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Towards a systematic classification of protein folds

Per-Anker Lindga˚rd
Department of Condensed Matter Physics, Riso” National Laboratory, DK-4000 Roskilde, Denmark

Henrik Bohr
Center for Biological Sequence Analysis, Department of Physical Chemistry, The Technical University of Denmark,

DK-2800 Lyngby, Denmark
~Received 26 November 1996; revised manuscript received 28 May 1997!

A lattice model Hamiltonian is suggested for protein structures that can explain the division into structural
fold classes during the folding process. Proteins are described by chains of secondary structure elements, with
the hinges in between being the important degrees of freedom. The protein structures are given a unique name,
which simultaneously represent a linear string of physical coupling constants describing hinge spin interac-
tions. We have defined a metric and a precise distance measure between the fold classes. An automated
procedure is constructed in which any protein structure in the usual protein data base coordinate format can be
transformed into the proposed chain representation. Taking into account hydrophobic forces we have found a
mechanism for the formation of domains with a unique fold containing predicted magic numbers
$4,6,9,12,16,18,...% of secondary structures and multiples of these domains. It is shown that the same magic
numbers are robust and occur as well for packing on other nonclosed packed lattices. We have performed a
statistical analysis of available protein structures and found agreement with the predicted preferred abundances
of proteins with a predicted magic number of secondary structures. Thermodynamic arguments for the in-
creased abundance and a phase diagram for the folding scenario are given. This includes an intermediate high
symmetry phase, theparent structures, between themolten globuleand thenative states. We have made an
exhaustive enumeration of dense lattice animals on a cubic lattice for acceptance numberZ54 andZ55 up to
36 vertices.@S1063-651X~97!04909-X#

PACS number~s!: 87.10.1e, 05.50.1q, 05.70.Ln

I. INTRODUCTION

In the past 50 years large databases of protein sequences
and protein structures have been building up at an exponen-
tial rate @1#. And, as in the case of, for example, atomic
elements or isotope tables, it is natural to ask for some clas-
sification that can group the proteins into related families
other than those that arise from homology analysis of the
sequence of amino acids in the polypeptide chain. What we
have in mind here is a kind of atomistic taxonomy, where the
proteins are grouped according to the number of typical ele-
ments.

In the case of the nuclear isotopes the grouping in particu-
larly stable, closed shells of nucleons came rather late his-
torically, since it was not obvious that an independent-
particle description would make sense in the nuclear
interaction picture, and yet magic numbers came out of a
fairly simple single-particle force potential. This led to a pre-
dicted predominance of abundance of nuclei at magic num-
bers of nucleons, in agreement with empirical data. Likewise
for our microbiology case we shall show that magic numbers
for the stability in the packing of protein structure elements
are revealed in a calculation based on a simple hydrophobic
force field model. Proteins appear to be packed like closed
‘‘shells’’ of all connected secondary structure elements. The
purpose of this paper is to provide a paradigm that allows
classification of the proteins in structurally defined families.

Let us briefly list some pertinent features of protein struc-
tures and the folding process. Excellent reviews can be found
in @2# and more details about the experimental facts and un-

solved questions are given by, e.g., Jaenicke@3,4# and from a
theoretical point of view by Finkelstein and Ptitsyn@5,6# and
Wolynes@7#.

Proteins are found to be highly hierarchically structured.
Pauling and co-workers@8# were the first to emphasize that
the final, so-callednative structure of proteins consists of
two dominant kinds of building blocks, thea helices and the
b sheets. These are called secondary structures. Later addi-
tional, somewhat less characteristic structural elements were
proposed~i.e., inverse turns andV loops, etc.@9#!. A char-
acteristic feature of proteins is that their observed structures
are densely folded in a complex manner of secondary struc-
tures and intervening irregular loops@9#. These further form
tertiary structures, which are composed of characteristic do-
mains with a special fold, which are made up of typically
tens of secondary structures. The domains further self-
organize into quartinary structures consisting of several do-
mains. Dense folding intermediates are observed before
reaching the unique closed packed state@10#.

In aqueous solutions most proteins fold after various in-
termediate stages@3,4# into closely packed globules, which
neither dissolve nor phase separate, as most polymers would
do. Dill @11# derived a thermodynamic theory for these and
showed they should have a tendency to fold into lumps of
specific size. A main reason for this is the action of the
hydrophobic and hydrophilic forces, which are unspecific
interface-tension-like forces@12,13#. Yet, a protein with a
specific amino acid chain folds, paradoxically@14# in a mat-
ter of seconds, to a particularfold, according to information
that must be provided via the underlying linear information
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represented by the specific sequence of amino acids. Further-
more proteins seem to have predominant lengths of the
chains. Bermanet al. @15# have made a statistical study of
known proteins and have found that the distribution has char-
acteristic peaks near multiples of chain lengths of 125 amino
acids. The total length may go up to a few thousand. About
400 distinct structures are known@1# from x-ray crystallog-
raphy for such domains, but only for proteins that form crys-
talline structures, i.e., not in the more relevant environment,
the natural solution with salty water. These are grouped into
a few hundred recognized fold classes. Less detailed struc-
tural information in the solutions orin vivo are available
from NMR and circular dichroism studies. In total;4000
structures have so far been determined@16#, however, several
appear to be closely related. On the other hand, well over
hundreds of thousands of proteins have had their sequence
determined@17#. It is of great interest~1! to be able to predict
a structure from the sequence,~2! to be able to classify the
possible structures that can exist, and~3! to understand why
certain structures seem to be particularly abundant. The aim
of this work is to propose a schematic framework for the
description of the folding of secondary structures into do-
mains of proteins and discuss their abundance.

First, consider the simpler crystalline classes of structures.
Group theory tells us that there are only 230 different classes
in three dimensions. Many materials assume before they
melt, in spite of the possible diversity, a single open struc-
ture, the body centered cubic structure bcc, which is stabi-
lized by entropy; see, e.g.,@18#. This is called theparent
phase. At lower temperature the structure transforms by a
so-called Martensitic transformation to more closed packed
structures with generally ‘‘triangular’’ coordination between
the constituents. There can be several such possibilities, hcp,
fcc, dhcp 9-R, 18-R, . . . , however, all are resulting from the
single ‘‘parent’’ bcc phase@19#. The observed, irregular pro-
tein structures may correspond to such complicated ground
state configurations, which are the result of the competition
between all relevant forces. It is too complicated to make a
classification for these. However, we demonstrate that it is
possible that the protein also first forms a high symmetry,
denseparent phasefrom which the actually observed, still
more closely packed structures are obtained by ‘‘twisting.’’
This is in order to satisfy the short ranged forces between the
secondary elements. We shall postulate that a parent phase is
an important intermediate phase in the folding process. By
this and by considering a rather general three-dimensional
~3D! structural model, our approach differs from the previ-
ously forwarded ideas to simplify the description of protein
into ‘‘folding patterns’’ or ‘‘crude structures;’’ see, e.g.,
Finkelstein and Ptitsyn@5#. Unfortunately the experimental
structural information, at present, is rather scarce on the in-
termediate phase@20,21#. However, the presence of interme-
diate phases and folding steps is a generic feature of the
folding process@3,4# and some steps are described as rate
limiting.

In the course of this work we numerically evaluate and
exhaustively count graphs on a simple cubic lattice. This is
of general applicability in a class of statistical problems. Our
counts are extended to larger lattice animals than hitherto
considered. Our results agree exactly with those of Chan and
Dill @22,23#, where overlap exists. Chan and Dill further did

a graph theoretical analysis, which is of relevance for the
present case as well.

The structure of this paper is as follows. First, we present
the motivation and prerequisites for setting up a simplified
model, still containing the pertinent physics and symmetry.
Then we formulate a homology measure, which allows a
systematic naming of structures and a distance measure. Us-
ing the model we find numerical evidence for magic num-
bers. We perform a statistics of the abundance of secondary
structures and of proteins with a certain number of secondary
structures. We motivate the magic numbers geometrically.
Finally in the last section we make a thermodynamic theory
for our model that formalizes the discussed folding scenarios
and gives a thermodynamic motivation for higher abundance
at the magic numbers.

II. CLASSIFICATION OF PROTEINS
INTO FOLD CLASSES

It is important to understand how the proteins can find
their fold without trying all the statistically possible options.
It is generally assumed that the information is coded linearly
in terms of the amino acid sequence, giving rise to a natural
tendency for the backbone to fold correctly and fast. An
unsolved problem is to demonstrate how the sequence infor-
mation ~which determines foremost the short range forces
along the backbone and only more indirectly the interactions
between distant parts of the chain! is sufficient to do this. It
is our thesis that the nonlocal forces between distant sections
of the proteins come in at a late stage, only providing the
final optimization, and the observed complex irregular and
twisted patterns. The hydrophilic and hydrophobic forces
against the aqueous solution are supposed to be the main
driving forces in condensing the proteins from the extended
state. The protein chain has about 50% hydrophobic and hy-
drophilic residues distributed seemingly at random along the
chain. An extended chain is, therefore, clearly unfavorable.
The optimum is a condensed phase with a minimal surface,
which allows most of the hydrophilic residues to be buried.
However, it is not possible for the unspecific hydrophobic
forces to define aspecific foldwhen the system is in an
unfolded state. A fold means@24–30# a particular structural
topology that a protein domain can assume in its native state.

Proteins appear to belong to families, like plants, with
specific characteristics. The families contain many variants.
von Linné @31# in the 18th century succeeded in the field of
botany to identify the important classification parameters. He
solved the difficulthomologyproblem defining when plants
are the samewithout beingidentical, and when they belong
to the same class or not. It gives a systematic, although not
‘‘natural’’ classification from a functional point of view.
Here we suggest that the dense fold patterns for proteins may
form the basis for a classification, and we shall identify a
class of similar folds with a family, as did Chothia@24# ~and
with the qualifications mentioned that the fold classes need
not be the natural families!. By devising a local projection
scheme for systematizing the protein fold on a lattice we
propose an effective cut through the homology problem. The
results were briefly discussed previously@32#. Such a sche-
matic structure is a kind of symmetry indicator@33#, which is
useful in statistical analysis of the fold problem. It is well
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known that a global measure for ‘‘similar’’ folds using the
root-mean-square measure~rms! for the coordinates of the
backbones is too strict, and indeed vastly misleading; see,
e.g., @34#. If just one secondary element is slightly rotated,
the rms can become very large; this is not expedient. Other
measures, for example, local distance measures, have also
been proposed and used@1#. In traditional classification in
physics, as in the periodic table or in the crystal groups, a
certain capaciousness in the homology concept is neither
needed nor warranted. In the protein folding case, as in
botany, it is. Yet the final classification criteria must be
unique.

