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Towards a systematic classification of protein folds
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DK-2800 Lyngby, Denmark
(Received 26 November 1996; revised manuscript received 28 May) 1997

A lattice model Hamiltonian is suggested for protein structures that can explain the division into structural
fold classes during the folding process. Proteins are described by chains of secondary structure elements, with
the hinges in between being the important degrees of freedom. The protein structures are given a unique name,
which simultaneously represent a linear string of physical coupling constants describing hinge spin interac-
tions. We have defined a metric and a precise distance measure between the fold classes. An automated
procedure is constructed in which any protein structure in the usual protein data base coordinate format can be
transformed into the proposed chain representation. Taking into account hydrophobic forces we have found a
mechanism for the formation of domains with a unique fold containing predicted magic numbers
{4,6,9,12,16,18,}..0of secondary structures and multiples of these domains. It is shown that the same magic
numbers are robust and occur as well for packing on other nonclosed packed lattices. We have performed a
statistical analysis of available protein structures and found agreement with the predicted preferred abundances
of proteins with a predicted magic nhumber of secondary structures. Thermodynamic arguments for the in-
creased abundance and a phase diagram for the folding scenario are given. This includes an intermediate high
symmetry phase, thparentstructures, between thaolten globuleand thenative states. We have made an
exhaustive enumeration of dense lattice animals on a cubic lattice for acceptance @umdbandZ=5 up to
36 vertices[S1063-651X97)04909-X

PACS numbeps): 87.10+e, 05.50+q, 05.70.Ln

I. INTRODUCTION solved questions are given by, e.g., Jaen[&4] and from a
theoretical point of view by Finkelstein and Ptitsy# 6] and

In the past 50 years large databases of protein sequencé#lynes|7].
and protein structures have been building up at an exponen- Proteins are found to be highly hierarchically structured.
tial rate [1]. And, as in the case of, for example, atomic Pauling and co-workerg8] were the first to emphasize that
elements or isotope tables, it is natural to ask for some claghe final, so-calledhative structure of proteins consists of
sification that can group the proteins into related familiestwo dominant kinds of building blocks, the helices and the
other than those that arise from homology analysis of theB sheets. These are called secondary structures. Later addi-
sequence of amino acids in the polypeptide chain. What wéonal, somewhat less characteristic structural elements were
have in mind here is a kind of atomistic taxonomy, where theproposed(i.e., inverse turns anf loops, etc[9]). A char-
proteins are grouped according to the number of typical eleacteristic feature of proteins is that their observed structures
ments. are densely folded in a complex manner of secondary struc-

In the case of the nuclear isotopes the grouping in particutures and intervening irregular loop8]. These further form
larly stable, closed shells of nucleons came rather late higertiary structures, which are composed of characteristic do-
torically, since it was not obvious that an independent-mains with a special fold, which are made up of typically
particle description would make sense in the nucleatens of secondary structures. The domains further self-
interaction picture, and yet magic numbers came out of @rganize into quartinary structures consisting of several do-
fairly simple single-particle force potential. This led to a pre-mains. Dense folding intermediates are observed before
dicted predominance of abundance of nuclei at magic numreaching the unique closed packed sfat@).
bers of nucleons, in agreement with empirical data. Likewise In aqueous solutions most proteins fold after various in-
for our microbiology case we shall show that magic numbergermediate stagels,4] into closely packed globules, which
for the stability in the packing of protein structure elementsneither dissolve nor phase separate, as most polymers would
are revealed in a calculation based on a simple hydrophobido. Dill [11] derived a thermodynamic theory for these and
force field model. Proteins appear to be packed like closedhowed they should have a tendency to fold into lumps of
“shells” of all connected secondary structure elements. Thespecific size. A main reason for this is the action of the
purpose of this paper is to provide a paradigm that allowsydrophobic and hydrophilic forces, which are unspecific
classification of the proteins in structurally defined families.interface-tension-like forcegl2,13. Yet, a protein with a

Let us briefly list some pertinent features of protein struc-specific amino acid chain folds, paradoxicdlb4] in a mat-
tures and the folding process. Excellent reviews can be founter of seconds, to a particuléold, according to information
in [2] and more details about the experimental facts and unthat must be provided via the underlying linear information
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represented by the specific sequence of amino acids. Furthea-graph theoretical analysis, which is of relevance for the
more proteins seem to have predominant lengths of thpresent case as well.

chains. Bermaret al. [15] have made a statistical study of  The structure of this paper is as follows. First, we present
known proteins and have found that the distribution has charthe motivation and prerequisites for setting up a simplified
acteristic peaks near multiples of chain lengths of 125 amindnodel, still containing the pertinent physics and symmetry.
acids. The total length may go up to a few thousand. Aboufhen we formulate a homology measure, which allows a
400 distinct structures are knowjfi] from x-ray crystallog- ~ Systématic naming of structures and a distance measure. Us-

raphy for such domains, but only for proteins that form crys-Nd the model we find numerical evidence for magic num-
talline structures, i.e., not in the more relevant environment2€rs- We perform a statistics of the abundance of secondary

the natural solution with salty water. These are grouped intGtrUCtures and of proteins with a certain number of secondary
tructures. We motivate the magic humbers geometrically.

a few hundred recognized fold classes. Less detailed stru%_ . . .
tural information in the solutions oin vivo are available +nally in the last section we make a thermodynamic theory

from NMR and circular dichroism studies. In total4000 for our model that formalizes the discussed folding scenarios
structures have so far been determife@l, however, several and gives a thermodynamic motivation for higher abundance

appear to be closely related. On the other hand, well oveftt the magic numbers.
hundreds of thousands of proteins have had their sequence
determined17]. It is of great interestl) to be able to p_redict Il. CLASSIFICATION OF PROTEINS
a structure from the sequend@) to be able to classify the INTO EOLD CLASSES
possible structures that can exist, d8¢lto understand why
certain structures seem to be particularly abundant. The aim It is important to understand how the proteins can find
of this work is to propose a schematic framework for thetheir fold without trying all the statistically possible options.
description of the folding of secondary structures into do-It is generally assumed that the information is coded linearly
mains of proteins and discuss their abundance. in terms of the amino acid sequence, giving rise to a natural
First, consider the simpler crystalline classes of structuredendency for the backbone to fold correctly and fast. An
Group theory tells us that there are only 230 different classeansolved problem is to demonstrate how the sequence infor-
in three dimensions. Many materials assume before thegnation (which determines foremost the short range forces
melt, in spite of the possible diversity, a single open struc-along the backbone and only more indirectly the interactions
ture, the body centered cubic structure bcc, which is stabibetween distant parts of the chgis sufficient to do this. It
lized by entropy; see, e.gl18]. This is called theparent is our thesis that the nonlocal forces between distant sections
phase At lower temperature the structure transforms by aof the proteins come in at a late stage, only providing the
so-called Martensitic transformation to more closed packedinal optimization, and the observed complex irregular and
structures with generally “triangular” coordination between twisted patterns. The hydrophilic and hydrophobic forces
the constituents. There can be several such possibilities, hcpgainst the agueous solution are supposed to be the main
fce, dhep 9-R, 18-R. . . ,however, all are resulting from the driving forces in condensing the proteins from the extended
single “parent” bcc phasgl9]. The observed, irregular pro- state. The protein chain has about 50% hydrophobic and hy-
tein structures may correspond to such complicated groundrophilic residues distributed seemingly at random along the
state configurations, which are the result of the competitiorchain. An extended chain is, therefore, clearly unfavorable.
between all relevant forces. It is too complicated to make ar'he optimum is a condensed phase with a minimal surface,
classification for these. However, we demonstrate that it isvhich allows most of the hydrophilic residues to be buried.
possible that the protein also first forms a high symmetryHowever, it is not possible for the unspecific hydrophobic
denseparent phasdrom which the actually observed, still forces to define aspecific foldwhen the system is in an
more closely packed structures are obtained by “twisting.” unfolded state. A fold mear{24-30Q a particular structural
This is in order to satisfy the short ranged forces between thtopology that a protein domain can assume in its native state.
secondary elements. We shall postulate that a parent phase isProteins appear to belong to families, like plants, with
an important intermediate phase in the folding process. Bgpecific characteristics. The families contain many variants.
this and by considering a rather general three-dimensionalon Linne[31] in the 18th century succeeded in the field of
(3D) structural model, our approach differs from the previ- botany to identify the important classification parameters. He
ously forwarded ideas to simplify the description of proteinsolved the difficulthomologyproblem defining when plants
into “folding patterns” or “crude structures;” see, e.g., arethe samewithout beingidentical and when they belong
Finkelstein and Ptitsyf5]. Unfortunately the experimental to the same class or not. It gives a systematic, although not
structural information, at present, is rather scarce on the in“natural” classification from a functional point of view.
termediate phage20,21]. However, the presence of interme- Here we suggest that the dense fold patterns for proteins may
diate phases and folding steps is a generic feature of thierm the basis for a classification, and we shall identify a
folding procesq3,4] and some steps are described as ratelass of similar folds with a family, as did ChotHia4] (and
limiting. with the qualifications mentioned that the fold classes need
In the course of this work we numerically evaluate andnot be the natural familigsBy devising a local projection
exhaustively count graphs on a simple cubic lattice. This ischeme for systematizing the protein fold on a lattice we
of general applicability in a class of statistical problems. Ourpropose an effective cut through the homology problem. The
counts are extended to larger lattice animals than hithertoesults were briefly discussed previou§B2]. Such a sche-
considered. Our results agree exactly with those of Chan anahatic structure is a kind of symmetry indicaf@3], which is
Dill [22,23, where overlap exists. Chan and Dill further did useful in statistical analysis of the fold problem. It is well



