with � parity
failures. Cosets with the same parity failure distribution may
be expected to show similar properties when decoded by the
BF algorithm.

A related set of parameters is the number of errors among
the positions checked by row  in the parity check matrix. We
let �� indicate the number of rows that check � error positions.
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For a set of error positions, � , we have
�

����

��� �
�

���

��� (4)

While �� is a property of the coset and can be calculated
from the received vector (or the syndrome), � � is a property
of a particular error pattern, and usually error patterns with
different �� exist in the same coset. However, it is clear that
the syndrome weight � can be calculated as the sum of the � �
for odd �.

In each step, the basic BF algorithm changes the value of
the received vector in a position that has ��� � ��
 making
a transition to a coset with weight 	 � � 	 � � and �� �
� 	 � � 
���. In this way we are able to characterize the
possible transitions of the decoding algorithm. The vectors � �

and �� are related to � and 	 by two sets of linear inequalities.
However, we shall give the details only for the case of the
���� ��� code, where the relations are equalities.

III. THE LIST DECODING ALGORITHM

We first consider the basic version of the list decoding
algorithm. Given the syndrome associated with a given coset,
the vector of parity violations, ���, is computed from �. This
state serves as the root of the decoding tree. Each node in
the tree is characterized by the parent node, the extended
syndrome, the syndrome weight �, and an ordered list of
positions with ��� � ��
. From each node we can produce
several offspring nodes by flipping a bit on the list and
calculating the relevant characteristics. Eventually we reach
a leaf, which is a decoded word when � � �, or no solution if
� � � and it is impossible to reduce the syndrome weight. The
algorithm then back-tracks to the first node where a different
bit can be flipped. It terminates when all nodes are explored.

The rationale for studying the list version of the BF al-
gorithm is that we can describe the codewords that can be
reached by the algorithm while avoiding an arbitrary selection
of a coset leader.

Theorem 1: Let � � ���� be a set of error patterns such
that any subset of �� is also in � . � is decoded by the list
BF algorithm if and only if for every pattern, � � � � there is
at least one position such that ��� � ��
.
Proof: The condition is necessary, since for an error pattern
not satisfying the condition the algorithm will either stop or
flip a bit that is not in the error pattern. Sufficiency follows
by induction on the weight of the error pattern: It is obvious
for 	 � �. Assume that error patterns in � of weight 	 
 	 �

are decoded. The condition ensures that in any error pattern
of weight 	� one bit will eventually be flipped, and the result
is a pattern that is decoded.

The performance of the algorithm is analyzed by consider-
ing increasing values of � and 	. For codes with a favorable
distribution of syndrome weights, a proof of successful decod-
ing can be based on the following result:

Lemma 2: For any error pattern of weight 	 in a coset
with syndrome weight �, the list decoding algorithm will flip
at least one error position if

� � 	�� � ���

Proof: Since the syndrome is the sum of the 	 columns, one
has at least ��	 ones in rows where the syndrome is nonzero.

The goal of the iterative list decoding algorithm is to find
the smallest distance to a codeword, and to find all codewords
at this distance from the received word. The ideal situation is
described in the following definition:

Definition 1: A Maximum-Likelihood List Decoding
(MLLD) Algorithm takes an arbitrary received vector as input
and produces as output a list of all error patterns in the same
coset which have minimal weight within the coset.

For codes of moderate size, the lists can be rather short,
and they could be useful in decoding an outer code in a
concatenated scheme. If a codeword is found close to �,
codewords at larger distances would have significantly lower
conditional probability, and attempts to include them in the
list could lead to long lists.

IV. COSETS

The analysis of the list decoding algorithm can provide
information about the cosets of the code. For each ���	� we
would like to know the number of such cosets and the number
of error patterns of weight 	 in each coset. It is useful to
calculate the weight distribution of the space spanned by the
columns of � . Such a calculation is feasible if � � � is not
too large or if � has a sufficiently regular structure.

Starting from low values of � we try to find the weights
of the coset leaders. For a given �, we then consider error
patterns of increasing weight 	. For 	 
 ��
 all error patterns
are unique coset leaders, and we can find the number of ���	�
cosets directly. If not all cosets of weight less than �� 	���

are accounted for in this way, it follows from (1) that the
weights of the remaining cosets must be relatively high, and
they will not be decoded by bit flipping.

For each value of �� we can count the corresponding error
patterns, find ��� in the error positions, and decide the action
of the BF algorithm. The ���	� cosets can be classified in
terms of their �� vector, and this may allow us to determine
the size of the list of solutions and thus the number of cosets.
For a given weight, a large value of � indicates little overlap
between the ones in the various columns. Thus the decision
of the BF algorithm is the same as for majority decoding,
and the algorithm just decodes the errors one at a time in
an arbitrary order. A low syndrome weight occurs when a
significant number of rows have two (or a larger even number
of) ones. For error patterns of weight 	 � ��
 this will
clearly be the case in some cosets where the weight of the
coset leades is less than 	. If 	 is the minimal weight in
the coset, there may be multiple solutions in the form of
codewords at the same distance, and we expect the number of
solutions to increase with decreasing syndrome weight. Thus
the analysis of BF provides at least partial information about
the distribution of coset and syndrome weights.