Similar simplifications with idealized elements have pre-
viously been proposed by Murzin and Finkelstein@35# for
describing the domains ofa helices. They considered thea
helices as cylinders and considered a close packing of these
on edges of polyhedra with triangular faces. They demon-
strated a high degree of coordination of the possible and the
observed structures, except for bundles of larger numbers of
long helices, which seem to align more in parallel. It is in-
teresting to note that their structures in all cases can be re-
garded as twisted structures of a simple parallel bundle.
Their work describes the number of distinct twists. In the
above crystal analogy, they classify some of the possible
closed packed structures belonging to a single ‘‘cubic’’ par-
ent phase. The polyhedron method has the drawback that it
does not work forb sheets. However, our cubic representa-
tion describes equally well theb sheets and theb sand-
wiches, which are schematized in a different representation
by Finkelstein and Reva@36#.

Recently, even more schematized compact lattice models
for late stages of protein folding in terms of a chain of inter-
acting beads~monomers! have been intensively studied@37–
44#. Secondary structures are very schematically modeled as
sequences of monomers with a persistence length of two or
more beads, usually on a 33333-bead cube. The model
proteins are supposed to be refolding and forming the sec-
ondary structures at the compact folding stage in a search for
the minimum of strong interchain interactions~represented
by two or more attractive or repulsive beads, randomly dis-
tributed!, or for a state of ‘‘minimum frustration’’ as dis-
cussed by Wolynes@7#. This approach is very different from
the present case. It is an interesting and useful model in its
own right in particular for heteropolymers. It is focused on
the difficult problem of describing a frustrated search for the
optimum in a rugged energy landscape. That is undoubtedly
very relevant for proteins too, however, in our model we take
almost the opposite view and take maximum advantage of
proteins’ proven ability to form secondary structures at an
early stage.

III. A MODEL HAMILTONIAN FOR PROTEIN FOLDING

In the following we shall construct a minimal model for
protein folding in order to establish a vocabulary and a lan-
guage in which the structures can be described and subse-
quently classified. Summarizing the review of 20 years of
protein folding research Jaenicke@4# concludes that the pro-
cess can be described as a multiple pathway of sequential
folding with roughly three steps:~1! very fast early events,
~2! middle events with local shuffling into tertiary structure,

and finally ~3! the late events forming the chemical bonds
~disulfide bridges, etc.!. All three steps can be assisted by
other proteins~so-called chaperones! @4#. We shall model
these observations with special emphasis on the second
stage.

Experimentally the helix structures are usually seen to
form in the very early stages of the folding process@4#, al-
though not without exceptions, which indicates that in some
cases the final form of the secondary structures is obtained in
concert with the overall folding@20,21#. The helices are typi-
cally between 4 and 12 amino acids long~see Fig. 6!, which
in fact can be understood on the basis of a simple random
copolymer model@5#. At relatively high temperatures, i.e.,
above or at themolten globule state~which is an operational
term for a rather dense state with pronounced secondary
structure; see, e.g.,@2#, p. 265! we assume, in agreement with
Jaenicke’s conclusion, that the protein is substructured ac-
cording to the underlying amino-acid letter code, into two
groups of secondary structures, as can be seen in the well-
known ribbon representations of proteins@45#. One set,
which we denote by capital lettersA,B,C, . . . , represents
the described helices@46# and also potential strands for the
formation ofb sheets. Strictly speaking, the latter cannot be
well described at this temperature since their stabilization
probably requires also the forces between different parts of
the protein and not just forces along the backbone. Yet, theb
strands need to be folded into the correct relative position in
space. These elements are assumed to be approximately lin-
ear with a well defined start and end point~amino acid!. The
secondary elements can with quite high confidence be pre-
dicted from the linear sequence information based on the
DSSP~definition of secondary structures of proteins! algo-
rithm @47#. The second group consists of the remaining con-
necting pieces of the protein, the irregular loops~which have
an average length of 4 residues, Fig. 6!. These can be re-
placed by the straight connection line,a,b,c, . . . between
two consecutive secondary elements of the first group. Then
all elements can be considered straight. Two elements are
connected by a ‘‘hinge,’’ which is characterized by a direc-
tion in space, perpendicular to the plane in which the two
joining elements can rotate. The position and action of the
hinge are in principle determined by the underlying amino
acid sequence; however, the code is yet to be found by sta-
tistical analysis. Using a spinSi for this description we can
define both the direction and the sense of the bend between
the two elements. We then make the crucial, simplifying
assumption that each element is sufficiently rigid to define
the relative optimum direction of the spins attached to the
ends of the element.

Thus the protein is schematized as the sequence of sec-
ondary structures and connections with preferential bending
forces acting between them

aS1AS2bS3BS4cS5CS6d,... . ~1!

It is at this level that we shall attempt to classify the various
protein foldings. We are now ready to formalize the model in
order to be able to make computer simulations and predic-
tions of fold classes. This scheme is not simply a lattice
model, and in principle it can be made general with arbitrary
angles and lengths. At a later stage we shall include interac-
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tions between the elements of the first groupA,B,C, . . . , in
particular between the potentialb-sheet elements.

A. A fold Hamiltonian with the pertinent symmetry

We need further simplification to get a practical model for
fold structure formation. For a statistical description it is
probably not important to allow continuous variations in the
possible angles, so we assume only one allowed angle, and
the value of the angle is not essential for the argument in the
first stage. For ease of representation we choose this to be
90° ~later also including the value 0°!. Let us traverse the
protein represented by Eq.~1! from left to right. Each ele-
mentP5A,B,C, . . . has adirection unit vectorêP along one
of the axes in a Cartesian coordinate system. We remark that
using simply the direction vectors makes the description in-
dependent of the lengths of the elements. This is a simplifi-
cation based on the fact that the actual elements have lengths
of the same order of magnitude; see Fig. 6. It is also inde-
pendent of the position in space and of interactions between
the elements apart from direct overlap. Similarly each ele-
ment p5a,b,c, . . . is characterized byêp. The structure is
given by the sequence of spin vectorsS1 ,S2 ,S3 ,S4 ,... . The
spins have unit lengths and may each point in either of the
six directions6x,6y,6z. If we consider only the 90°~and
0°! turns, a unique description for the orientation between
two elementsa and A with a hinge spinS1 ~and furtherb
joined by the hinge spinS2! is given by

êA5êa3S11~ êa
•S1!êa,

~2!

êb5êA3S21~ êA
•S2!êA, etc.

It is clear that the fold is uniquely described by the sequence
and state of the ‘‘hinge’’ variables, the spinsSi . A given
sequence of spinsSi and the start directionêa is a rigid
building prescription by which any later element directionêi

is exactly determined.
However, this is too strict, and we want just to give build-

ing guidelines. For an element of group one, which may be
optimally surrounded by parallel spins (↑A↑), let us say it
gains an energyJ if the spins are parallel, gains nothing if
they are perpendicular (↑A→), and pays an energy2J if
the spins are antiparallel (↑A↓). If the spins should have a
right turn we would give an energy gainK for the right turn,
0 for parallel or antiparallel, and2K for the wrong, left
twist. The possibilities are shown in Fig. 1. We can define
similar energy conditions for elements of group two, with
possibly different, and lower energy valuesj ,k. We then
form a linear chain of these energy variables, describing the
preferred state of its surrounding spins, e.g.,

m j mKmkm~2K !m j mJm~2 j !m•••, ~3!

wherem represents any of the possible six spin directions for
the hinge spins. We notice this is a more flexible description
than Eq.~1!. The structure is now determined by the inter-
action constants sequence given in Eq.~3!, as an example, as
j ,K,k,2K, j ,J,2 j ,... . This gives a unique best set of the
spin variablesS1 ,S2 ,S3 ,S4 ,... . From those the ground
state can be constructed from Eq.~2!. If that is all we want,
we could just as well take all constants equal in magnitude,
say equal to one, leaving just the signs. This would be a kind
of interaction ‘‘spin’’ variables. However, we could also
consider ‘‘wrong’’ folds and then it would be nice to have
different energy parameters to give us the energy cost for
that. A change in a spin (Si) direction at a junctioni has the
dramatic consequence of rotating the entire remaining pieces
of the protein around this junction. We shall assume that
there is no inertia and no stearic hindrance in doing so~this
could in fact also be introduced in the model!. Expressed in
another way, we do not care how the system has arrived at
any state for which we can measure the energy. This is rea-
sonable when discussing the ground state. In order to be able
to describe the energy cost for violating the optimum fold we
write the argument as a Hamiltonian:

Hhinge52(
P

~JPSP•SP111KPSP3SP11•êP!

2(
p

~ j pSp•Sp111kpSp3Sp11•êp!. ~4!

We neglect the orientation of the beginning and end loops. In
Eq. ~4! P52n11 andp52n, where the indexn is running
from n50 to 1

2 (N21), whereN is the number of elements.
The constantJP51J or 2J determines the energy for hav-
ing the spins at the ends of a group one elementP as parallel
or antiparallel spins in thex, y, or z direction. The constant
KP51K or 2K determines the energy for having the spins
perpendicular or antiperpendicular to each other~right and
left thumb rule!, and similar forj P andkP . To simplify the
notation we shall sometimes write2X5X̄. We have here
disregarded the cases with angle 0°, and cases with the spins
along the element direction. The choice number is therefore
by constructionZ54, which is the lattice coordination num-
ber minus two. One may start by fixing, e.g.,S15 ẑ and
ea5 x̂; the rest then follows from Eq.~2!. For thea helix it is
rather clear that the interaction between the spins will be
simply related to the number of amino acids that form the
helix. For a random sequence of the interaction constants the
model exhibits known folds among a wealth of other struc-
tures such as noncompact, loosely packed structures and
structures that are too densely entangled in one another. One
can characterize a given fold configuration uniquely by a
linear string of coupling constants, which in fact is our sys-
tematic name or name for the fold class. As an example, the
string j K̄ jK j is our systematic name for a so-called four-
helix bundle protein: 1hmq. It is important to note that there
is rotational invariance of the constantsJ,K, . . . , andthere-
fore of the representation of the proteins by such constants,
contrary to a vector representation. As a simple example we
have shown in Fig. 1 of Ref.@32# the projection of the 4-a-
helix bundle, which is denoted asj K̄ jK j . The name depends

FIG. 1. Definition of the hinge spins and the hinge force param-
eters for secondary elements, double line. The definition is analo-
gous for the intermediate elements, single lines. The drawing is in
perspective, all angles represent 90°.
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on the direction in which the chain is traversed, but it is
invariant under rotation and translation. Some proteins are
‘‘embellished’’ by the addition of several amino acids. This
focuses on the question of a definition of families and of a
metric. We suggest as a measure for closeness between
classes that two proteins, not necessarily of the same length,
have the largest similarity if the overlap in their names is
maximal ~see Fig. 2!.