56 TOWARDS A SYSTEMATIC CLASSIFICATION @ . .. 4499

known that a global measure for “similar” folds using the and finally (3) the late events forming the chemical bonds
root-mean-square measufens) for the coordinates of the (disulfide bridges, etg. All three steps can be assisted by
backbones is too strict, and indeed vastly misleading; seather proteins(so-called chaperong$4]. We shall model
e.g.,[34]. If just one secondary element is slightly rotated,these observations with special emphasis on the second
the rms can become very large; this is not expedient. Othestage.
measures, for example, local distance measures, have alsoExperimentally the helix structures are usually seen to
been proposed and usédl]. In traditional classification in  form in the very early stages of the folding proc¢4$ al-
physics, as in the periodic table or in the crystal groups, dhough not without exceptions, which indicates that in some
certain capaciousness in the homology concept is neitharases the final form of the secondary structures is obtained in
needed nor warranted. In the protein folding case, as irmoncert with the overall folding20,21]. The helices are typi-
botany, it is. Yet the final classification criteria must be cally between 4 and 12 amino acids lofsge Fig. & which
unique. in fact can be understood on the basis of a simple random
Similar simplifications with idealized elements have pre-copolymer mode[5]. At relatively high temperatures, i.e.,
viously been proposed by Murzin and Finkelstg85] for  above or at thenolten globule statéwhich is an operational
describing the domains af helices. They considered the term for a rather dense state with pronounced secondary
helices as cylinders and considered a close packing of thestructure; see, e.d2], p. 265 we assume, in agreement with
on edges of polyhedra with triangular faces. They demondaenicke’s conclusion, that the protein is substructured ac-
strated a high degree of coordination of the possible and theording to the underlying amino-acid letter code, into two
observed structures, except for bundles of larger numbers @froups of secondary structures, as can be seen in the well-
long helices, which seem to align more in parallel. It is in-known ribbon representations of proteifid5]. One set,
teresting to note that their structures in all cases can be ravhich we denote by capital letteis,B,C, .. ., represents
garded as twisted structures of a simple parallel bundlethe described helicdgl6] and also potential strands for the
Their work describes the number of distinct twists. In theformation of 8 sheets. Strictly speaking, the latter cannot be
above crystal analogy, they classify some of the possiblevell described at this temperature since their stabilization
closed packed structures belonging to a single “cubic” par-probably requires also the forces between different parts of
ent phase. The polyhedron method has the drawback thattihe protein and not just forces along the backbone. Yetgthe
does not work forB3 sheets. However, our cubic representa-strands need to be folded into the correct relative position in
tion describes equally well th@ sheets and thgs sand- space. These elements are assumed to be approximately lin-
wiches, which are schematized in a different representatiopar with a well defined start and end pofamino acid. The
by Finkelstein and RevE36]. secondary elements can with quite high confidence be pre-
Recently, even more schematized compact lattice modeldicted from the linear sequence information based on the
for late stages of protein folding in terms of a chain of inter-DSSP (definition of secondary structures of proteirago-
acting bead$monomerghave been intensively studi¢87—  rithm [47]. The second group consists of the remaining con-
44]. Secondary structures are very schematically modeled asecting pieces of the protein, the irregular logpdich have
sequences of monomers with a persistence length of two @n average length of 4 residues, Fig. Bhese can be re-
more beads, usually on ax3X3-bead cube. The model placed by the straight connection ling,b,c, ... between
proteins are supposed to be refolding and forming the sedwo consecutive secondary elements of the first group. Then
ondary structures at the compact folding stage in a search fail elements can be considered straight. Two elements are
the minimum of strong interchain interactioiepresented connected by a “hinge,” which is characterized by a direc-
by two or more attractive or repulsive beads, randomly distion in space, perpendicular to the plane in which the two
tributed, or for a state of “minimum frustration” as dis- joining elements can rotate. The position and action of the
cussed by Wolynef7]. This approach is very different from hinge are in principle determined by the underlying amino
the present case. It is an interesting and useful model in itacid sequence; however, the code is yet to be found by sta-
own right in particular for heteropolymers. It is focused ontistical analysis. Using a spif; for this description we can
the difficult problem of describing a frustrated search for thedefine both the direction and the sense of the bend between
optimum in a rugged energy landscape. That is undoubtedithe two elements. We then make the crucial, simplifying
very relevant for proteins too, however, in our model we takeassumption that each element is sufficiently rigid to define
almost the opposite view and take maximum advantage dahe relative optimum direction of the spins attached to the
proteins’ proven ability to form secondary structures at anends of the element.
early stage. Thus the protein is schematized as the sequence of sec-
ondary structures and connections with preferential bending

forces acting between them
Il. A MODEL HAMILTONIAN FOR PROTEIN FOLDING

In the following we shall construct a minimal model for aS1AShS3BS,CS5CSed, ... D

protein folding in order to establish a vocabulary and a lan-

guage in which the structures can be described and subsk-is at this level that we shall attempt to classify the various
quently classified. Summarizing the review of 20 years ofprotein foldings. We are now ready to formalize the model in
protein folding research Jaenick&] concludes that the pro- order to be able to make computer simulations and predic-
cess can be described as a multiple pathway of sequentiibns of fold classes. This scheme is not simply a lattice
folding with roughly three stepg1) very fast early events, model, and in principle it can be made general with arbitrary
(2) middle events with local shuffling into tertiary structure, angles and lengths. At a later stage we shall include interac-
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K K where{ represents any of the possible six spin directions for
_75 _/T _Vr the hinge spins. We notice this is a more flexible description
than Eq.(1). The structure is now determined by the inter-
FIG. 1. Definition of the hinge spins and the hinge force param-@Ction constants sequence given in £}, as an example, as

eters for secondary elements, double line. The definition is anald- K.k, —K,j,J,—],... . This gives a unique best set of the
gous for the intermediate elements, single lines. The drawing is i$PIN variablesS;,S,,83,8,,... . From those the ground
perspective, all angles represent 90°. state can be constructed from E#g). If that is all we want,

we could just as well take all constants equal in magnitude,
tions between the elements of the first gra\yB,C, ..., in  Say equal to one, leaving just the signs. This would be a kind
particular between the potentigtsheet elements. of interaction “spin” variables. However, we could also

consider “wrong” folds and then it would be nice to have
different energy parameters to give us the energy cost for
that. A change in a spinf) direction at a junction has the

We need further simplification to get a practical model fordramatic consequence of rotating the entire remaining pieces
fold structure formation. For a statistical description it is of the protein around this junction. We shall assume that
probably not important to allow continuous variations in thethere is no inertia and no stearic hindrance in doingthis
possible angles, so we assume only one allowed angle, amguld in fact also be introduced in the moddtxpressed in
the value of the angle is not essential for the argument in thanother way, we do not care how the system has arrived at
first stage. For ease of representation we choose this to kany state for which we can measure the energy. This is rea-
90° (later also including the value P°Let us traverse the sonable when discussing the ground state. In order to be able
protein represented by E¢l) from left to right. Each ele- to describe the energy cost for violating the optimum fold we
mentP=A,B,C, ... has airection unit vectog” along one  write the argument as a Hamiltonian:
of the axes in a Cartesian coordinate system. We remark that
using simply the direction vectors makes the description in-
dependent of the lengths of the elements. This is a simplifi- Hhinge= —2 (JpSp-Sp+ 1+ KpSpX Sp1-€")
cation based on the fact that the actual elements have lengths P
of the same order of magnitude; see Fig. 6. It is also inde-

A. A fold Hamiltonian with the pertinent symmetry

pendent of the position in space and of interactions between - (1 pSp- Sp+ 11 KpSpX Sps1-€°). (4)

the elements apart from direct overlap. Similarly each ele- P

mentp=a,b,c, ... ischaracterized bg°. The structure is

given by the sequence of Spin vectds S,,83,S84, ... . The We neglect the orientation of the beginning and end |OOpS. In

spins have unit lengths and may each point in either of th&d. (4) P=2n+1 andp=2n, where the index is running
six directionsx, +y, = z. If we consider only the 90¢and ~ from n=0 to 3(N—1), whereN is the number of elements.
0°) turns, a unique description for the orientation betweenlhe constanfp= +J or —J determines the energy for hav-
two elementsa and A with a hinge spinS; (and furtherb  ing the spins at the ends of a group one elenfeas parallel

joined by the hinge spit¥,) is given by or antiparallel spins in thg, y, or z direction. The constant
o A A Kp=+K or —K determines the energy for having the spins
A=XS8 + (& 5)&, ,  Perpendicular or antiperpendicular to each otfright and
@) left thumb rulg, and similar forjp andkp. To simplify the
=X S,+ (& S,) &, etc. notation we shall sometimes write X=X. We have here

disregarded the cases with angle 0°, and cases with the spins

It is clear that the fold is uniquely described by the sequenc@long the element direction. The choice number is therefore
and state of the “hinge” variables, the spid. A given by constructiorz =4, which is the lattice coordination num-
sequence of spins; and the start directio®® is a rigid ~ ber minus two. One may start by fixing, e.d;=z and
building prescription by which any later element directén €*=X; the rest then follows from Eq2). For thea helix it is
is exactly determined. rather clear that the interaction between the spins will be

However, this is too strict, and we want just to give build- simply related to the number of amino acids that form the
ing guidelines. For an element of group one, which may béelix. For a random sequence of the interaction constants the
optimally surrounded by parallel spingA7), let us say it model exhibits known folds among a wealth of other struc-
gains an energy if the spins are parallel, gains nothing if tures such as noncompact, loosely packed structures and
they are perpendicularf@—), and pays an energy J if  structures that are too densely entangled in one another. One
the spins are antiparallel A|). If the spins should have a can characterize a given fold configuration uniquely by a
right turn we would give an energy galt for the right turn,  linear string of coupling constants, which in fact is our sys-
0 for parallel or antiparallel, and-K for the wrong, left tematic name or name for the fold class. As an example, the
twist. The possibilities are shown in Fig. 1. We can definestring jKjKj is our systematic name for a so-called four-
similar energy conditions for elements of group two, with helix bundle protein: bhmgq It is important to note that there

possibly different, and lower energy valugk. We then is rotational invariance of the constadtX, ..., andthere-
form a linear chain of these energy variables, describing théore of the representation of the proteins by such constants,
preferred state of its surrounding spins, e.g., contrary to a vector representation. As a simple example we

have shown in Fig. 1 of Ref32] the projection of the 4-
$jOKEkE(—K)EjBIG(—=]) G- - -, 3 helix bundle, which is denoted K jKj. The name depends
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A makes sense we can again take the example of dhleetix
fanN L bundle fold class and inspect that the different protein do-
main members have roughly the same name. For example,
haemarythin, tulysozyme, and cytochroingg are all given
by the same namejKjKj) whereas rice cytochrome
< (1CCR from another fold class also has a different name
T | > (JKKKj).
An oversimplification of the presented formalism is that
FIG. 2. Two different proteins, haemarythrin and cytuchrome @-h€lix and g-strand elements are not distinguished. This
bss belonging to the & helix fold class represented as the sameMeans that at present the helices in the helix bundle class can
configuration in the computerized chain link-arrow scheme. _be replqced byﬁ'str.ands. Th|3 can be easily remedied by
introducing special interaction parameters for pstrands.
on the direction in which the chain is traversed, but it is Thus for those we assign instead af], =K the different

invariant under rotation and translation. Some proteins aréonstants, e.g=1,*H, which gives four more letters in the

“embellished” by the addition of several amino acids. This @lphabet, 12 in all, by which to write the name. The struc-
focuses on the question of a definition of families and of afural restrictions thag strands are close in space means that
metric. We suggest as a measure for closeness betwedif new letters will not be randomly placed, but more likely

classes that two proteins, not necessarily of the same lengtR€ in close groups. A further generalization is to consider the
have the largest similarity if the overlap in their names ismentioned direct move of two adjacent elements. Since this

maximal (see Fig. 2 can happen for both types, we need to introduce hoth
The reduced information in the name g|v|ng the Spin di_andi/, thus again addlng four extra letters to the fold code,
rections can be furnished by many amino acid sequencedb in all.