V. COMPLEXITY

The complexity of the decoding algorithm can be measured
by the number of nodes in the decoding tree. The basic algo-
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rithm can lead to large search trees, and some modifications
are introduced in order to limit the size. Clearly the complexity
is at least of the order the list size multi-plied by the number
of errors. However, two factors can make the number of nodes
significantly larger: There may be branches that do not lead
to error patterns, and the same error pattern may be found by
flipping the bits in a different order.

A branch with no solutions occurs when a bit is flipped to
go from a ���	� coset to a ���� 		�� coset where �� 
 �. In
the example in Section VI we can prove that such nodes add
little to the complexity. In order to control the second problem
it may be useful to set a limit for 	 in the analysis. Thus a
branch may be terminated if the syndrome weight indicates
that no error pattern with 	 errors is possible. It is also clear
that two error patterns in the same coset can share at most
	 � ��
 positions. Thus once a solution is found, a branch
can be terminated if the bit flipped along the branch has too
much overlap with solutions already found. For 	 significantly
greater than ��
 we have to rely on properties of the code to
ensure that the complexity remains polynomial.

Since the syndrome weight provides important information
about the coset associated with a given node, it may be pos-
sible to create significant shortcuts by using known properties
of the cosets. In the example we can simplify the decoding
once the remaining number of errors is at most ��
. It is also
possible to relax the requirement that � should decrease in
every step to handle some special cosets.

VI. THE (73,45,10) PROJECTIVE GEOMETRY CODE

As an illustration of the algorithm discussed above, we
consider the well-known difference set code [3].

A. Minimum weight codewords

The analysis is based on an extended 73 by 73 parity check
matrix. It may be written in cyclic form, and it follows from
the diffence set property that each row/column has weight � �
� and the product of any two rows is 1.

Fact [4]: A minimum weight codeword has ones in 10
positions such that the columns of the parity check matrix
have two ones in 45 rows. The code has 32704 weight 10
codewords.

Proof: It follows from the difference set property that each
of the 90 pairs must occur once, and the number of ones must
be even. If any row has weight 4 or higher this is not possible.
Using this property the codewords can be counted.

B. Error patterns and syndrome weights

From (1) we get a lower bound on �, but the upper bound
can be tightened since the ones in two columns always share
exactly one row. The lowest syndrome weights correspond
to patterns that are part of minimum weight codewords. The
highest syndrome weights occur when all columns share a
single position. Between these extremes there are several
cases.

The number of cosets with given weight of the extended
syndrome can be counted. Since the all-ones vector is an

TABLE I

COSETS IN THE ���� ��� CODE

� � � � � � � � � � � � �
24 98112
25 1373568 0
28 6279168 0
29 8241408 2354688
32 29360016 0
33 2649024 33652416
36 24724224 24331776

extended syndrome, the distribution is symmetric. This distri-
bution can be used to tighten the lower bound on � for certain
values of 	. For 	 
 � the cosets are easily counted, since
the coset leaders are unique. Enumerating the error patterns
and the corresponding cosets is facilitated by noting that the
parameters �� must satisfy

�

�

�� � �	 (5)

�

����

�� � � (6)

�

�

� � ���� � 	�	 � �� (7)

The parameters �� satisfy a similar set of equations. Using
these parameters, we have classified the cosets for increasing
values of � and found the corresponding list sizes. In this way
we have been able to conclude that with the exception of a
single type of cosets, the condition of Lemma 2 is satisfied in
all cases. Table I gives the number of cosets for some higher
weights.

C. List decoding

Even for this moderately complex code, it is possible to
approach MLLD with an acceptable complexity. Even though
the minimum distance is 10, which is excellent for a code
with these parameters, most of the decodable error patterns
have weight 7 and 8.

For � � 
� the coset leaders of weight 4 are unique, but
there are some additional cosets, which have 	 � �. These
error patterns are the complete 6 arcs [4] in the projective
plane, i.e. no three points are on a line, and any additional
point will be on one of the lines that already has two points.
In these cosets the list size is 21. Since an error position has
only 4 parity failures, the error patterns cannot be corrected by
the basic BF algorithm. However, we can extend the algorithm
to allow the bits with 4 parity failures to be flipped the first
time such a coset is reached in any branch of the decoding
tree. Thus � is increased to 25 as we move to a �
�� �� coset.
The list decoding algorithm clearly needs to return to the same
node to flip some of the other bits, but it is not allowed to loop
between �
�� �� and �
�� �� cosets. The �
�� �� cosets can also
be reached from cosets with 7 or 8 errors, but there are no
other cases where a bit with less than 5 parity failures has to
be flipped. Other cosets with 	 � � have � � 
� �
� ��� ���

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on January 15, 2010 at 05:55 from IEEE Xplore.  Restrictions apply. 



or �. For syndrome weight at least 36, the coset leader is
unique. For � � 
, the list sizes are 7 and 9, for 32 there
are 2 or 4 solutions. In �
�� �� cosets the list size is 49. These
cases with 	 � � accounts for all syndromes of weight up to
32.
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