The reduced information in the name giving the spin di-
rections can be furnished by many amino acid sequences.
This provides in fact the basis for the classification, i.e.,
many sequences may have the same fold.

We must also judge energy differences between good and
bad folds for the same sequence. We need a simple compact-
ness measure. On a simple cubic lattice a dense packing of a
chain can be defined as one in which all vertices have the
maximum number of nearest neighbors. This measure has
been used earlier by Chan and Dill@22# and Camacho and
Thirumalai @39# ~for the bead model!. Another measure of
optimal packing with respect to the hydrophobic forces act-
ing on the secondary structures, which usually have a pre-
dominant hydrophobic side, takes into account that these are
to be packed as closely as possible@5#. Then we need a
subset of the above classes~characterized by the interaction
constants! in which the secondary elements in addition have
as many parallel neighboring elements as possible.

In order to make the classification applicable to actual
proteins it is important to have a unique and easy identifica-
tion of the class to which any given protein belongs. Since
the observed low-temperature structures are usually strongly
twisted a global projection on a cubic lattice is not meaning-
ful. We wish to devise alocal identification method as fol-
lows. Find the unit vectors along the elements. For the loops
this represents the interaction line between two connected
type 1 elements. For any three consecutive unit vectorsê0 ,
ê1 , ê2 the conditionê0•ê2.1/& defines the interaction con-
stant for element 1. The sequence information for this ele-
ment is then reduced to one letter.

B. Distance measures between fold classes

We can define a metric on the space of folds. Firstly, two
folds belong to the same class if their projected paths traced
out by their backbone are identical on the 3D lattice; this is
uniquely described by the string of coupling constants~e.g.,
jJkK, etc.!, thus providing the name for the fold class. One
of the key points in this paper is that the rather loose notion
of fold classes can now be rigorously characterized by the
names defined here. To see that such a characterization

makes sense we can again take the example of the 4a-helix
bundle fold class and inspect that the different protein do-
main members have roughly the same name. For example,
haemarythin, tulysozyme, and cytochromeb256 are all given
by the same name (j K̄ jK j ) whereas rice cytochromec
~1CCR! from another fold class also has a different name
( jKk̄K j ).

An oversimplification of the presented formalism is that
a-helix and b-strand elements are not distinguished. This
means that at present the helices in the helix bundle class can
be replaced byb strands. This can be easily remedied by
introducing special interaction parameters for theb strands.
Thus for those we assign instead of6J,6K the different
constants, e.g.,6I ,6H, which gives four more letters in the
alphabet, 12 in all, by which to write the name. The struc-
tural restrictions thatb strands are close in space means that
the new letters will not be randomly placed, but more likely
be in close groups. A further generalization is to consider the
mentioned direct move of two adjacent elements. Since this
can happen for both types, we need to introduce both6L
and6l , thus again adding four extra letters to the fold code,
16 in all.

The most systematic way to define a distance between
fold classes is to use the difference in the names of the
classes. For two names withN1 and N2 letters the distance
Dsequence

max can be defined as

Dsequence
max 5N2Nis

max, ~5!

whereNis
max is the number of letters in the maximal identical

sequence~is!, and N5max$N1,N2%. We can also define a
more average distance measure in terms of the sum of the
number of matching sequences:

Dsequence
sum 5N2(Nis . ~6!

In the 8-letter code the name of the fold classes for the 4a-
helix bundle and theb-sandwich plastocyanine will have a
certain overlap~due to the fact that helices and strands are
counted the same! and therefore a small distance between
them, while the 4-helix bundle and the TIM barrel will have
a large distance between them~consistent with their great
differences in size and geometry!. This rough classification is
useful if we are mostly interested in quantifying geometrical
and topological~or morphogenetical! aspects of the struc-
tures of proteins more than their content. To include the as-
pect of content we must just use the above defined 12-letter
code, which clearly ensures that, with the same measures,
now the 4a-helix bundle and the 4b-sandwich belong to very
different classes.

We would like to mention that it is of course possible to
translate the interaction constant names into more phonetic
and pronounceable names. One assignment with obvious
mnemonic value is the replacement ofJ,J̄,K,K̄ by back,

f orward, r ight , l eft and j , j̄ ,k,k̄ by i nvert, advance, over, under. It
shows that our interaction constants simply are ‘‘road
instructions’’ for navigation in 3D space@48#. This analogy
indicates in fact that the choice of the exact cubic lattice
with exactly 90° turns is probably not too restrictive.
With this replacement, for example, the 4a-helix bundle be-

FIG. 2. Two different proteins, haemarythrin and cytuchrome
b562 belonging to the 4a helix fold class represented as the same
configuration in the computerized chain link-arrow scheme.
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comes instead ofjK jK̄ j simply ir i l i . There are in all six
different variants with 4a-helices, namely,jK jK̄ j , kJk̄Jk,
jKk̄K j and those with the signs changed on theK and k
parameters corresponding to a reverse fold, where theN and
C termini have been interchanged. With the phonetic names
these areir i l i , obubo, iruri and i l ir i , ubobu, i lol i .
Besides being mnemonic, they are clearly much easier to
comprehend than the interaction constants, although of the
same information value. Similar, highly pronouncable and
structured names are found for the larger densely packed
folds @49#, which are far from just a random selection of the
eight letters. Further it is found that the names for very long
proteins~with, e.g., 35 elements and thus a 33-letter name!
tend to decompose into a compound of two or more names
for smaller ones~much as long words in actual languages are
compounded!. This is a sign of the fact that the 3D dense
packing tends to favor the formation of subdomains or fold
motifs.

IV. NUMERICAL CALCULATION
OF THE FOLD CLASSES

The purpose of the numerical calculation is to find pre-
cisely how many densely packed configurations of a given
chain can exist on the 3D regular lattice. From this number
we estimate~1! the number of specific folds and~2! the total
number of possible fold classes,~3! besides gaining statisti-
cal knowledge of configurations for~4! a particular number
of elements and lattice sizes. The latter turns out not to be
crucial since the statistics of the dense configurations con-
verges to the correct value for larger lattices.

Using the fact that the hydrophobic forces condense the
proteins and make them contain as little as 3% water@11# in
the native state, we want to find all folds that are self-
avoiding and densely packed. The dense packing criteria we
have used is a simple count of the neighbors of end points of
the elements~vertices!. This does in fact represent the hydro-
phobic force faithfully. Firstly, it is unspecific, i.e., indepen-
dent of which elements are close to each other. Secondly, it
depends on the ‘‘curvature’’ of the confinement approxi-
mately as a surface tension force, i.e., the different sites are
rated 3, 4, 5, and 6 for a corner, edge, face and a buried site,
respectively. Only the sum counts, in agreement with the
nature of the hydrophobic force. One could, in order to in-
troduce a temperature in the problem, assign energy values
for the mentioned sites. This need not be a linear weighting.
If the weighting is far from linear one can form other fami-
lies of proteins. For example, such that are dissolved in cell
membranes. Clearly, for those the hydrophobic and hydro-
phillic forces act differently. Families could be imagined
with higher choice numberZ or other projected lattices as
discussed in the next section. We have investigated the
closed packed folds for the simple cubic lattice case with
Z55. The fact that there may be a range of different families
does not invalidate our theory for the classification of globu-
lar proteins.

Let us now describe how one can calculate numerically
all chain configurations in a given regular lattice setup~with
a given lattice size! and for a chain with a given number of
elements. For mapping out the ground state, it is most
straightforward to operate directly on the element direction

vectorsêP and êp . We start by placing two perpendicular
elements (a,A) and their spin:ê1

aS1ê2
A . The next element

direction vectorê3
b is then placed in any of the four possible

directions according to the values of the interaction constant
for elementA: 6J, corresponding to an element parallel and
antiparallel toê1

a , and6K corresponding to an element per-
pendicular or antiperpendicular toê1

a . This determines the
direction ofS2 , which is not essential for the ground state
calculation, since all spins follow the direction dictated by
the interaction constants. However, the spins are important
for the excited states since the spin flips describe the excur-
sions from the optimum folds. All the possible positions of
the third element are included as long as the element stays
within the lattice box and does not collide with the previous
elements. Next, we determine the allowed positions of the
fourth element on the chain. We try again all the possible
directions of the fourth element, use those that avoid collid-
ing with other elements, and stay within the lattice and dis-
card the others. This procedure is repeated until all the ele-
ments of the chain are positioned and hence we obtain a
whole set of chain configurations each described by a set of
coupling constants~J,K, etc.!. Since distinct configurations
are described by different sets of coupling constants, it is
possible to sort the number of chain configurations uniquely.
We vary the initial conditions so that the first two elements
will be positioned over the entire lattice. The sorting by
names ensures that only ‘‘irreducible’’ configurations, which
cannot be brought into another by a simple symmetry opera-
tion, are counted.~Because we distinguish between the di-
rection of traversing the chain we distinguish between re-
flected configurations and obtain consequently counts that
are a factor of two larger than the ‘‘bare’’ dense counts.!