This provides in fact the basis for the classification, i.e., The most systematic way to define a distance between
many sequences may have the same fold. fold classes is to use the difference in the names of the
We must also judge energy differences between good anglasses. For two names witlh; and N, letters the distance

bad folds for the same sequence. We need a simple compa®equenccan be defined as

ness measure. On a simple cubic lattice a dense packing of a max max

chain can be defined as one in which all vertices have the sequence N~ Nis™ ®)
maximum number of nearest neighbors. This measure has max : . . . .
been used earlier by Chan and O#2] and Camacho and whereNjg s the number of letters in the maximal |d§nt|cal
Thirumalai [39] (for the bead modgl Another measure of Seduencelis), and N=maxN;,Np}. We can also define a
optimal packing with respect to the hydrophobic forces act/MOre average dlstance measure in terms of the sum of the
ing on the secondary structures, which usually have a prdlumber of maiching sequences:

dominant hydrophobic side, takes into account that these are

to be packed as closely as possipd. Then we need a zg?uencgN_ENis- (6)
subset of the above class@haracterized by the interaction

constantsin which the secondary elements in addition have,, 1o g jetter code the name of the fold classes for the 4
as many parallel neighboring elements as possible.

In order to make the classification applicable to actualheIIX bundle and theg-sandwich plastocyanine will have a

roteins it is important to hav ni nd identif certain overlapldue to the fact that helices and strands are
proteins 1t 1s important to have a unique and easy 1dentilica, , 10 the sameand therefore a small distance between
tion of the class to which any given protein belongs. Sinc

hem, while the 4-helix bundle and the TIM barrel will have
th? observed Iow-te_mpgrature structures are usually strqngg large distance between thefronsistent with their great
twisted a global projection on a Cu.b.'c Ia_lttlce IS NOt MeANING-yit¢erences in size and geomelriFhis rough classification is
ful. We.W'Sh to dgwse docal identification method as fol- useful if we are mostly interested in quantifying geometrical
onvs. Find the unit vgctors a'long'the elements. For the loop nd topological(or morphogeneticalaspects of the struc-
this represents the interaction line between two connecte res of proteins more than their content. To include the as-

type 1 eIement.s_. For any three consecutive unit veaprs pect of content we must just use the above defined 12-letter
€, & the conditioné,- &> 12 defines the interaction con- . 4q “\yhich clearly ensures that, with the same measures,

stant for element 1. The sequence information for this ele,  \he 4,-helix bundle and the @&sandwich belong to very
ment is then reduced to one letter. different classes.
We would like to mention that it is of course possible to
B. Distance measures between fold classes translate the interaction constant names into more phonetic

We can define a metric on the space of folds. Firstly, twodnd pronounceable names. One assignment with obvious

folds belong to the same class if their projected paths traceneémonic value is the replacement &fJ,K,K by bac,

out by their backbone are identical on the 3D lattice; this isf oard, Fights ler @Nd], j ,K,K BY i nyerts @dvance Overs Under- It
uniquely described by the string of coupling constaetg., shows that our interaction constants simply are “road
jJkK, etc), thus providing the name for the fold class. Oneinstructions” for navigation in 3D spadet8]. This analogy

of the key points in this paper is that the rather loose notiorindicates in fact that the choice of the exact cubic lattice
of fold classes can now be rigorously characterized by thevith exactly 90° turns is probably not too restrictive.
names defined here. To see that such a characterizatidiith this replacement, for example, the-helix bundle be-
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comes instead ofKjKj simply irili . There are in all six
different variants with &-helices, namelyjKjKj, kJkJk,
jKkKj and those with the signs changed on #eand k
parameters corresponding to a reverse fold, wherd&thad

C termini have been interchanged. With the phonetic names
these areirili, obubaq iruri andiliri, ubobuy iloli.
Besides being mnemonic, they are clearly much easier to
comprehend than the interaction constants, although of the
same information value. Similar, highly pronouncable and
structured names are found for the larger densely packed
folds [49], which are far from just a random selection of the
eight letters. Further it is found that the names for very long
proteins(with, e.g., 35 elements and thus a 33-letter name
tend to decompose into a compound of two or more names
for smaller onegmuch as long words in actual languages are ‘ ‘
compoundef This is a sign of the fact that the 3D dense 0.0 100 20.0
packing tends to favor the formation of subdomains or fold NUMBER OF ELEMENTS
motifs.

100000

z=

10000 ¢

1000 ¢

100

CLOSED PACKED

NUMBER OF DISTINCT FOLDS

FIG. 3. Full thin line, number of distinct folds for coordination
numberZ=4, on a cubic lattice in a 22X 2 box as a function of
IV. NUMERICAL CALCULATION number of elementdl; the number in the smaller enclosed boxes
OF THE FOLD CLASSES 1X1X1, 2X1X1, and 2x2X1 are also shown. The thin dashed

. . . ) line is the mean field estimateZ{e)N. The thick line shows the
The purpose of the numerical calculation is to find pre-, mber of dense folds.

cisely how many densely packed configurations of a given
chain can exist on the 3D regular lattice. From this number . N . .
we estimatgl) the number of specific folds an@) the total vectorsep ande,. We -start.byaplaﬁcling two perpendicular
number of possible fold classe®) besides gaining statisti- €l€ments &A) f’})n_d their spin€;S;€; . The next element
cal knowledge of configurations f@4) a particular number direction vectore; is then placed in any of the four possible
of elements and lattice sizes. The latter turns out not to béirections according to the values of the interaction constant
crucial since the statistics of the dense configurations corfor elementA: *J, corresponding to an element parallel and
verges to the correct value for larger lattices. antiparallel toe], and+K corresponding to an element per-
Using the fact that the hydrophobic forces condense th@endicular or antiperpendicular & . This determines the
proteins and make them contain as little as 3% wit#t in direction of S,, which is not essential for the ground state
the native state, we want to find all folds that are self-calculation, since all spins follow the direction dictated by
avoiding and densely packed. The dense packing criteria wie interaction constants. However, the spins are important
have used is a simple count of the neighbors of end points dbr the excited states since the spin flips describe the excur-
the elementsvertices. This does in fact represent the hydro- sions from the optimum folds. All the possible positions of
phobic force faithfully. Firstly, it is unspecific, i.e., indepen- the third element are included as long as the element stays
dent of which elements are close to each other. Secondly, within the lattice box and does not collide with the previous
depends on the “curvature” of the confinement approxi-elements. Next, we determine the allowed positions of the
mately as a surface tension force, i.e., the different sites af@urth element on the chain. We try again all the possible
rated 3, 4, 5, and 6 for a corner, edge, face and a buried sitdjrections of the fourth element, use those that avoid collid-
respectively. Only the sum counts, in agreement with théng with other elements, and stay within the lattice and dis-
nature of the hydrophobic force. One could, in order to in-card the others. This procedure is repeated until all the ele-
troduce a temperature in the problem, assign energy valugsents of the chain are positioned and hence we obtain a
for the mentioned sites. This need not be a linear weightingwhole set of chain configurations each described by a set of
If the weighting is far from linear one can form other fami- coupling constant$J,K, etc). Since distinct configurations
lies of proteins. For example, such that are dissolved in celare described by different sets of coupling constants, it is
membranes. Clearly, for those the hydrophobic and hydropossible to sort the number of chain configurations uniquely.
phillic forces act differently. Families could be imagined We vary the initial conditions so that the first two elements
with higher choice numbeZ or other projected lattices as will be positioned over the entire lattice. The sorting by
discussed in the next section. We have investigated theames ensures that only “irreducible” configurations, which
closed packed folds for the simple cubic lattice case withcannot be brought into another by a simple symmetry opera-
Z=5. The fact that there may be a range of different familiestion, are counted(Because we distinguish between the di-
does not invalidate our theory for the classification of globu-rection of traversing the chain we distinguish between re-

lar proteins. flected configurations and obtain consequently counts that
Let us now describe how one can calculate numericallyare a factor of two larger than the “bare” dense counts.
all chain configurations in a given regular lattice setwith The process is then continued, under the constraint that

a given lattice sizeand for a chain with a given number of the path is self-avoiding. To find the dense folds we consider
elements. For mapping out the ground state, it is mosall configurations in simple confinements, such as those in an
straightforward to operate directly on the element direction X mXn box (notice that our box size indicates the number
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TABLE I. 2X2X2 box, choice number=4 andZ=5. Num- 10° e e e
ber of configurations as a function of elemeritg.,se dense con- 10° - _
figurations with maximum number of nearest neighbbkgs,,: total 2 F ]
number of configurations. Compare with Tables Il and IlI. 310 E 3
E 1of 3
Netements Neense(Z=4) Niotai (Z=4) Ngense(Z2=5) Niota (Z=5) E 10° :_ _:
1 1 1 1 1 %104 a E
2 1 1 1 1 o i
3 L 4 ! 6
4 6 15 8 26 =10 & E
5 9 53 12 104 210 L
6 8 161 8 372 100 A
7 6 444 6 1236 0 10 20 30 40
8 24 1100 36 3763 NUMBER OF ELEMENTS N
9 76 2590 164 10890 FIG. 4. The number of distinct dense folds for coordination
10 84 5560 192 28664 numberZ=4 in a 3Xx2X 2 box, fat line. Notice the deep minima at
11 48 11412 146 72416 magic numbers at the closed configurations. Notice the deep
12 120 20384 584 162364 Mminima atelemental magic numbers,N 7,11,17,23,31,35, etc. at
13 722 35280 3984 354036 the closed configurations; these correspondségondary magic
14 088 52078 6488 674236 number c_>f elements Ng= (N, + 1)/2_: 4,6,9_,12,16,18, etc. NThe
dashed line represents the mean field estimateZfed: (Z/e)".
15 424 76116 3264 1264156 . .
16 396 90936 5464 2036904 The correspondllng results f@=5 are shown as the thin an the
dashed-dotted lines.
17 172 106728 4220 3267244
18 160 97362 8440 4399672 |9op elements we hav&l=17, and the above theoretical
19 2908 87696 115084 5929000  relation gives the number of folds as €f’'~711. This is
20 6366 57460 313360 6452560 already a quite small number. However, the discreteness
21 1752 36684 141188 7011716 gives rise tomagic numbers at which there are particularly
22 3300 15088 496648 5731068 few, different folds. Although the mean field theory repre-
23 656 5812 316352 4606488 sents the average data well, there are systematic deviations
24 848 924 865544 2399816 for large N. This is because we have not included closed
25 0 0 780624 1128736 folds in very elongated confinements, such as, e.g., a
26 0 0 206692 206692 4X1X1 box, which we exclude since they are not “globu-