The process is then continued, under the constraint that
the path is self-avoiding. To find the dense folds we consider
all configurations in simple confinements, such as those in an
l 3m3n box ~notice that our box size indicates the number

FIG. 3. Full thin line, number of distinct folds for coordination
numberZ54, on a cubic lattice in a 23232 box as a function of
number of elementsN; the number in the smaller enclosed boxes
13131, 23131, and 23231 are also shown. The thin dashed
line is the mean field estimate (Z/e)N. The thick line shows the
number of dense folds.
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of elements, so our 23232 box is the same as a
33333-bead box!. The dense chain configurations are eas-
ily derived from the total number of occupied nearest neigh-
bor sites to any element’s end point on the chain. All the
configurations that fit into a box of a given size are counted.
This gives a large number of folds, as can be seen on Fig. 3,
for a 23232 box ~thin lines for various box sizes! and
shown explicitly in Table I. Next we find among those all
that are densely packed in the sense of having the largest
number of neighbors. This is plotted as the heavy full line.
We notice it is very irregular with dips at numbers we shall
call elemental‘‘magic’’ numbers. Similar dips were found in
a count for the filling of a 2D plane@22,39#. A simple analy-
sis shows that the dips in 3D correspond to~in sequence!
filling a 13131 box at the number of elementsN57, a
23131 box atN511, a 23231 box atN517, and 33
packed 23131 boxes atN523. It is not possible with
Z54 to completely fill a 23232 box. This can be done if
we allow also straight continuation of the elements, i.e., us-
ing Z55. The results for the dense foldsZ54 andZ55 are
shown in Fig. 4. The number of folds are much larger in the
latter case. A scaling and mean field theory@50# of this prob-
lem gives the estimate that the number of folds forN ele-
ments increases as (Z/e)N, whereZ is the choice number, in
our caseZ54, ande52.7183. For a protein with nine sec-
ondary structures and consequently eight interconnecting

loop elements we haveN517, and the above theoretical
relation gives the number of folds as (4/e)17;711. This is
already a quite small number. However, the discreteness
gives rise tomagic numbers at which there are particularly
few, different folds. Although the mean field theory repre-
sents the average data well, there are systematic deviations
for large N. This is because we have not included closed
folds in very elongated confinements, such as, e.g., a
43131 box, which we exclude since they are not ‘‘globu-
lar,’’ although they do fulfill the simple neighbor criterion.
We have given the exhaustive count of the dense and the
total number of configurations for box sizes up to 33232
for Z54 in Table II, and forZ55 in Table III. To obtain the
exhaustive dense count for a certain number of elements a
few numbers have to be added for less globular box sizes
@51#

In the context of protein folding Dill@11# has analyzed
and found the effective choice number for a typical protein
to be Z<3.8, although this is an average for all residues.
Based on this and the above argument@48#, we find that the
simple case we have described withZ54 is in fact the most
relevant for real proteins. From our numerical calculations
we can then estimate how many distinct fold classes there are
to be found. If we, for reasons given in the next paragraph,
restrict ourselves to domain structures withN<17 we find in
total 3906 possible, distinct globular fold classes. This is
close to Chothia’s estimate of 1000, based on the heuristic
argument@24#. When increasing the number of elements in a
domain beyondN517 by just a few the number of possibili-
ties increases dramatically. It is interesting that our estimate
based on completely different arguments is close to
Chothia’s, and reduced from the astronomic numbers that
would arise from the most direct enumeration@14#. The fact
that we get a slightly higher value, if significant, could indi-
cate that nature may not have used all possibilities available
by structural ‘‘symmetry’’ during the course of the evolu-
tion. We may have to further impose a designability criterion

FIG. 4. The number of distinct dense folds for coordination
numberZ54 in a 33232 box, fat line. Notice the deep minima at
magic numbers at the closed configurations. Notice the deep
minima atelemental magic numbers Nm : 7,11,17,23,31,35, etc. at
the closed configurations; these correspond tosecondary magic
number of elements Ns5(Nm11)/2: 4,6,9,12,16,18, etc. The
dashed line represents the mean field estimate forZ54: (Z/e)N.
The corresponding results forZ55 are shown as the thin an the
dashed-dotted lines.

TABLE I. 23232 box, choice numberZ54 andZ55. Num-
ber of configurations as a function of elements.Ndense: dense con-
figurations with maximum number of nearest neighbors.Ntotal : total
number of configurations. Compare with Tables II and III.

Nelements Ndense(Z54) Ntotal (Z54) Ndense(Z55) Ntotal (Z55)

1 1 1 1 1
2 1 1 1 1
3 1 4 1 6
4 6 15 8 26
5 9 53 12 104
6 8 161 8 372
7 6 444 6 1236
8 24 1100 36 3763
9 76 2590 164 10890

10 84 5560 192 28664
11 48 11412 146 72416
12 120 20384 584 162364
13 722 35280 3984 354036
14 988 52078 6488 674236
15 424 76116 3264 1264156
16 396 90936 5464 2036904
17 172 106728 4220 3267244
18 160 97362 8440 4399672
19 2908 87696 115084 5929000
20 6366 57460 313360 6452560
21 1752 36684 141188 7011716
22 3300 15088 496648 5731068
23 656 5812 316352 4606488
24 848 924 865544 2399816
25 0 0 780624 1128736
26 0 0 206692 206692
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@43,52# or a functional criterion to reduce the number some-
what.

We further believe that there is a connection between the
simple geometrical ‘‘preferred’’ numbers found in the close
packings and~1! the breaking up into domains and~2! the
preferred number of residues in protein domains. The local
minimum atN517, corresponding to nine secondary struc-
tures is relatively well pronounced and the next minimum is
anomalous. There is also a well pronounced minimum at the
magic numberN535. TheN535 structure is confined in a
33232 box. An analysis of the folds shows that a large part

is formed of two folds of theN517 domain interconnected
by just a single element, i.e., 231711535. This explains
why the domain formation is a natural consequence of the
discrete packing problem and that the natural choice for a
domain size contains 17 elements, which in turn implies a
certain length in terms of residues.

There is experimental support for this, which has been
seen by studying the statistics of the length distribution of
protein chains@15# in the databases. Those distributions
show optima in protein length around 125, 250 amino acids
~aa!, etc. for eukaryote and similarly 150 aa and 300 aa for
prokaryote. The origin of this remarkable periodicity has yet
to be explained in detail. It can have something to do with
the topology of the polypeptide chain in early stages of pro-

TABLE II. 3 3232 box, choice numberZ54. Number of con-
figurations as a function of number of elements.Ndense: dense con-
figurations with maximum number of nearest neighbors~for the
exhaustive count the numbers in Table IV must be added!. Ntotal :
total number of configurations.Nnn : maximum number of nearest
neighbors. The final column shows when particular simple subunits
are maximally filled.

Nelements Ndense(Z54) Ntotal (Z54) Nnn Comments

1 1 1 2
2 1 1 4
3 1 4 8
4 6 15 10
5 9 57 14
6 8 207 18
7 6 731 24 13131
8 24 2376 26
9 76 7193 30

10 84 20112 34
11 48 53232 40 23131
12 184 130872 42
13 978 305074 46
14 1312 655566 50
15 602 1349200 56
16 396 2519548 60
17 172 4547644 66 23231
18 616 73391244 68
19 11782 11585834 72
20 19354 16095254 76
21 6972 22105158 82
22 10016 26351888 86
23 3902 31361586 92
24 848 31658298 96 23232a

25 166120 32057672 98
26 478392 26652332 102
27 134136 22350538 108
28 365704 14585004 112
29 105246 9643600 118
30 283660 4535516 122
31 102870 2185692 128
32 1752 629544 134
33 115808 195360 138
34 14016 25460 144
35 5006 5006 150 33232
36 0 0

aIt is not possible to fill the 23232 box with the optimal 26
elements usingZ54.

TABLE III. 3 3232 box, choice numberZ55. Number of con-
figurations as a function of number of elements.Ndense: dense con-
figurations with maximum number of nearest neighbors~for the
exhaustive count see@51#!. Ntotal : total number of configurations.
Nnn : maximum number of nearest neighbors. The final column
shows when particular simple subunits are maximally filled.

Nelements Ndense(Z55) Ntotal (Z55) Nnn Comments

1 1 1 2
2 1 1 4
3 1 7 8
4 8 30 10
5 12 142 14
6 8 632 18
7 6 2645 24 13131
8 36 10134 26
9 164 36782 30

10 192 124298 34
11 146 401013 40 23131
12 796 1203304 42
13 5172 3460894 46
14 7696 9150100 50
15 4268 23413384 56
16 5464 54574722 60
17 4220 124465702 66 23231
18 20528 256696224 68
19 286044 523201896 72
20 590112 956157616 76
21 304504 1740791038 82
22 740264 2808524872 86
23 523094 4540269028 92
24 865544 6395425216 96
25 780624 9062517568 102
26 206692 10917458588 108 23232
27 936888 13261852260 110
28 10182968 13192946730 114
29 142150014 13246041324 118
30 18009792 10243424132 124
31 322585300 7986809176 128
32 76012112 4275862868 134
33 711760872 2291702688 138
34 265368752 632026676 144
35 169462384 169462384 150 33232
36 0 0
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tein folding @53,54# or the phenomena could be a remanence
of the DNA-RNA structures. Here we propose that these
periodic optima are related to the packing of the polypeptide
chain at the later stages of protein folding. As to be demon-
strated below, the position where the curve in Fig. 4 has a
minimum is a special ‘‘economical’’ configuration for do-
main sizes. They are the most common protein domains, the
length of which is given by the amount of residues in the
secondary structure~a,b! elements and loops~of length of
around 11-6-4 residues, respectively, Fig. 6!, plus the begin-
ning and end segments. This gives for aN517 element do-
main the following number of residues: for a purea domain
;150 residues and for a pureb domain ;100 residues.
Based on the average size of the elements, the magic num-
bers therefore also rationalize why the size of the domains in
terms of amino acid units@15# is as preferred by nature. It is
interesting that this number is also in accord with the overall
thermodynamic theory@11# for the effect of hydrophobic
forces acting on a polymer chain.

One might argue that the restriction of the chain to have
elements being only orthogonal to the preceding one is too
limited in the sense that two consecutive parallel elements
could also be considered and counted for in the total energy.
To do that, we may include the following term to the previ-
ous Hamiltonian:

Hstraight52(
P

LPêP
•êP112(

p
l pêp

•êp11. ~7!

We have carried out a study where we included the case
with coupling constantsLP andl p . This means that when it
is being decided whether an element is orthogonal to the
previous element in the plane (JP , j p) or out of the plane
(KP ,kp) we also include the possibility of the element going
straight ahead from the previous one. This extra move pos-
sibility gives rise to a new list of configurations shown in
Table III. The possibility of including the straight moves
(Z55) gives a much larger set of unique configurations.
However, the behavior exposed in Figs. 3 and 4 of minima at
7,11,17, . . . number of elements is still maintained in these
extended numerical calculations~as can be seen by compar-
ing Fig. 3 and Fig. 4, forZ54 the magic number dips gets
more pronounced in the larger box!.

We have performed a series of calculations for different
sizes of lattices in order to see the variation in the number of
different configurations for optimal packing densities for all

the possible sizes of chains. The numerical calculations are
performed as an exhaustive search for all the possible con-
figurations. In the table we pay special attention to the
minima occurring at specific chain length and with a maxi-
mum of neighboring occupied lattice sites that appear in spe-
cific lattices and reappear in the sublattices contained in the
former lattice. For example, the results for the lattice
(33232) contain all the minima encountered in the smaller
sublattices such as (13131) and (23131). Furthermore
one can make a study of the statistics of optimal packed
configurations for specific chain length as a function of dif-
ferent lattice sizes. As expected, the number of configura-
tions with the magic number of elements for the 13131
lattice will remain the same for all greater lattices.