lar,” although they do fulfill the simple neighbor criterion.
We have given the exhaustive count of the dense and the
of elements, so our 22X2 box is the same as a total number of configurations for box sizes up t&x3x2
3X3X3-bead box The dense chain configurations are easfor Z=4 in Table Il, and forZ=5 in Table IIl. To obtain the

ily derived from the total number of occupied nearest neighexhaustive dense count for a certain number of elements a
bor sites to any element’s end point on the chain. All thefew numbers have to be added for less globular box sizes
configurations that fit into a box of a given size are counted[51]

This gives a large number of folds, as can be seen on Fig. 3, In the context of protein folding Dil[11] has analyzed

for a 2X2X2 box (thin lines for various box siz¢sand  and found the effective choice number for a typical protein
shown explicitly in Table I. Next we find among those all to be Z<3.8, although this is an average for all residues.
that are densely packed in the sense of having the largeBtased on this and the above argumetg], we find that the
number of neighbors. This is plotted as the heavy full line.simple case we have described witk 4 is in fact the most

We notice it is very irregular with dips at numbers we shallrelevant for real proteins. From our numerical calculations
call elemental'magic” numbers. Similar dips were found in we can then estimate how many distinct fold classes there are
a count for the filling of a 2D plang22,39. A simple analy-  to be found. If we, for reasons given in the next paragraph,
sis shows that the dips in 3D correspond(tio sequence  restrict ourselves to domain structures witke 17 we find in
filing a 1X1Xx1 box at the number of elemenié=7, a  total 3906 possible, distinct globular fold classes. This is
2X1X1 box atN=11, a 2<2X1 box atN=17, and X close to Chothia’s estimate of 1000, based on the heuristic
packed 2<1X1 boxes atN=23. It is not possible with argumen{24]. When increasing the number of elements in a
Z=4 to completely fill a 2<2X 2 box. This can be done if domain beyondN=17 by just a few the number of possibili-
we allow also straight continuation of the elements, i.e., usties increases dramatically. It is interesting that our estimate
ing Z=5. The results for the dense folds=4 andZ=5 are  based on completely different arguments is close to
shown in Fig. 4. The number of folds are much larger in theChothia’s, and reduced from the astronomic numbers that
latter case. A scaling and mean field thef9] of this prob-  would arise from the most direct enumeratida]. The fact

lem gives the estimate that the number of folds fbrele-  that we get a slightly higher value, if significant, could indi-
ments increases aZfe)", whereZ is the choice number, in cate that nature may not have used all possibilities available
our caseZ=4, ande=2.7183. For a protein with nine sec- by structural “symmetry” during the course of the evolu-
ondary structures and consequently eight interconnectinion. We may have to further impose a designability criterion
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TABLE Il. 3 X2X2 box, choice numbef=4. Number of con- TABLE Ill. 3 X2X 2 box, choice numbez=5. Number of con-
figurations as a function of number of elememMse,c dense con- figurations as a function of number of elememMg,.sc dense con-
figurations with maximum number of nearest neighbs the  figurations with maximum number of nearest neighb@s the
exhaustive count the numbers in Table IV must be agdeg,: exhaustive count s€b1]). N,y : total number of configurations.
total number of configuration®N,,,: maximum number of nearest N,,: maximum number of nearest neighbors. The final column

neighbors. The final column shows when particular simple subunitshows when particular simple subunits are maximally filled.
are maximally filled.

Nelements Ngense(Z=5) Niotal (Z=5) Nnn Comments
Nelements Ngense(Z=4) Niotal (Z=4) Nnn Comments

1 1 1 2
1 1 1 2 2 1 1 4
2 1 1 4 3 1 7 8
3 1 4 8 4 8 30 10
4 6 15 10 5 12 142 14
5 9 57 14 6 8 632 18
6 8 207 18 7 6 2645 24 Kix1
7 6 731 24 X1ix1 8 36 10134 26
8 24 2376 26 9 164 36782 30
9 76 7193 30 10 192 124298 34
10 84 20112 34 11 146 401013 40 21X1
11 48 53232 40 X1X1 12 796 1203304 42
12 184 130872 42 13 5172 3460894 46
13 978 305074 46 14 7696 9150100 50
14 1312 655566 50 15 4268 23413384 56
15 602 1349200 56 16 5464 54574722 60
16 396 2519548 60 17 4220 124465702 66 22X1
17 172 4547644 66 R2Xx1 18 20528 256696224 68
18 616 73391244 68 19 286044 523201896 72
19 11782 11585834 72 20 590112 956157616 76
20 19354 16095254 76 21 304504 1740791038 82
21 6972 22105158 82 22 740264 2808524872 86
22 10016 26351888 86 23 523094 4540269028 92
23 3902 31361586 92 24 865544 6395425216 96
24 848 31658298 96 22x2°2 25 780624 9062517568 102
25 166120 32057672 98 26 206692 10917458588 108 X2X2
26 478392 26652332 102 27 936888 13261852260 110
27 134136 22350538 108 28 10182968 13192946730 114
28 365704 14585004 112 29 142150014 13246041324 118
29 105246 9643600 118 30 18009792 10243424132 124
30 283660 4535516 122 31 322585300 7986809176 128
31 102870 2185692 128 32 76012112 4275862868 134
32 1752 629544 134 33 711760872 2291702688 138
33 115808 195360 138 34 265368752 632026676 144
34 14016 25460 144 35 169462384 169462384 150 X2X2
35 5006 5006 150 82X%2 36 0 0
36 0 0

4t is not possible to fill the X2x2 box with the optimal 26 is formed of two folds of theN=17 domain interconnected

elements using=4. by just a single element, i.e. X217+ 1=235. This explains
why the domain formation is a natural consequence of the

[43,52 or a functional criterion to reduce the number some-discrete packing problem and that the natural choice for a

what. domain size contains 17 elements, which in turn implies a
We further believe that there is a connection between theertain length in terms of residues.

simple geometrical “preferred” numbers found in the close There is experimental support for this, which has been
packings and1) the breaking up into domains ari@l) the  seen by studying the statistics of the length distribution of
preferred number of residues in protein domains. The locaprotein chains[15] in the databases. Those distributions
minimum atN=17, corresponding to nine secondary struc-show optima in protein length around 125, 250 amino acids
tures is relatively well pronounced and the next minimum is(ag, etc. for eukaryote and similarly 150 aa and 300 aa for
anomalous. There is also a well pronounced minimum at th@rokaryote. The origin of this remarkable periodicity has yet
magic numbeiN=35. TheN=235 structure is confined in a to be explained in detail. It can have something to do with
3X2X2 box. An analysis of the folds shows that a large partthe topology of the polypeptide chain in early stages of pro-
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TABLE IV. Additional dense configurations foL=4 to be  the possible sizes of chains. The numerical calculations are
added to Table Il for obtaining an exhaustive count. It is arisingperformed as an exhaustive search for all the possible con-

from filling the nonglobular boxes indicated. figurations. In the table we pay special attention to the
minima occurring at specific chain length and with a maxi-

Nelements 4x1x1 4x2x1 3x3x1 Nin mum of neighboring occupied lattice sites that appear in spe-

19 508 72 cific lattices and reappear in the sublattices contained in the

o5 50318 87558 98 former lattice. For examplg, the results fqr the lattice
(3X2X2) contain all the minima encountered in the smaller

26 83912 169136 102 )

27 34652 67498 108 sublattices such as 11X 1) and (2<x1Xx1). Furthermore
one can make a study of the statistics of optimal packed

28 40404 110468 112 . . - . . .

29 15074 45086 118 configurations for specific chain length as a function of dif-

20 67176 129 ferent lattice sizes. As expected, the number of configura-
tions with the magic number of elements for thex1x1

sl 36430 128 lattice will remain the same for all greater lattices.

tein folding[53,54 or the phenomena could be a remanence A. Graphical representations of the protein folds

of the DNA-RNA structures. Here we propose that these Basjcally the philosophy behind our representation of
periodic optima are related to the packing of the polypeptidgo|ds is that the 3D protein structures can be represented in a
chain at the later stages of protein folding. As to be demonynique way by a 1D string of coupling constants
strated below, the position where the curve in Fig. 4 has @+ 3 +K,...). That is a unique name written with an 8-
minimum is a special “economical” configuration for do- |etter alphabetiwhich we have demonstrated may be ex-
main sizes. They are the most common protein domains, thgnded to sixteen or more letters, when including more dis-
length of which is given by the amount of residues in thetinguishing features; the minimum is four letterdt is
secondary structurén,8) elements and loopéof length of  jndependent of rotations and moderate distortignists) of
around 11-6-4 residues, respectively, Fig.[lus the begin-  the proteins. We have given the prescription for how that can
ning and end segments. This gives foNa 17 element do-  pe done once the protein is partitioned in secondary structure
main the following number of residues: for a purelomain  glements. Another protein with the same number of elements
~150 residues and for a pur@ domain ~100 residues. pyt with a different string representation will have the same
Based on the average size of the elements, the magic nurgnergy with respect to the hydrophobic forces, but could dif-
bers therefore also rationalize why the size of the domains ifer with respect to the hinge coupling parameters.
terms of amino acid unitgl5] is as preferred by nature. It is The projection of the actually observétisted struc-
interesting that this number is also in accord with the overalkyres to the high symmetry representation can be made by
thermodynamic theory11] for the effect of hydrophobic yjsual inspection of the stereographic pictures. However, for
forces acting on a polymer chain. a more systematic approach we have constructed a computer
One might argue that the restriction of the chain to haveyrogram that can convert a set of protein coordinates in the
elements being only orthogonal to the preceding one is toPpB (Protein Data Bankformat into our representation of
limited in the sense that two consecutive parallel elementgrdered chain elements on a regular lattice. The actual struc-
could also be considered and counted for in the total energyyres ardocally and consecutivelsectified to the rectangular
To do that, we may include the following term to the previ- representation. The representation can be given in a nice
ous Hamiltonian: graphical form and yields a systematic name.