A. Graphical representations of the protein folds

Basically the philosophy behind our representation of
folds is that the 3D protein structures can be represented in a
unique way by a 1D string of coupling constants
(6J,6K, . . . ). That is a unique name written with an 8-
letter alphabet~which we have demonstrated may be ex-
tended to sixteen or more letters, when including more dis-
tinguishing features; the minimum is four letters!. It is
independent of rotations and moderate distortions~twists! of
the proteins. We have given the prescription for how that can
be done once the protein is partitioned in secondary structure
elements. Another protein with the same number of elements
but with a different string representation will have the same
energy with respect to the hydrophobic forces, but could dif-
fer with respect to the hinge coupling parameters.

The projection of the actually observed~twisted! struc-
tures to the high symmetry representation can be made by
visual inspection of the stereographic pictures. However, for
a more systematic approach we have constructed a computer
program that can convert a set of protein coordinates in the
PDB ~Protein Data Bank! format into our representation of
ordered chain elements on a regular lattice. The actual struc-
tures arelocally and consecutivelyrectified to the rectangular
representation. The representation can be given in a nice
graphical form and yields a systematic name.

V. MAGIC NUMBERS

We now turn to the question of an atomistic grouping of
packed structures of protein chains as considered in the pre-
vious section. From an analysis of packing and the effect of
hydrophobic forces@12# we shall try to understand the ap-
pearance of ‘‘magic numbers’’ and test the paradigm by a
statistical analysis of available structural data. Magic num-
bers are well known in graph theory and packing of hard
spheres. For the 2D square lattice the occurrence and the
origin of the magic numbers were discussed explicitly by
Chan and Dill @22#. Later further studies were performed
@39#. The studies of two-dimensional lattice animals give
some guidelines for the statistical behavior of proteins, how-
ever, for a property such as magic number it is imperative to
study the relevant 3D problem. We argue that the 3D magic
numbers have a profound physical meaning for the proteins.
The fact that the 2D elemental magic numbers@22# are quite
different from the 3D ones actually corroborates our model,
as will discussed below in Sec. III C. After this paper was

TABLE IV. Additional dense configurations forZ54 to be
added to Table II for obtaining an exhaustive count. It is arising
from filling the nonglobular boxes indicated.

Nelements 43131 43231 33331 Nnn

19 508 72
25 50318 87558 98
26 83912 169136 102
27 34652 67498 108
28 40404 110468 112
29 19074 45086 118
30 67176 122
31 36430 128
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completed we were notified that 3D counts forZ55 actually
had been made earlier and used to analyze the bead model
@23# for N up 13 and forN527. The results agree in all
details with ours.

The magic numbers found for the 3D lattice animals are
not very sensitive to deviations from a linear weighting of
the neighbor count, which is still consistent with the globular
structures. The magic numbers in our model areuniversalin
the sense that they do not depend on the specific, chemical
interactions between the amino acids: neither between distant
parts of the chain nor along the backbone—they are dictated
by the hydrophobic, confining forces.

Figure 4 shows the exact, exhaustive enumeration of all
possible dense folds for elements up toN535 in a 33232
box. For N517 there is a pronounced minimum with only
p(17)5172 distinct and predictable folds. The mean field
theory, giving 711, overestimates this grossly. Between the
magic numbers the abundance is, on the other hand, much
larger. The magic number atN57, corresponding to the 4-
helix bundle, is a close packing of a 13131 box, which we
call anA box. The next closed confinement is the 23131
box, which we call aB box. Magic numbers atN511, 17,
23, 32, and 35 can be understood as the optimal packing in
closed polyhedra~analogous to shells! consisting of 1, 2, 3,
5, and 6B boxes. The minimum atN524 corresponding to
a best filling of a 4B box is anomalous because the 23232
box cannot be completely filled with the optimal 26 elements
for Z54. With this in mind the predicted elemental and sec-
ondary magic numbers are summarized in Fig. 5. ForZ55
the 4 B box can be packed with 26 elements. This would
correspond to 13 secondary elements.

The magic number folds represent closed confinements
having minimal surfaces and are thus energetically favorable
from the point of view of the hydrophobic forces. They have
a clear energy separation from other, neighboring folds. This
is, according to the theory by Shakhnovich@40#, a necessary
condition for them to be able to fold rapidly~see also@41#!.
The configurational entropy for a fold at the magic number is
low, and allows the large entropy of the extended chain to be
exchanged by energy gain, without significant change in free
energy. This indicates that proteins with the magic number
of elements could be more stable and fast folding than oth-
ers. In the following we are going to test this by comparing
with experimental findings and by thermodynamic analysis.

A. Statistics of secondary structure abundance in nature

In order to be able to evaluate the relevance of the nu-
merical calculations and compare the computer results with
real protein data we need to perform the statistics of how
many proteins occur with a certain number of secondary
structure elements. In other words, we would like to see if
there has been a selection pressure such that nature has a
preference for building up proteins of a certain number of
helices and strands.

An important part in getting reliable statistics of occur-
rences in genetics and in molecular biology is to get a data-
base with no biases, e.g., a group of proteins not containing
a particular amount of a secondary structure. It is therefore
most appropriate to resort to data sets that have been selected
especially for a nonbiased content. The data sets used for
training and testing neural networks on secondary structure
predictions are convenient since they constitute a standard
reference for the whole molecular biology community.

We have used the standard set of 136 proteins with a
sequence similarity below 25% selected from PDB by Rost
and Sanders@55#, originally used for secondary structure pre-
diction. The secondary structure assignments are made by
the DSSP algorithm@47# in which the hydrogen bond poten-
tials ~being the physical basis for the secondary structure
stability! are calculated from 3D atomic coordinates. This
results in assigning a particular type of secondary structure
character to each residue in a given protein, indicating that
the residue participates in that type of structure. Secondary
structures of a given type are identified as such if they con-
tain at least 4 consecutive residues. The decision of how
many residues constitute a secondary structure is crucial for
the statistical analysis of the abundance of secondary struc-
tures. In Fig. 6 we have displayed the size distribution of
secondary structures for all known proteins in the complete
PDB database. The helix distribution~a! has its maximum
spread out over a plateau stretching from 4 to 12 residues,
theb-strand distribution~b! has a maximum around 3-4 resi-
dues, and the loops~c! a maximum at 4 residues. This clearly
gives support to defining secondary structures as containing
at least 4 consecutive residues. We have also performed sta-
tistics with a definition of helices containing more than 4
residues as a minimum requirement, but that did not alter
significantly the statistics of secondary structure abundance.
In making the secondary structure statistics of Fig. 6 we have
counteda-helix and 310-helix assignments as one type and
all b strands as another and then counted them all together.

In Fig. 7 we have displayed the found abundance of the
secondary structures as a function of their number on the
basis of the Rost and Sanders database@55#. The curve
clearly shows local maxima in the abundance that corre-
spond to the optimal packing we find theoretically. We find
optimal abundance at the following number of secondary
structure elements:Ns54,6,9,16,18, etc. The statistics for
the higher values is probably not reliable. The numbers cor-
respond to the number of elements beingNm52Ns21
57,11,17,31,35, . . . . Notice the large coincidences with the
elemental magic numbersobtained from our computer stud-
ies, Fig. 4. OnlyNs512 is missing, probably because of the
small database used or becauseNs is anomalous forZ54
andNs513 for Z55. The found optima are stable as to what
size of the database we use; e.g., the first half of the data set
has roughly the same distribution as the second half of the
set. This means that protein folds with a magic number of
elements, and a corresponding magic number of secondary
structure elements are more abundant. That again means that
the respective fold classes are larger, i.e., are containing
more members.

B. Magic numbers and the Euler characteristics

How can we understand and construct the series of magic
numbers for packing of the protein chain? As we have seen

FIG. 5. The predicted magic numbers.
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the magic numbers of secondary structure elements occur
when the number of dense packings has a local minimum. At
the position of a magic number there is a maximal jump in
the total number of closest neighbors around each lattice site
occupied by the chain. We shall argue that the magic number
occurs when the chain forms a closed surface~box! within
the lattice. A good example is the 4-helix bundle at the
magic number,Ns54, corresponding toNm52Ns2157
chain elements, which form a closedA box (13131) that
can be embedded in any other larger lattice.

For closed surfaces we have the Euler equation that con-
nects the number of cornersc with that of edgese and faces
f . The formula is

x5c2e1 f 5222g, ~8!

whereg is the genus number. We shall in the following only
be considering surfaces with no genus (g50). In case the
total surface of the chain configuration is not closed or the
body has buried corners the equation is not fulfilled but be-
comes instead

x5c2e1 f 5mÞ2, ~9!

wherem is any natural number.
One can get a clue on where magic numbers occur by

calculating the density of chain elements through the total
sum nn of the number of nearest neighbors that the end
points of the elements~vertices! on the chain have. At the
magic number the numberm in the Euler equation is two,
meaning that the chain configuration makes up a closed sur-
face ~or box!, and the jump in the number of neighbors is
optimalDnn56. The next magic number is obtained by add-
ing a new closed box to the other in the lattice and see when
it is filled out by the chain. For the case of theA box alone
theelemental magic numbercan only beNm57, which is the
number of vertices minus one. But in the case of theB box
(23131), which contains theA box two times, we obtain
the next magic number:Nm511. In Table II we show the
explicit number of configurations and the maximum number
of neighbors.

Let us try to examine in detail the cases where the chain is
configured around anA box and then has a few extra ele-
ments as shown in Fig. 8. As we saw the elementary box was
filled out well by the 4-helix protein chain and satisfied the
Euler condition with 8 corners, 12 edges, and 6 faces. With
an extra element added to these chain configurations we ob-
tain one more corner and one more edge but no extra faces.
We can count the extra nearest neighbors as being simply the
sum of all the attributes,Dnn512. With two more elements
~see Fig. 8! we have 2 extra corners, 3 extra edges, and 1
extra face. By adding these extra quantities we get 6 minus
the 2 from the last case, making the extra nearest neighbors
Dnn514. By adding one more element we end having
againDnn514. If we sum up all the corners, edges, and
faces for these cases with extra elements including the extra
corners, etc. we cannot satisfy the Euler relation for this ex-

FIG. 6. ~a! shows the statistics of the lengths ofa helices,~b!
that of b strands,~c! that for loops obtained by analyzing the com-
plete PDB data base.