Hetraigh= _2 LPéP.éPH_Ep /&L (1) V. MAGIC NUMBERS

We now turn to the question of an atomistic grouping of

We have carried out a study where we included the caspacked structures of protein chains as considered in the pre-
with coupling constantkp and/",. This means that when it vious section. From an analysis of packing and the effect of
is being decided whether an element is orthogonal to théydrophobic forceg12] we shall try to understand the ap-
previous element in the planed,j,) or out of the plane pearance of “magic numbers” and test the paradigm by a
(Kp ,kp) we also include the possibility of the element going statistical analysis of available structural data. Magic num-
straight ahead from the previous one. This extra move posers are well known in graph theory and packing of hard
sibility gives rise to a new list of configurations shown in spheres. For the 2D square lattice the occurrence and the
Table lll. The possibility of including the straight moves origin of the magic numbers were discussed explicitly by
(Z=5) gives a much larger set of unique configurations.Chan and Dill[22]. Later further studies were performed
However, the behavior exposed in Figs. 3 and 4 of minima af39]. The studies of two-dimensional lattice animals give
7,11,17,... number of elements is still maintained in thesesome guidelines for the statistical behavior of proteins, how-
extended numerical calculatiofas can be seen by compar- ever, for a property such as magic number it is imperative to
ing Fig. 3 and Fig. 4, foZz=4 the magic number dips gets study the relevant 3D problem. We argue that the 3D magic
more pronounced in the larger bhox numbers have a profound physical meaning for the proteins.

We have performed a series of calculations for differentThe fact that the 2D elemental magic numbét2] are quite
sizes of lattices in order to see the variation in the number oflifferent from the 3D ones actually corroborates our model,
different configurations for optimal packing densities for all as will discussed below in Sec. Ill C. After this paper was
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ELEMENTAL MAGIC NUMBERS An important part in getting reliable statistics of occur-

7,11,17,(24), 32, 35, ... rences in genetics and in molecular biology is to get a data-
SECONDARY MAGIC NUMBERS base with no biases, e.g., a group of proteins not containing
4, 6, 9,(12),16, 18, ... a particular amount of a secondary structure. It is therefore

most appropriate to resort to data sets that have been selected
especially for a nonbiased content. The data sets used for

. training and testing neural networks on secondary structure

completed we were notified that 3D counts o+ 5 actually  predictions are convenient since they constitute a standard

had been made earlier and used to analyze the bead mo‘?@\‘erence for the whole molecular biology community.

[23] for N up 13 and forN=27. The results agree in all  We have used the standard set of 136 proteins with a
details with ours. sequence similarity below 25% selected from PDB by Rost
The magic numbers found for the 3D lattice animals areand Sandergs5], originally used for secondary structure pre-
not very sensitive to deviations from a linear weighting ofdiction. The secondary structure assignments are made by

the neighbor count, which is still consistent with the globularthe DSSP algorithrf47] in which the hydrogen bond poten-
structures. The magic numbers in our modelamiversalin ~ tials (being the physical basis for the secondary structure
the sense that they do not depend on the specific, chemicalability) are calculated from 3D atomic coordinates. This
interactions between the amino acids: neither between distaf@sults in assigning a particular type of secondary structure
parts of the chain nor along the backbone—they are dictategharacter to each residue in a given protein, indicating that
by the hydrophobic, confining forces. the residue participates in that type of structure. Secondary
Figure 4 shows the exact, exhaustive enumeration of afftructures of a given type are identified as such if they con-

possible dense folds for elements upNe-35 in a 3x 2x 2 tain at least 4 consecutive residues. The decision of how
box. ForN=17 there is a pronounced minimum with only Many residues constitute a secondary structure is crucial for

p(17)=172 distinct and predictable folds. The mean fieldt€ Statistical analysis of the abundance of secondary struc-
theory, giving 711, overestimates this grossly. Between thgtr)es' In Fig. 6 we have displayed the size distribution of

FIG. 5. The predicted magic numbers.

magic numbers the abundance is, on the other hand, mu econdary structures for all known proteins in the complete

I Th : ber Al— 7 di he 4 B database. The helix distributida) has its maximum
arger. The magic number &=7, corresponding to the 4- o504 oyt over a plateau stretching from 4 to 12 residues,

helix bundle, is a close packing of a1l X 1 box, whichwe  he g strand distributior(b) has a maximum around 3-4 resi-
call anA box. The next closed confinement is th&2X1  gyes, and the loop&) a maximum at 4 residues. This clearly
box, which we call 8B box. Magic numbers al=11, 17,  gives support to defining secondary structures as containing
23, 32, and 35 can be understood as the optimal packing igt |east 4 consecutive residues. We have also performed sta-
closed polyhedrganalogous to shelionsisting of 1, 2, 3, tistics with a definition of helices containing more than 4
5, and 6B boxes. The minimum &i=24 corresponding t0  residues as a minimum requirement, but that did not alter
a best filling of a 48 box is anomalous because th&2X2  gjgnificantly the statistics of secondary structure abundance.
box cannot be completely filled with the optimal 26 elements|y making the secondary structure statistics of Fig. 6 we have
fOI‘ Z=4. W|th thIS in m|nd the predICted ellem.ental and SeC'Counteda_he”X and :?!-O_he|ix assignments as one type and
ondary magic numbers are summarized in Fig. 5. Fef5 || 8 strands as another and then counted them all together.
the 4B box can be paCked with 26 elements. This would In F|g 7 we have d|Sp|ayed the found abundance of the
correspond to 13 secondary elements. secondary structures as a function of their number on the
The magic number folds represent closed confinementgasis of the Rost and Sanders databs®. The curve
having minimal surfaces and are thus energetically faVOI'abl@|ear|y shows local maxima in the abundance that corre-
from the point of view of the hydrophobic forces. They havespond to the optimal packing we find theoretically. We find
a clear energy separation from other, neighboring folds. Thigptimal abundance at the following number of secondary
is, according to the theory by Shakhnoviet0], a necessary  structure elementsN =4,6,9,16,18, etc. The statistics for
condition for them to be able to fold rapidigee alsd41]).  the higher values is probably not reliable. The numbers cor-
The configurational entropy for a fold at the magic number isrespond to the number of elements beihg,=2N,—1
low, and allows the large entropy of the extended chainto be-7 11,17,31,35,... . Notice the large coincidences with the
exchanged by energy gain, without significant change in fre@|lemental magic numbecbtained from our computer stud-
energy. This indicates that proteins with the magic numbefeg Fig. 4. OnlyN.=12 is missing, probably because of the
of elements could be more stable and fast folding than othgmall database used or becaéeis anomalous foiZ=4
ers. In the following we are going to test this by comparingandNS: 13 forZ=5. The found optima are stable as to what
with experimental findings and by thermodynamic analysis.gjze of the database we use; e.g., the first half of the data set
has roughly the same distribution as the second half of the
A. Statistics of secondary structure abundance in nature set. This means that protein folds with a magic number of
elements, and a corresponding magic humber of secondary

In order I val he relevan f the nu- .
mericgl dcealctglat;ﬁ)r?sb aengo c?)rra: u;f tthee cc()en? 3tecrerglet§ wiltj tructure elements are more abundant. That again means that
P P e respective fold classes are larger, i.e., are containing

real protem_data we ne_ed to perf(_)rm the statistics of hOVYnore members.
many proteins occur with a certain number of secondary
structure elements. In other words, we would like to see if
there has been a selection pressure such that nature has a
preference for building up proteins of a certain number of How can we understand and construct the series of magic
helices and strands. numbers for packing of the protein chain? As we have seen

B. Magic numbers and the Euler characteristics
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x=c—e+f=2-2q, (8)

whereg is the genus number. We shall in the following only
be considering surfaces with no genugs=0). In case the
total surface of the chain configuration is not closed or the
body has buried corners the equation is not fulfilled but be-
comes instead

x=c—e+f=m#2, 9

wherem is any natural number.

One can get a clue on where magic numbers occur by
calculating the density of chain elements through the total
sum nn of the number of nearest neighbors that the end
points of the elementévertices on the chain have. At the
magic number the numben in the Euler equation is two,
meaning that the chain configuration makes up a closed sur-
face (or box, and the jump in the number of neighbors is
optimalAnn=6. The next magic number is obtained by add-
ing a new closed box to the other in the lattice and see when
it is filled out by the chain. For the case of tAebox alone
theelemental magic numbean only beN,,= 7, which is the
number of vertices minus one. But in the case of Bhbox
(2X1X1), which contains thé box two times, we obtain
the next magic numbeM,,=11. In Table Il we show the
explicit number of configurations and the maximum number
of neighbors.

Let us try to examine in detail the cases where the chain is
configured around ad box and then has a few extra ele-
ments as shown in Fig. 8. As we saw the elementary box was
filled out well by the 4-helix protein chain and satisfied the
Euler condition with 8 corners, 12 edges, and 6 faces. With
an extra element added to these chain configurations we ob-
tain one more corner and one more edge but no extra faces.
We can count the extra nearest neighbors as being simply the
sum of all the attributesAnn= + 2. With two more elements
(see Fig. 8 we have 2 extra corners, 3 extra edges, and 1

the magic numbers of secondary structure elements occusxtra face. By adding these extra quantities we get 6 minus
when the number of dense packings has a local minimum. Athe 2 from the last case, making the extra nearest neighbors
the position of a magic number there is a maximal jump inAnn=+4. By adding one more element we end having
the total number of closest neighbors around each lattice sitggain Ann=+4. If we sum up all the corners, edges, and
occupied by the chain. We shall argue that the magic numbefaices for these cases with extra elements including the extra

occurs when the chain forms a closed surféwex) within

the lattice. A good example is the 4-helix bundle at the

magic number,Ns=4, corresponding tdN,,=2Ng;—1=7
chain elements, which form a closédbox (1X1X 1) that
can be embedded in any other larger lattice.