FIG. 7. Statistical abundance of proteins withN secondary
structures@32#.

FIG. 8. This graph shows the increment in the number of neigh-
bors when adding extra elements to a closed box configuration.
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tended surface structure that is not closed in these cases as
anticipated above. If we, however, add one more element
@i.e., all together 4 elements on the ‘‘magic’’ (13131)
box# we end up getting 6 more corners, 8 more edges, and 4
more faces, which altogether isc512, e520, f 510, which
we see satisfies the Euler relation again. We have arrived at
the next magic number configuration of 11 chain elements
corresponding to 6 secondary structures. Furthermore we can
count the extra nearest neighbors obtained by this configura-
tion as beingDnn516, which is precisely what is observed
in the Table II of the numerical calculation of chain configu-
rations. Going to the magic number configurations the aver-
age number of nearest neighbors increases to16 from the
previous configurations with one element less. We have
found a procedure for determining a magic number occur-
rence by using the Euler relation and counting the extra con-
tent of corners, edges, and faces, which thus gives us the
number of nearest neighbors and hence the density of the
chain configuration. We can extend this prescription to more
complicated lattice boxes.

For up to 60 elements the magic numbers follow the fill-
ing behavior of theB box. That is because anA box can be
placed several ways around a larger box~consisting of 1–12
B boxes!, which increases the number of possible, different
folds. Without having done the actual numerical enumeration
of folds, we predict—from the fact that 8, 9, and 12B boxes
provide especially closed confinements with maximal num-
ber of neighbors per element and minimal number of faces
per element—that the higher elemental magic numbers most
likely includeNm544, 47, and 59, corresponding toNs522,
24, and 30. However, as we saw for the 4B box the prob-
lems with the actual folding of the chain into the confine-
ments may alter the simple estimate somewhat. Further, the
higher numbers may not be relevant for proteins in view of
their tendency to form agglomerates of domains of smaller
structures.

In conclusion, the magic number configurations satisfy
the Euler relation, due to the minimalization of surface area
compared to that of volume. This is due to the hydrophobic
forces that tend to minimize the number of hydrophobic side
chains on the surface of the chain configuration.

C. Magic numbers and other lattices

Although we have emphasized that the simple cubic lat-
tice sc is the minimal description of the chain of elements in
3D space@48#, it is of course not given that nature has re-
stricted itself to that, and therefore it is of interest to see
whether the obtained magic numbers are just specific to the
discussed sc lattice description. The magic numbers arise
because certain closed boxes are singled out as being particu-
larly favorable with respect to the hydrophobic forces, as
included by the procedure of counting the neighbor. For the
simple cubic lattice a magic number configuration is particu-
larly favorable relative to the unfolded states, since the near-
est excited state costs 4 neighbor bonds, whereas for the
nonmagic configuration the cost is only 2. That gives the
important larger energy gap for the magic folds. A magic
fold with N elements is also favored with respect to the
nearby dense folds withN21 andN11 elements, as can be
seen on Fig. 9. This shows that the number of neighbors per

elements is consistently higher for the magic folds. The hy-
drophobic forces will thus tend to favor the formation of the
magic number of elements in the molten globule stage, if the
element number still fluctuates. Further the degeneracyp(N)
is smallest for the magic number of elements, since both
p(N21) andp(N11) are larger in the number of ways one
can distribute either a missing or an added element.

If we now consider a bcc structure, see Fig. 10, the dif-
ference between this and the sc structure is that the lattice
‘‘unit’’ cell is deformed relative to the sc structure and an
extra nearest neighbor bond is formed~dotted line, along a
body diagonal!. The topological difference between a sc and
a bcc structure is simply that for packing on a bcc lattice we
in addition allow an element to be placed alongone of the
body diagonals in the sc cell. The choice number is~if we do
not include going back or going straight! Z56. Apart from
the additional possibilities for placing an element, the same
boxes are preferred as for the sc case, having the magic
number of boxes favored by 4 neighbor bonds relative to an
excited structure. Since the maximum number of elements in
a box is given by the number of verticesNv asNm5Nv21,
the magic number of elements of the bcc lattice are identical
to those for the sc lattice. The actual degeneracy number is
larger:pbcc.psc, due to the larger value ofZ. Another dif-
ference is that for the bcc lattice we do not have as clear a
stabilization relative to the neighboring number of elements,
which can be seen on Fig. 10, thin line. This shows only
shoulders instead of clear maxima in the number of neigh-
bors per element.

FIG. 9. The number of neighbors per element for various num-
ber of elements; fat line: for the simple cubic lattice~sc!, thin line:
same for the bcc lattice.

FIG. 10. Left, simple cubic lattice. Middle, the box squeezed so
that an extra nearest neighbor bond appear. This is a representation
of the bcc lattice. Right, the box further squeezed so five extra
neighbor bonds appear. This is a representation of the fcc lattice.
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For a closed packed structure, as for example the fcc, our
treatment of the hydrophobic forces~as neighbor count! does
not single out any preferred boxes. The number of neighbors
per element increases monotonically as does the number of
ways to distribute the elements i.e., for the fcc structure we
do not find any magic numbers. However, a closed packed
structure is contrary to our picture of the parent phase, and
packing on a closed packed structure is therefore not relevant
in the present context. Murzin and Finkelstein did consider
the packing on closed packed polyhedra@35#, which is con-
sistent with their attempt to describe the twisted state, not a
parent state. As shown in Fig. 10 the topological difference
between a sc and a fcc packing is simply that in the fcc we
allow in addition an element to be placed ononebody diag-
onal and onfour face diagonals, and the choice number is
Z510. It is now easy to generalize to other equal length
lattices. Only those that are not closed packed are of interest
for forming the parent phase~with respect to the neighbor
count criterion!. For example, for a simple hexagonal crystal
the relation to the sc is that in additiontwo opposite face
diagonals are allowed for the placing of the elements, and
Z56. It seems that some observed structures are most natu-
rally described if we occasionally allow elements, in particu-
lar loops, to be placed on diagonals. A recent example is the
‘‘normal’’ form of the scrapie prion protein. This, according
to the model by Huanget al., is a nicely twisted 4a-helix
bundle, which is different from those described in Sec. III B
for the sc projection@56#.

Although it goes beyond the scope of the present paper, a
remark about relaxing the equal length assumption is in order
here. Fora helices andb sheets an almost parallel packing
with small connecting loops is often found; see, e.g., Fig. 1
in Ref. @32# or Fig. 2 in this paper. A packing of a small
number of secondary elements on a tetragonal lattice then
seems to be a more natural choice for a parent state~it leads
to a reduced model also used for the Martensitic transforma-
tion @57#!. It is interesting that the magic numbersNs for the
secondary structures remain the same~see a detailed discus-
sion in @58#!, as long as the simplification makes sense, and
that they are robust with respect to how the loops are placed
and how long they are.

We conclude that for the packing on lattices for which our
description of the hydrophobic forces in terms of neighbor
counting singles out closed boxes, the magic number remains
those we have discussed for the simple cubic lattice. How-
ever, the total number of possible structures selected only on
the discussed basis will be higher.

VI. THERMODYNAMIC THEORY
FOR PROTEIN FOLDING

So far we have only used the Hamiltonian Eq.~4! for
enumerating the distinct folds found according to the hydro-
phobicity criteria, without explicitly writing down a Hamil-
tonian for the hydrophobic forces. This and the Hamiltonian
for the short ranged~twist! forces will be discussed in this
section. First we emphazise that it is likely the protein fold-
ing problem is an essential nonequilibrium phenomenon in
the thermodynamic sense, and an energy function is only
describing part of the process. Since the dynamically un-
known time interval is large, ranging from 10210 to 1023 s

~from either molecular dynamics calculations or experi-
ments! a proper theory for the dynamic folding processes in
that interval is still far fetched. At most one can make a
scenario, the details of which are to be resolved experimen-
tally or computationally. First, the temperature is not a well
defined concept, and can be replaced by the properties of the
solvent; even at room temperature one can fold and unfold
proteins by varying the amount of denaturants. However,
with this in mind, let us follow common practice@5,7# and
use the word temperature as indicating a measure for the
degree of folding. We envisage the following scenario in line
with recent observations@3,4,20,21#.

At high temperatures the protein will be in anextended
state because of the large phase space for this. When cooling
down, the protein will start to form thea helices because
there is a clear chemical energy gain by forming hydrogen
bonds between every third amino acid, and also a certain
hydrophobic gain because of the contraction.

A. The molten globule and the parent states

The gross partitioning of the chain in secondary and in-
termediate structural elements is completed at the next stage
@4#. Any interaction between the elements is supposed to be
switched off by screening effects of the solvent. It is at this
Molten globulestage we introduce our Hamiltonian Eq.~4!
containing the hinge forces. They are of course generally
very weak relative to other forces. How can they matter in
the folding process? To demonstrate this, it is instructive to
look at the Heisenberg magnet with the Hamiltonian:

HHeisenberg52J
1

2 (̂
i j &
Si•Sj2h(

i
S i

z , ~10!

where the sum is over all nearest neighbor pairs only. The
strong interactionsJ cannot determine the spin direction in
the fully rotationally invariant ordered state given by the
dominant first term—but by introducing an infinitesimal field
h in the z direction the rotational symmetry is broken. It is
the weak global force that determines the overall structure;
the strong force determines the details. This analogy is in
fact deeply related to the present problem.

To see this we write the hydrophobic Hamiltonian as

Hhydrophobic52V
1

2 (̂
i j &

8 s is j2m(
i

s i , ~11!

where the sum is over all nearest neighbor pairs on a~large!
cubic lattice andV is the ~essentially hydrophobic and hy-
drogen bonding! energy gain for forming a secondary struc-
ture or loop. This appears to be a regular Ising model in
terms of the occupation variabless i50 for unoccupied sites
ands i51 for occupied sites. These are describing theN11
vertices or hinge points of a protein consisting ofN ele-
ments. In fact the sites can also be just the location of the
residue at which the hinge is going to be, even in the totally
unfolded state. By the chemical potential we may control the
fixed occupancy to( is i5N11. The only new feature, indi-
cated by the prime, is that the probability for finding a state
with differently distributed occupied sites has to be aug-
mented by the number of ways the points can be connected
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by a single, self-avoiding line. This Hamiltonian describes
schematically the above scenario for protein folding, as
shown on Fig. 11~for N57 with 8 vertices, open circles!.

~1! At T;`: A fully extended state where the potential
hinge residues are sparsely distributed and no neighbor pairs
are formed; thus no gain in hydrophobic energy.

~2! At TMG,T,`: The formation of secondary struc-
tures in the form of sparsely distributed neighbor pairs. A
gain in hydrophobic energy ofV for each formed nearest
neighbor pair, representing a secondary or loop element.

~3! At T5TMG : The molten globule~MG!, which is here
defined precisely as the stage at which a chain is formed with
all connected pairs. The energy gain is at leastNV. It is still
an extended chain of secondary structures and loops, having
a mean~square! radius of gyration, according to polymer
scaling theory@59# of r G5^Rg

2&1/25aAg
1/2N3/5, wherea is

the average length of an element, andAg~; 1
6 for sc! is the

amplitude. This is nonuniversal. A universal ratio with the
mean square end-to-end distance amplitudeAe is given by
Ag /Ae50.1599~for a comprehensive overview over the sta-
tistics of self-avoiding random walks, see@60#!. Using this
and ^Re

2& and the estimate from @61# we find

r G; 2
5 @(Z21)/Z# aN1/2. The characteristic size scale is ac-

cordingly typically 20–30% larger, and the volume is a few
times larger than that of the closed packed state.

~4! At T5TPA: The precise definition of theparent phase
~PA! at which the chain withN elements forms a densely
packed structure, in our chosen minimal boxes. This state

then hasr G' 1
2 Ra, whereR is the side length of the box

depending on the number of elements~i.e., typicallyR51 to
2 for N57 to 25!. The volume is only a couple of percent
larger than that of the closed packed state. In the previous
sections we have numerically calculated how many ways the
points in such a box can be interconnected by a self-avoiding
chain ofN elements.

~5! Later we shall describe the Hamiltonian for the tran-
sition to the final, closed packed—so-callednative state—
taking place above or around room temperatureTRO.

At stage~3! to ~4! each occupied site is a member of two
pairs and it is meaningful to assign the hinge spin variable to
the site, and thus introduce our hinge Hamiltonian, just for
the occupied sites. The Hamiltonian Eq.~4! is a discrete one
of the ‘‘Ising’’ type, where the spins can assume up to six
different directions. Further, it is now describing a small
‘‘cluster’’ of only N21 spins~when neglecting the outer-
most ones!. Therefore, there will be no phase transitions in
the true thermodynamic sense but rather smooth transitions
from one state—or rather stage—to the other. For simplicity
in discussion we map the potential native fold~one of the
densely packed states! onto a ferromagnetic Ising chain with
spin variablesI n . As we have seen, with respect to the domi-
nating hydrophobic forces this state is degenerate with a
large numberp5p(N) of other states, which may be thought
of as p different staggered Ising states for a protein withN
elements. The lowest energy excitation for the chain, with
respect to Eq.~4!, is a soliton mode in which all spins to the
left of one are flipped. This violates the value of only one
letter in the chain~change in sign or type!, whereas a single
spin flip requires change of two bonds. To evaluate the hy-
drophobic energy cost of these excitations~and check that
the chain is still self-avoiding! we construct the site occu-
pancy on the basis of the spin sequence Eq.~1! and calculate
the energy from Eq.~11!. The degenerate models all share
the high energy excitation phase space, the molten globule.
However, the low-lying excited states are very different—in
particular because a large number of excitations are prohib-
ited by the nonoverlap constraint for the folds, and the ener-
gies of extended folds are augmented by hydrophobic en-
ergy. At moderate temperatures the states are essentially
independent and separated by large energy barriers. We in-
troduce this regime as a new intermediate stage. It is a vola-
tile, high symmetryparent stage corresponding to the bcc
phase. We suppose that the energy cost in violating the dense
packingW ~which is of the order ofV! is much larger than
any of the hinge forces. However, a given set of hinge forces
~which may include the effect of chaperones! sum up to give
maximum energy gain for~most likely! the potential native
fold. Thep21 other states will have a higher energy accord-
ing to how many letters in the name have been violated. The
effect is like that of the uniform fieldh in Eq. ~10!, and it is
not sensitive to whether the hinge forces fit exactly to the
final fold. So, without frustration thep-fold hydrophobic
symmetry is broken. This demonstrates a natural relation be-
tween the sequence information and a preferred folding into
the high symmetry fold corresponding to the native one@62#.

B. Transition to the native state

At lower temperatures the folding process proceeds to-
wards the experimentally observedtwisted, so-called native
structure. Only at this stage is the water supposed to diffuse
out and leave a problem for the optimization of the short
range chemical forces between neighboring elements. That is
the problem addressed by Murzin and Finkelstein@35#. To
describe this in our model we need an extra term in the
Hamiltonian, just as for the Martensitic problem. Let, as de-
scribed above, the parent state be represented by ap-fold
degenerate effective Ising model with interaction parameter
W:

FIG. 11. A sketch of the five stage folding scenario from~1! the
extended stateat high temperatures to~2! a partly secondary struc-
ture forming stage,~3! the molten globule~MG! stage,~4! the par-
ent stage~PA!, and finally thenative, twisted state at about room
temperatureTRO. The double lines indicate formed secondary
structures and single straight lines interconnections formed by
loops. Thes indicates the considered eight ‘‘hinge’’ residue posi-
tions.
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Hparent52
1

2
W (

^n,n8&

I nI n8 , ~12!

where I n are the reduced hinge spin variables~giving the
changes relative to one of the consideredp parent ground
state configuration!, and the sum is over all sites in the chain.
This schematically represents the hydrophobic forces includ-
ing the chain constraint andW ~for water! represents the
energy of the excited states mainly against the hydrophobic
force. Therefore,W is of the order of a few timesV plus the
contribution from the hinge forces.

The native state is a twisted structure of one of thep
particular states. Suppose it can only be twisted in very few
equivalent ways, say 2. Then the native state can be repre-
sented by a normal transverse Ising model with degeneracy 2
and interaction constantU representing the previously ne-
glected strong short range forces of chemical nature~disul-
fide bonds, etc.!.

Htwist52
1

2
U (

^P,P8&

sPsP8 , ~13!

where~A! the variablessP could be occupancy variables as
in the Ising model, with valuessP51 or 0 according to
whether twosecondaryelements are parallel, nearest neigh-
bors yielding an energy gainU, or not ~yielding no energy
gain!; the sum is only over the secondary elements. In a
more realistic model for the twist~B! we could allow con-
tinuous variations in the variables and useêP

•êP8 instead of
sPsP8 , which could in turn allow for an energy also by twist-
ing perpendicular elements~and possibly even in addition
represent a slight move in space!, yielding a Heisenberg type
model. Presumably, that elaboration will not qualitatively
change the results.

To understand the nature of the ‘‘phase transition’’ of the
native folding processes we have to take a closer look at the
entropy properties of the system. A very similar model was
introduced and analyzed for the Martensitic problem@57#. It
was recently simplified to two competing Ising models and
further to a so-called degenerate Blume-Emery-Griffiths
~DEG-BEG! model@63#. The latter was analyzed using mean

field theory and Monte Carlo simulations. Values ofp up to
6 were used, since in the Martensitic problem it is hard to
imagine higher values. We here generalize the results,
namely, to considering the case of a competition between a
p-times degenerate Ising model~with a weak field!, and
wherep can be very large, up to several hundred describing
the fold degeneracy of the parent phase—and a transverse
Ising model@the above case~A!# describing the twist of one
of those phases. The only difference between the phase dia-
grams for the DEG-BEG model and the competing Ising
models is according to the results of Refs.@57, 64# that in the
latter case, there is a phase transition both between the
W-stabilized ~highly degenerate!, as well as between the
U-stabilized phase, and a disordered phase, which in our
case corresponds to the molten globule phase. The entropy of
thep-fold degenerate phase is according to@63# stabilized by
a term2kBT ln(p) in the free energy, with respect to both
the disordered phase and the more ordered, twisted phase
@65#. The free energies per site in a mean field approximation
are

Fparent52
1

2
WM22kBT ln~p!/N1kBTF S 12M

2 D lnS 12M

2 D
1S 11M
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2N H 2
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2
Um21kBT@m ln~m!

1~12m!ln~12m!#J , ~14!

where M5^I n& and m5^sn& and the prefactor in the last
term is because we only include interactions between the
secondary elements. Because we have mapped~approxi-
mately! the folding problem onto a known problem in statis-
tical physics@57,63,64#, we can without repeating the details
of the derivation draw the schematic phase diagram for the
protein fold~Fig. 12!; the transitions across a dashed line are
discontinuous~all or none!. Results of using our Hamiltonian
in Monte Carlo simulations and an analysis of the dynamical
folding process after a quench from high to low temperatures
are planned to be published elsewhere.

Depending on the relative strength of the various forces
we then have different scenarios.

~1! If the short range forces are not sufficiently strong to
force the energy barrier between the parent state preferred by
the hinge forces and another of thep parent states,
2W/U.1, the hinge force selected state will just be opti-
mally twisted, but highly frustrated and not optimal from the
point of view of the short ranged forces. This will be a state
arrived at in a nonfrustrated manner, yet it will not be a state
of minimal frustration, and not be in the lowest possible
energy state. This situation is indicated by the hatched re-
gion, marked HF, in Fig. 12.

~2! If the short range forces are very strong, they can
select the optimal one of thep available dense folds and
overrule the hinge forces, corresponding to 2W/U,1. Then
there is a transition from the parent stage to a twisted state
close to one of thep states accounted for by our theory. The

FIG. 12. A sketch of the phase diagram for the protein folding.
Full lines represent continuous transitions~for N→`!, while
dashed lines are discontinuous transitions. Two cases are shown one
for large values ofp.2, and one with very large values ofp@2.
The entropy contribution depresses the phase separation line be-
tween the PA and the TW phase, at most for the largep. For a fixed
ration 2W/U;1 there is a transition between the TW, the PA, the
MG and the extended phases. The hatched region, marked HF, in-
dicates structures determined by the hinge forces.
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native structure is then given by the detailed interactions
between the secondary elements. This will again neither be a
minimum frustration nor in a minimum energy state because
the major structuring was done by the hydrophobic forces.

~3! If 2W/U;1 there will be a competition between the
two mechanisms. It could of course happen that the mecha-
nisms during the course of evolution were selected so that
both prefer the same state—without a competition. A com-
petition would slow down the folding rate considerably. The
insensitiveness to even quite substantial mutations@3,4# ~re-
placements of parts of a sequence! could indicate that there is
not at least strong competition.