For closed surfaces we have the Euler equation that con-

nects the number of cornecswith that of edge® and faces
f. The formula is

corners, etc. we cannot satisfy the Euler relation for this ex-

FIG. 8. This graph shows the increment in the number of neigh-
bors when adding extra elements to a closed box configuration.
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tended surface structure that is not closed in these cases as
anticipated above. If we, however, add one more element
[i.e., all together 4 elements on the “magic” ¥1X1)
box] we end up getting 6 more corners, 8 more edges, and 4
more faces, which altogether és=12, e=20, f=10, which
we see satisfies the Euler relation again. We have arrived at
the next magic number configuration of 11 chain elements
corresponding to 6 secondary structures. Furthermore we can
count the extra nearest neighbors obtained by this configura-
tion as beingAnn= + 6, which is precisely what is observed
in the Table Il of the numerical calculation of chain configu-
rations. Going to the magic number configurations the aver-
age number of nearest neighbors increases 6ofrom the
previous configurations with one element less. We have
found a procedure for determining a magic number occur-
rence by using the Euler relation and counting the extra con-
tent of corners, edges, and faces, which thus gives us tr‘bee
number of nearest neighbors and hence the density of ﬂ‘&
chain configuration. We can extend this prescription to more
complicated lattice boxes. ) ) ) )

For up to 60 elements the magic numbers follow the fill-€lements is consistently higher for the magic folds. The hy-
ing behavior of theB box. That is because ah box can be  drophobic forces will thus tend to favor the formation of the
B boxes, which increases the number of possible, differentelement number still fluctuates. Further the degenepdbi)
folds. Without having done the actual numerical enumeratiotS Smallest for the magic number of elements, since both
of folds, we predict—from the fact that 8, 9, and Blboxes P(N—1) andp(N+1) are larger in the number of ways one
provide especially closed confinements with maximal num-an distribute either a missing or an added element. _
ber of neighbors per element and minimal number of faces !f we now consider a bcc structure, see Fig. 10, the dif-
likely include N,,= 44, 47, and 59, correspondinga=22,  “unit” cell is defprmed reIatlvg to the sc structure and an
24, and 30. However, as we saw for tha84box the prob- extra n'earest neighbor boqd is form(atbtted line, along a
lems with the actual folding of the chain into the confine-body diagonal The topological difference between a sc and
ments may alter the simple estimate somewhat. Further, th@Pcc structure is simply that for packing on a bcc lattice we
higher numbers may not be relevant for proteins in view ofin addition allow an element to be placed alomge of the
their tendency to form agglomerates of domains of smallePody diagonals in the sc cell. The choice numbifire do
structures. not include going back or going straighf=6. Apart from

In conclusion, the magic number configurations satisfythe additional possibilities for placing an element, the same
the Euler relation, due to the minimalization of surface ared?0xes are preferred as for the sc case, having the magic
compared to that of volume. This is due to the hydrophobidlumber of boxes favored by 4 neighbor bonds relative to an
forces that tend to minimize the number of hydrophobic sideeXcited structure. Since the maximum number of elements in

chains on the surface of the chain configuration. a box is given by the number of vertict, asN,=N,—1,
the magic number of elements of the bcc lattice are identical
to those for the sc lattice. The actual degeneracy number is
C. Magic numbers and other lattices larger: ppec> Psc: due to the larger value af. Another dif-
. . . ference is that for the bcc lattice we do not have as clear a
Although we have emphasized that the simple cubic lat-_, ..~ . ) )
. : - - . . stabilization relative to the neighboring number of elements,
tice sc is the minimal description of the chain of elements N hich can be seen on Eia. 10. thin line. This shows onl
3D space[48], it is of course not given that nature has re- shoulders instead of clearghaxima in thé number of nei r)1/
stricted itself to that, and therefore it is of interest to se€, 9
X : : e ors per element.
whether the obtained magic numbers are just specific to the

discussed sc lattice description. The magic numbers arise

because certain closed boxes are singled out as being particu-
larly favorable with respect to the hydrophobic forces, as ‘ F‘

o
=]

b
=]

3.0
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NUMBER OF NEIGHBORS PER ELEMENT

0 10 20
NUMBER OF ELEMENTS

FIG. 9. The number of neighbors per element for various num-
r of elements; fat line: for the simple cubic lattiee), thin line:
me for the bcc lattice.

included by the procedure of counting the neighbor. For the H’ [,
simple cubic lattice a magic number configuration is particu- ' V‘v
larly favorable relative to the unfolded states, since the near- ‘

est excited state costs 4 neighbor bonds, whereas for the
nonmagic configuration the cost is only 2. That gives the s¢ bec fec

important larger energy gap for the magic folds. A magic FiG. 10. Left, simple cubic lattice. Middle, the box squeezed so
fold with N elements is also favored with respect to thethat an extra nearest neighbor bond appear. This is a representation

nearby dense folds witN—1 andN+ 1 elements, as can be of the bcc lattice. Right, the box further squeezed so five extra
seen on Fig. 9. This shows that the number of neighbors peteighbor bonds appear. This is a representation of the fcc lattice.
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For a closed packed structure, as for example the fcc, ouffrom either molecular dynamics calculations or experi-
treatment of the hydrophobic forcéss neighbor couhtloes  ments a proper theory for the dynamic folding processes in
not single out any preferred boxes. The number of neighborthat interval is still far fetched. At most one can make a
per element increases monotonically as does the number &tenario, the details of which are to be resolved experimen-
ways to distribute the elements i.e., for the fcc structure wdally or computationally. First, the temperature is not a well
do not find any magic numbers. However, a closed packe#efined concept, and can be replaced by the properties of the
structure is contrary to our picture of the parent phase, ang0lvent; even at room temperature one can fold and unfold
packing on a closed packed structure is therefore not relevaRfOteins by varying the amount of denaturants. However,
in the present context. Murzin and Finkelstein did consideith this in mind, let us follow common practid®,7] and
the packing on closed packed polyhe@&], which is con-  US€ the word temperature as indicating a measure for the

sistent with their attempt to describe the twisted state, not Qe_’gree of folding. WG.’ envisage the following scenario in line
P with recent observations3,4,20,21.

parent state. As shown in Fig. 10 the topological difference At high temperatures the protein will be in @xtended

between a sc and a fcc packing is simply that in the fcc we ' ,
allow in addition an element to be placed onebody diag- State because of the large phase space for this. When cooling

| and orfour f di | d the choi ber | down, the protein will start to form the helices because
onal and onfour face diagonals, and the choice nUMDer ISy, o6 'is 5 clear chemical energy gain by forming hydrogen

Z=10. It is now easy to generalize to other equal length,,,ys petween every third amino acid, and also a certain
lattices. Only those that are not closed packed are of 'ntereﬁgldrophobic gain because of the contraction

for forming the parent phasgvith respect to the neighbor
count criterion. For example, for a simple hexagonal crystal
the relation to the sc is that in additidwo opposite face
diagonals are allowed for the placing of the elements, and The gross partitioning of the chain in secondary and in-
Z=6. It seems that some observed structures are most nattermediate structural elements is completed at the next stage
rally described if we occasionally allow elements, in particu-[4]. Any interaction between the elements is supposed to be
lar loops, to be placed on diagonals. A recent example is thewitched off by screening effects of the solvent. It is at this
“normal” form of the scrapie prion protein. This, according Molten globulestage we introduce our Hamiltonian E@)
to the model by Huangt al, is a nicely twisted 4-helix  containing the hinge forces. They are of course generally
bundle, which is different from those described in Sec. lll Bvery weak relative to other forces. How can they matter in
for the sc projectiori56]. the folding process? To demonstrate this, it is instructive to
Although it goes beyond the scope of the present paper, ok at the Heisenberg magnet with the Hamiltonian:
remark about relaxing the equal length assumption is in order
here. Fora helices and3 sheets an almost parallel packing
with small connecting loops is often found; see, e.g., Fig. 1
in Ref. [32] or Fig. 2 in this paper. A packing of a small

number of secondary elements on a tetragonal lattice theghere the sum is over all nearest neighbor pairs only. The
seems to be a more natural choice for a parent sitalieads  strong interactions7 cannot determine the spin direction in
to a reduced model also used for the Martensitic transformarhe fully rotationally invariant ordered state given by the
tion [57]). It is interesting that the magic numbes for the  dominant first term—but by introducing an infinitesimal field
secondary structures remain the saisee a detailed discus- h in the z direction the rotational symmetry is broken. It is
sion in[58]), as long as the simplification makes sense, andhe weak global force that determines the overall structure;
that they are robust with respect to how the loops are placeghe strong force determines the details. This analogy is in
and how long they are. fact deeply related to the present problem.

description of the hydrophobic forces in terms of neighbor

counting singles out closed boxes, the magic number remains 1

those we have discussed for the simple cubic lattice. How- Hydrophobic™ _VE 2' O'i(Tj_/.LE o, (11
ever, the total number of possible structures selected only on (i) :

the discussed basis will be higher.