~4! If the short range forces are very strong indeed, so
strong that they can break up the already formed secondary
structures, 2W/U!1, our analysis is less relevant, since the
secondary structure count at the parent stage level may get
seriously distorted. This limit is that which may be better
described by the bead model. The native state for this case
may be one of minimal frustration for all forces, but exceed-
ingly difficult to find.

C. Preferred abundance of magic number proteins

We have above discussed the last two transitions
molten globule↔parent↔twisted stages in general. Let us
here consider the influence of the degeneracy factorp. We
remark that for smallp, i.e., the magic folds, the magnitude
of U can be smaller~W/U larger! than for the other folds,
and still cause a transition to the native phase forT>TRO.
The value ofW is given by the hydrophobic forces and
should be relatively weakly dependent on the specific se-
quence constituting the involved elements, since the number
of residues in each element is quite large (;10). On the
other hand the value ofU represents the total effect of the
frustrated short range forces@divided by the number of sec-
ondary elements: (N21)/2# between the various parts of the
protein in its twisted, native state. If the magnitude ofU can
be small and still sufficient for ordering at room temperature,
it indicates that the ordering into the native fold is not highly
sensitive to finding an optimal solution of the frustration
problem of matching neighboring sequence segments. Many
different sequences can therefore do the job. Contrary to the
Martensitic problem the interaction forces between the ele-
ments are highly frustrated and the energy gain therefore
limited. We suggest that the elements are predominantly po-
sitioned by the hydrophobic forces with little chance for ma-
jor rearrangements in the cases~1! to ~3! discussed above.
This would render a state susceptible to only ‘‘local mini-
mum frustration’’ in terms of the theory discussed by
Wolyneset al. @7#.

In other words, we argue that for largep the transition
between the parent phase and the twisted phase~native! will
be depressed in temperature. Then it will require specially
favorable constitutions~i.e., sequences of amino acids! of the
elements to minimize the frustration in their mutual interac-
tion, which is needed to stabilize the final twist order above
room temperature. On the other hand, for the ‘‘magic’’ folds
the restriction is much less severe because herep is rela-
tively small, thus the constitution of the secondary elements
is less critical and we would expect to have many more pro-
teins belonging to the magic families. In a search for protein

structures there is hence a greater chance to find them among
the magic structures than among the few exceptional other
ones. This explains the high abundance of the proteins with
‘‘magic’’ number of ~secondary! elements. The arguments
for the preferred abundance are in line with those given by
Finkelsteinet al. @52#. But they focus on the ‘‘designability’’
or ‘‘multitude,’’ and show that if a given fold can be made of
many different sequencesM p the abundance is higher, since
a largeM p reduces the ‘‘free energy’’ for such a fold by an
entropylike term2T* ln(Mp), where T* is a ‘‘configura-
tional temperature’’; unfortunately neitherM p , nor T* can
be calculated beforehand. That effect may be added~giving
some further sorting! to the presently discussed entropy ef-
fect, which is arising from the degeneracy in packing of el-
ements, and which as demonstrated is calculable. Our more
elaborate arguments differ from those of Finkelsteinet al. in
particular with respect to the introduced phase transitions,
and in that the temperature in our case is the real temperature
~or reflecting a change in the solvent!.

VII. DISCUSSION

A major asset of our theory is that all involved interac-
tions are average quantities and therefore not crucially de-
pending on specific realizations of sequences. It gives a basis
for the classification and for the robustness against muta-
tions. Further, it rationalizes the paradox that the direct
forces taken one by one are strong, but the effect is small
~because of cancellation between oppositely acting forces,
the frustration!. Our hydrophobic energyV is the average
gain for forming a secondary structure involving of the order
of ten residues, not for forming individual hydrogen bonds;
Tanford has discussed the difficulties in evaluating the en-
ergy cost at that level@12#. It is of course an oversimplifica-
tion to assume the same gain when assembling the elements,
but it should be of the same order of magnitude. The inter-
esting hydrophobic forceW is even a further average ofV.
For our ‘‘hinge forces,’’ again, only the sum~or average! is
of importance. Given that the secondary structures cannot be
broken up totally at the twist stage, also only an average over
the short range interactions resulting inU is of interest. It is
clearly difficult to evaluate the effective interactions from
first principles. However, the fact that the folding happens
around room temperatureTRO, tells us that the energy scale
of the parameters must be of the order ofERO5kBTRO,
where kB is the Boltzmann constant. This is equivalent to
0.60 kcal/mole~at T5300 K!. Suppose then thatW'1ERO
and U'2ERO ~because it may be slightly stronger!. For a
given protein withN elements, the internal energies should
scale roughly asN times these constants. We can now evalu-
ate if the configurational entropy we have discussed resulting
from the degeneracyp of the parent state can be of any
significance. At room temperature the free energy contribu-
tion from this entropy isDES(N)52kBTROln@p(N)#. For N
ranging from 7 to 25,p ranges from form 10 to 1000. This
gives an entropy contribution of fromDES(N;7)'2ERO to
DES(N;25)'7ERO. In addition there are the variations ac-
cording to the magic dips inp(N). We find that the entropy
per element is;0.3kB for the magic number folds and
;0.5kB for all others; see Fig. 13. The discussed entropy
thus gives an energy contribution of;30%, which is of
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reasonable order of magnitude, and it is sufficient for causing
a significant influence on the phase diagram.

Our models are of course extremely simplified. A major
objection might be that one cannot strictly substructure the
problem in the five stages we have assumed~which on the
other hand seems to be in agreement with a considerable
amount of experimental findings according to Jaenicke’s
conclusion @3,4#!. However, we have demonstrated that
within our model it is possible to have several~three! sce-
narios, simply depending on the ratio of the interaction con-
stants 2W/U. Of these we believe that the case 2W/U;1
most likely is the one prefered by nature, as it happens in the
analogous Martensitic problem. That would give the most
diversified transition scheme with the full sequence
native↔parent↔molten globule↔extended states ~of
which we have not discussed the latter in detail!. We have
argued that the folding problem is a cluster~i.e., a smallN!
problem with no sharp transitions. In a recent study of mag-
netic relaxation in small Ising clusters@66# it was found that
the transition from one state to another occurred by a nucle-
ation mechanism, where the relaxation time is depending on
the probability of forming a critical size droplet of the alter-
native order. A similar behavior is expected for the present
models, and it is then in accord with the observations that the
folding appears to happen in a concerted manner@21#, with
folding happening at several stages simultaneously around a
first forming nucleus. However, our models will not be able
to account for a scenario in which the folding occurs from
the extended state directly to the native one only directed by
the short ranged forces; this is handled by the bead model.

Finally, let us comment on the terminology problem of
the folding intermediates. The experimental identification of
a ‘‘compact globule with nativelike secondary structure and
with slowly fluctuating tertiary structure’’ was probably first
mentioned by Dolgikhet al. @10#. The presence of such a
state, nearly as compact as the native state, is now estab-
lished beyond doubt@2#. It corresponds well to our concept
of the parent phase. Our state must be fluctuating sufficiently
to experience the entropy in thep possible states, which are
equally densely packed from the hydrophobic point of view.
In the literature several names have been in use for such an
intermediate state. In particular Ptitsyn has discussed this
phase, see, e.g.,@2# p. 265, and calls it a ‘‘native-like molten
globule.’’ The concept of thep-times degeneracy of that

state is not an element of the Ptitsyn model@2# nor of the
later theory for side chain melting@67#, thereby they differ
significantly from our parent state concept, although they are
supposed to be covering the same experimental regime. At
stronger denaturation Ptitsyn proposed the term ‘‘disordered
molten globule,’’ which would probably then be equivalent
to what we have simply termed the molten globule, with a
volume about three times the native@68#. Other names and
concepts have been in use, such as folding intermediates and
compact denaturated states@69# and others; see, e.g.,@2#.
However, none of the previous models has included the
structural degeneracy, which in our theory leads to the magic
numbers. Most of the experimental evidence for such states
are indirect with respect to the actual structure.

It may not be easy experimentally to structurally assess if
the parent structures are stable at higher temperatures, be-
cause the formation of the secondary structures may tend to
break up, although in some cases an even higher content is
suggested@2#, p. 249. At the molten globule stage there may
be proteins with an unstable number of secondary structures
‘‘decaying’’ into the stable ones, in quite close analogy to
the shell model for nuclear matter.

VIII. CONCLUDING REMARKS

The hydrophobic forces cannot define a particular fold
whereas the weak hinge forces set up a global force that will
make a given protein fold predominantly in the right direc-
tion. We believe that the proposed Hamiltonian~s! makes
sense in modeling the actual folding process from a certain
stage. In our model we have at first neglected any forces
between the secondary elements. This is an important con-
ceptual aspect in our model for the not too late stages of the
folding process. If specific amino acids on different elements
could bind strongly it would fix the fold in any arbitrary
configuration~imagine trying to fold double-glue-sided tape
to a specific configuration!. The physical justification for
switching off these forces is that they could be screened by
the water, which accordingly must have an important ‘‘lubri-
cating’’ role to play during the folding. Only in the final
approach to the dense fold is the water supposed to diffuse
out and leave a problem for the final optimization of the
short range chemical forces between neighboring elements.
The result of that is undoubtedly the observed twistings and
deformations of the actually observed structures. At that
stage we have argued that the protein cannot make any sig-
nificant refoldings, so most of these forces would be frus-
trated if they do not happen to match according to the under-
lying sequence. We thus have argued that a match is not
instrumental in the folding process, whereby our model is
very different from previous theories, which precisely focus
on this problem of frustrating forces, and led to a comparison
between the folding problem and the spin glass problem@7#.
In our model there is no frustration in setting up the main
part of the folding. The end result will necessarily be frus-
trated and therefore the native state is not the ground state for
the chemical forces from an equilibrium thermodynamical
point of view. It is interesting that there seems to exist a class
of physics problems in complex systems in which ‘‘partial
ordering,’’ of which we have discussed a particular case, is
an important concept, which can be formulated mathemati-
cally @70#, in more general terms. We emphasize that the

FIG. 13. The calculated entropy per element arising form the
degeneracy of densely packed structures with respect to the hydro-
phobic forces. Notice the dips at the magic number of elements.
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dynamical interpretation of the present model, which is sus-
ceptible to future experimental tests, is independent of the
already experimentally supported structural classification of
the native states, discussed in the main part of this paper. It
would be highly interesting with more experimental informa-
tion about the structure in the predictedparentstage.
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@31# C. von Linné, Fundamenta Botanica~Linnean Society, Lon-

don, 1736!; Species Plantarum~Linnean Society, London,
1753!.
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