A. The molten globule and the parent states

1
HHeisenberg: - jz <2> Si Sj - hEi Sizi (10
ij

where the sum is over all nearest neighbor pairs ¢iarge
cubic lattice anaV is the (essentially hydrophobic and hy-
drogen bondingenergy gain for forming a secondary struc-
ture or loop. This appears to be a regular Ising model in
So far we have only used the Hamiltonian Eg) for  terms of the occupation variables=0 for unoccupied sites
enumerating the distinct folds found according to the hydro-ando;=1 for occupied sites. These are describinghkhel
phobicity criteria, without explicitly writing down a Hamil- vertices or hinge points of a protein consisting Nfele-
tonian for the hydrophobic forces. This and the Hamiltonianments. In fact the sites can also be just the location of the
for the short rangedtwist) forces will be discussed in this residue at which the hinge is going to be, even in the totally
section. First we emphazise that it is likely the protein fold-unfolded state. By the chemical potential we may control the
ing problem is an essential nonequilibrium phenomenon irffixed occupancy t&;0;=N+ 1. The only new feature, indi-
the thermodynamic sense, and an energy function is onlgated by the prime, is that the probability for finding a state
describing part of the process. Since the dynamically unwith differently distributed occupied sites has to be aug-
known time interval is large, ranging from 18 to 10°®s  mented by the number of ways the points can be connected

VI. THERMODYNAMIC THEORY
FOR PROTEIN FOLDING
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At stage(3) to (4) each occupied site is a member of two
1 T pairs and it is meaningful to assign the hinge spin variable to
the site, and thus introduce our hinge Hamiltonian, just for

the occupied sites. The Hamiltonian Ed) is a discrete one
2 m of the “Ising” type, where the spins can assume up to six
different directions. Further, it is now describing a small
“cluster” of only N—1 spins(when neglecting the outer-
3 gzizg/ﬁ—@) 1 Tva most ones Therefore, there will be no phase transitions in
the true thermodynamic sense but rather smooth transitions
from one state—or rather stage—to the other. For simplicity
4 \ﬂ.@ 1Tea in discussion we map the potential native fdlthe of the
densely packed statesnto a ferromagnetic Ising chain with
% spin variabled . As we have seen, with respect to the domi-
5 N PN nating hydrophobic forces this state is degenerate with a
large numbep=p(N) of other states, which may be thought
of asp different staggered Ising states for a protein with
elements. The lowest energy excitation for the chain, with
respect to Eq(4), is a soliton mode in which all spins to the
left of one are flipped. This violates the value of only one
letter in the chair(change in sign or typewhereas a single
%pin flip requires change of two bonds. To evaluate the hy-
drophobic energy cost of these excitatidiand check that
the chain is still self-avoidingwe construct the site occu-
by a single, self-avoiding line. This Hamiltonian describespancy on the basis of the spin sequence(Egand calculate
schematically the above scenario for protein folding, aghe energy from Eq(11). The degenerate models all share
shown on Fig. 11for N=7 with 8 vertices, open circlgs  the high energy excitation phase space, the molten globule.
(1) At T~ A fully extended state where the potential However, the low-lying excited states are very different—in
hinge residues are sparsely distributed and no neighbor paigarticular because a large number of excitations are prohib-
are formed; thus no gain in hydrophobic energy. ited by the nonoverlap constraint for the folds, and the ener-
(2) At Tyg<T<oo: The formation of secondary struc- gies of extended folds are augmented by hydrophobic en-
tures in the form of sparsely distributed neighbor pairs. Agrgy. At moderate temperatures the states are essentially
gain in hydrophobic energy o¥ for each formed nearest j,jependent and separated by large energy barriers. We in-
neighbor pair, representing a secondary or loop element. q,ce this regime as a new intermediate stage. It is a vola-
g 3 ’S‘t T:.TMlG: Thﬁmolten gIOblrJ]I.e(r']V'G)hV".h'?h IS herc;a _tile, high symmetryparent stage corresponding to the bcc
aﬁfé%ingéﬁgésggigs }rhisetﬁgfg?/t;lillciszflézgtlsi tf?sr?t(iell wit has_e. We suppose that the energy cqst in violating the dense
an extended chain of secondary structures and loops, havirgcﬁCk'?grYV r(]\(vhlcf} is of the order oW) 1S much I?rhger thfan
a mean(square radius of gyration, according to polymer K.Oht € |_ng|e OI’CﬁS. I—]!fowev?r,ha given set of hinge forces
scaling theory[59] of rg=(R2)Y2= aAé/2N3/5, wherea. is (Wi ich may include the effect of ¢ aperonssim up to give
9 ¢ g 1 ) maximum energy gain fofmost likely) the potential native
the average length of an element, agl~s for sg is the fold. Thep—1 other states will have a higher energy accord-

amplitude. This is nonuniversal. A universal ratio with theing to how many letters in the name have been violated. The
mean square end-to-end distance amplitddes given by ot is ike that of the uniform fieldh in Eq. (10), and it is

?gt(Ae=f0.15h?9(fq:jg comp(;ehensi\l/lf overvievagr ﬂ:ﬁ. St@- ot sensitive to whether the hinge forces fit exactly to the
istics of self-avoiding random walks, s¢80]). Using this final fold. So, without frustration thep-fold hydrophobic

and <R<§> and the estimate from[61] we find symmetry is broken. This demonstrates a natural relation be-
re~£[(Z—1)/Z]aN"2 The characteristic size scale is ac- tween the sequence information and a preferred folding into
cordingly typically 20—30% larger, and the volume is a fewthe high symmetry fold corresponding to the native 8.
times larger than that of the closed packed state.

(4) At T=Tpa: The precise definition of thearent phase
(PA) at which the chain witiN elements forms a densely B. Transition to the native state

packed structure, in our chosen minimal boxes. This state a; |ower temperatures the folding process proceeds to-
then hasrg~3Ra, whereR is the side length of the box wards the experimentally observédisted so-called native
depending on the number of elemefits., typicallyR=1 to  structure. Only at this stage is the water supposed to diffuse
2 for N=7 to 25. The volume is only a couple of percent out and leave a problem for the optimization of the short
larger than that of the closed packed state. In the previousange chemical forces between neighboring elements. That is
sections we have numerically calculated how many ways théhe problem addressed by Murzin and Finkels{&Bg]. To
points in such a box can be interconnected by a self-avoidingescribe this in our model we need an extra term in the
chain ofN elements. Hamiltonian, just as for the Martensitic problem. Let, as de-

(5) Later we shall describe the Hamiltonian for the tran-scribed above, the parent state be represented pyfoid
sition to the final, closed packed—so-calledtive state—  degenerate effective Ising model with interaction parameter
taking place above or around room temperafligg . W:

FIG. 11. A sketch of the five stage folding scenario fr@nthe
extended statat high temperatures #@) a partly secondary struc-
ture forming stage(3) the molten globuleMG) stage,(4) the par-
ent stage(PA), and finally thenative twisted state at about room
temperatureTro. The double lines indicate formed secondary
structures and single straight lines interconnections formed b
loops. TheO indicates the considered eight “hinge” residue posi-
tions.
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o field theory and Monte Carlo simulations. Valuesmtip to
TR ... PA 6 were used, since in the Martensitic problem it is hard to
HE imagine higher values. We here generalize the results,
T pa|P=1000 namely, to considering the case of a competition between a
" SFOEX p-times degenerate Ising modékith a weak field, and
wherep can be very large, up to several hundred describing
the fold degeneracy of the parent phase—and a transverse
0 Tro Ising model[the above caséA)] describing the twist of one
0 05 1 T(U/kg) of those phases. The only difference between the phase dia-
_ _ ~grams for the DEG-BEG model and the competing Ising
FIG. 12. A sketch of the phase diagram for the protein folding. models is according to the results of Rf7, 64 that in the
Full lines represent continuous transitiori®or N—oo), while latter case, there is a phase transition both between the
dashed lines are discontinuous transitions. Two cases are shown 0¢-stabilized (highly degenerate as well as between the

for large values op>2_, and one with very large values .pf>23 U-stabilized phase, and a disordered phase, which in our
The entropy contribution depresses the phase separation line be-

tween the PA and the TW phase, at most for the lgrgEor a fixed fﬁse ;:olg%sponds t(t) thi moIt_en g|0b3!e pg:s?' 'kl)'_fll_e ednEOpy of
ration 2W/U~1 there is a transition between the TW, the PA, the "€ P-T0I0 d€geNerate phase IS accor Ind_ ] stabilized by
MG and the extended phases. The hatched region, marked HF, i term —KgT In(p) in the free energy, with respect to both

-

-
!‘
=

2W/U
T
2
=
o

dicates structures determined by the hinge forces. the disordered phase and the more ordered, twisted phase
[65]. The free energies per site in a mean field approximation
1 are
Hparent: - EW 2 alnr (12
(nn")

1 ) 1-M 1-M
Fparen= — EWM —kgT In(p)/N+kgT 5 In 5
where |, are the reduced hinge spin variabl@gving the

changes relative to one of the considepegarent ground 1+M 1+M

state configuration and the sum is over all sites in the chain. + T) n T2 }

This schematically represents the hydrophobic forces includ-

ing the chain constraint anw/ (for watep represents the N—1 1

energy of the excited states mainly against the hydrophobic [:twist:W{ _ EUijL ke T[m In(m)
force. ThereforeW is of the order of a few time¥ plus the

contribution from the hinge forces.
The native state is a twisted structure of one of fhe +(1—m)|n(1—m)]], (14
particular states. Suppose it can only be twisted in very few
equivalent ways, say 2. Then the native state can be repre-
sented by a normal transverse Ising model with degeneracy
and interaction constail representing the previously ne-
glected strong short range forces of chemical nafdisul-
fide bonds, etg.

here M =(l,,)) and m=(s,) and the prefactor in the last
rm is because we only include interactions between the
secondary elements. Because we have mappegroxi-
mately) the folding problem onto a known problem in statis-
tical physicg57,63,64, we can without repeating the details
1 of the derivation draw the schematic phase diagram for the
Howist=— = U E SpSp! (13 protein fold(Fig. 12); the transitions across a dashed line are
2 (P,P") discontinuougall or nong. Results of using our Hamiltonian
in Monte Carlo simulations and an analysis of the dynamical
where(A) the variablessp could be occupancy variables as folding process after a quench from high to low temperatures
in the Ising model, with valuesp=1 or 0 according to are planned to be published elsewhere.
whether twosecondaryelements are parallel, nearest neigh-  Depending on the relative strength of the various forces
bors yielding an energy gaid, or not (yielding no energy  we then have different scenarios.
gain; the sum is only over the secondary elements. In a (1) If the short range forces are not sufficiently strong to
more realistic model for the twigB) we could allow con-  force the energy barrier between the parent state preferred by
tinuous variations in the variables and &Se&” instead of the hinge forces and another of the parent states,
spSp/ , Which could in turn allow for an energy also by twist- 2W/U>1, the hinge force selected state will just be opti-
ing perpendicular element@nd possibly even in addition mally twisted, but highly frustrated and not optimal from the
represent a slight move in spacgielding a Heisenberg type point of view of the short ranged forces. This will be a state
model. Presumably, that elaboration will not qualitatively arrived at in a nonfrustrated manner, yet it will not be a state
change the results. of minimal frustration, and not be in the lowest possible
To understand the nature of the “phase transition” of theenergy state. This situation is indicated by the hatched re-
native folding processes we have to take a closer look at thgion, marked HF, in Fig. 12.
entropy properties of the system. A very similar model was (2) If the short range forces are very strong, they can
introduced and analyzed for the Martensitic probl&¥]. It  select the optimal one of thp available dense folds and
was recently simplified to two competing Ising models andoverrule the hinge forces, corresponding ¥/2J<1. Then
further to a so-called degenerate Blume-Emery-Griffithsthere is a transition from the parent stage to a twisted state
(DEG-BEG model[63]. The latter was analyzed using mean close to one of thg states accounted for by our theory. The
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native structure is then given by the detailed interactionstructures there is hence a greater chance to find them among
between the secondary elements. This will again neither be the magic structures than among the few exceptional other
minimum frustration nor in a minimum energy state becausenes. This explains the high abundance of the proteins with
the major structuring was done by the hydrophobic forces. “magic” number of (secondary elements. The arguments

(3) If 2W/U~1 there will be a competition between the for the preferred abundance are in line with those given by
two mechanisms. It could of course happen that the mechaeinkelsteinet al.[52]. But they focus on the “designability”
nisms during the course of evolution were selected so thal, “myltitude,” and show that if a given fold can be made of
petiion would slow down the flding rate congideray. The 21 iferent sequencas, the abundance is higher, ince
insensitiveness to even quite substantial mutatj@ (re- ;}I?r:)gpeyl\l?lfer?g#ge_s;b Fn(;;e)e m]eer?g/ TIoriSSl;crl;Loﬁlgutg_an
placements of parts of a sequehceuld indicate that there is tional temperature”; unfor?u’nately neithdd - nor T* can

) p H

not at least strong competition. be calculated beforehand. That effect may be addedng

(4) If the short range forces are very strong indeed, S%ome further sortingto the presently discussed entropy ef-

strong that they can break up the already formed secondagy i ‘\yhich is arising from the degeneracy in packing of el-
structures, BV/U<1, our analysis is less relevant, since the

ements, and which as demonstrated is calculable. Our more
secondary structure count at the parent stage level may ggf

ously di 4. This limit is th hich be b aborate arguments differ from those of Finkelstiral. in
seriously distorted. This limit is that which may be better e jar with respect to the introduced phase transitions,
described by the bead model. The native state for this ca

L . d in that the temperature in our case is the real temperature
may be one of minimal frustration for all forces, but exceed—(or reflecting a change in the solvint
ingly difficult to find.

VII. DISCUSSION

C. Preferred abundance of magic number proteins A major asset of our theory is that all involved interac-

We have above discussed the last two transitiondions are average quantities and therefore not crucially de-
molten globule-parent-twisted stages in general. Let us pending on specific realizations of sequences. It gives a basis
here consider the influence of the degeneracy fagtowe  for the classification and for the robustness against muta-
remark that for smalp, i.e., the magic folds, the magnitude tions. Further, it rationalizes the paradox that the direct
of U can be smallefW/U largep than for the other folds, forces taken one by one are strong, but the effect is small
and still cause a transition to the native phaseTerTro.  (Pecause of cancellation between oppositely acting forces,
The value ofW is given by the hydrophobic forces and the frustration. Our hydrophobic energy is the average
should be relatively weakly dependent on the specific segain for forming a secondary structure involving of the order
guence constituting the involved elements, since the numbé¥ ten residues, not for forming individual hydrogen bonds;
of residues in each element is quite large10). On the Tanford has discussed the difficulties in evaluating the en-
other hand the value dff represents the total effect of the €rgy cost at that levell2]. It is of course an oversimplifica-
frustrated short range forcgdivided by the number of sec- tion to assume the same gain when assembling the elements,
ondary elements:N— 1)/2] between the various parts of the but it should be of the same order of magnitude. The inter-
protein in its twisted, native state. If the magnitudelbtan  esting hydrophobic forc®/ is even a further average df.
be small and still sufficient for ordering at room temperature,FOr our “hinge forces,” again, only the suer averaggis
it indicates that the ordering into the native fold is not highly ©f importance. Given that the secondary structures cannot be
sensitive to finding an optimal solution of the frustration broken up totally at the twist stage, also only an average over
problem of matching neighboring sequence segments. Marfj}€ short range interactions resultinglnis of interest. It is
different sequences can therefore do the job. Contrary to thelearly difficult to evaluate the effective interactions from
Martensitic problem the interaction forces between the elefirst principles. However, the fact that the folding happens
ments are highly frustrated and the energy gain therefor@round room temperatuiBzo, tells us that the energy scale
limited. We suggest that the elements are predominantly pc?f the parameters must be of the order &o=kgTro,
sitioned by the hydrophobic forces with little chance for ma-wherekg is the Boltzmann constant. This is equivalent to
jor rearrangements in the cas@s to (3) discussed above. 0.60 kcal/mole(at T=300 K). Suppose then thal/~1zq
This would render a state susceptible to only “local mini- and U~2&o (because it may be slightly strongefFor a
mum frustration” in terms of the theory discussed by given protein withN elements, the internal energies should

Wolyneset al. [7]. scale roughly adl times these constants. We can now evalu-
In other words, we argue that for largethe transition ate if the configurational entropy we have discussed resulting
between the parent phase and the twisted phastive will from the degeneracy of the parent state can be of any

be depressed in temperature. Then it will require speciallgignificance. At room temperature the free energy contribu-
favorable constitutioné.e., sequences of amino adias the  tion from this entropy isAEg(N) = —kgTrdN[p(N)]. For N
elements to minimize the frustration in their mutual interac-ranging from 7 to 25p ranges from form 10 to 1000. This
tion, which is needed to stabilize the final twist order abovegives an entropy contribution of froMEg(N~7)~2Exo to
room temperature. On the other hand, for the “magic” folds AEg(N~25)~7E&ro. In addition there are the variations ac-
the restriction is much less severe because Ipeie rela-  cording to the magic dips ip(N). We find that the entropy
tively small, thus the constitution of the secondary elementper element is~0.3g for the magic number folds and
is less critical and we would expect to have many more pro-~0.5g for all others; see Fig. 13. The discussed entropy
teins belonging to the magic families. In a search for proteirthus gives an energy contribution ef30%, which is of



56 TOWARDS A SYSTEMATIC CLASSIFICATION @ . .. 4513

state is not an element of the Ptitsyn mof] nor of the

later theory for side chain meltinp7], thereby they differ
significantly from our parent state concept, although they are
supposed to be covering the same experimental regime. At
stronger denaturation Ptitsyn proposed the term “disordered
molten globule,” which would probably then be equivalent
to what we have simply termed the molten globule, with a
volume about three times the nati{@8]. Other names and
concepts have been in use, such as folding intermediates and
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compact denaturated statE89] and others; see, e.d.2].
0.20 e e T T o However, none of the previous models has included the
NUMBER OF ELEMENTS N structural degeneracy, which in our theory leads to the magic

numbers. Most of the experimental evidence for such states
FIG. 13. The calculated entropy per element arising form theare indirect with respect to the actual structure.
degeneracy of densely packed structures with respect to the hydro- It may not be easy experimentally to structurally assess if
phobic forces. Notice the dips at the magic number of elements. the parent structures are stable at higher temperatures, be-
cause the formation of the secondary structures may tend to

reasonable order of magnitude, and it is sufficient for causin§re@k up, although in some cases an even higher content is
a significant influence on the phase diagram. suggested2], p. 249. At the molten globule stage there may
Our models are of course extremely simplified. A majorbe proteins with an unstable number of secondary structures

objection might be that one cannot strictly substructure the d€caying” into the stable ones, in quite close analogy to
problem in the five stages we have assuretlich on the e shell model for nuclear matter.
other hand seems to be in agreement with a considerable
amount of experimental findings according to Jaenicke’s
conclusion [3,4]). However, we have demonstrated that The hydrophobic forces cannot define a particular fold
within our model it is possible to have seveftitreg sce-  whereas the weak hinge forces set up a global force that will
narios, simply depending on the ratio of the interaction conmake a given protein fold predominantly in the right direc-
stants 2V/U. Of these we believe that the cas®/AJ~1  tion. We believe that the proposed Hamiltor®nmakes
most likely is the one prefered by nature, as it happens in theense in modeling the actual folding process from a certain
analogous Martensitic problem. That would give the moststage. In our model we have at first neglected any forces
diversified transition scheme with the full sequencebetween the secondary elements. This is an important con-
native—parent-molten globule-extended states (of  ceptual aspect in our model for the not too late stages of the
which we have not discussed the latter in detalVe have  folding process. If specific amino acids on different elements
argued that the folding problem is a clustee., a smallN) could bind strongly it would fix the fold in any arbitrary
problem with no sharp transitions. In a recent study of mageonfiguration(imagine trying to fold double-glue-sided tape
netic relaxation in small Ising clustef66] it was found that to a specific configuration The physical justification for
the transition from one state to another occurred by a nucleswitching off these forces is that they could be screened by
ation mechanism, where the relaxation time is depending othe water, which accordingly must have an important “lubri-
the probability of forming a critical size droplet of the alter- cating” role to play during the folding. Only in the final
native order. A similar behavior is expected for the presentpproach to the dense fold is the water supposed to diffuse
models, and it is then in accord with the observations that theut and leave a problem for the final optimization of the
folding appears to happen in a concerted mar@éf, with  short range chemical forces between neighboring elements.
folding happening at several stages simultaneously around Bhe result of that is undoubtedly the observed twistings and
first forming nucleus. However, our models will not be able deformations of the actually observed structures. At that
to account for a scenario in which the folding occurs fromstage we have argued that the protein cannot make any sig-
the extended state directly to the native one only directed byificant refoldings, so most of these forces would be frus-
the short ranged forces; this is handled by the bead modelirated if they do not happen to match according to the under-
Finally, let us comment on the terminology problem of lying sequence. We thus have argued that a match is not
the folding intermediates. The experimental identification ofinstrumental in the folding process, whereby our model is
a “‘compact globule with nativelike secondary structure andvery different from previous theories, which precisely focus
with slowly fluctuating tertiary structutewas probably first  on this problem of frustrating forces, and led to a comparison
mentioned by Dolgikhet al. [10]. The presence of such a between the folding problem and the spin glass prodién
state, nearly as compact as the native state, is now estalw our model there is no frustration in setting up the main
lished beyond doub2]. It corresponds well to our concept part of the folding. The end result will necessarily be frus-
of the parent phase. Our state must be fluctuating sufficientlytated and therefore the native state is not the ground state for
to experience the entropy in tigepossible states, which are the chemical forces from an equilibrium thermodynamical
equally densely packed from the hydrophobic point of view.point of view. It is interesting that there seems to exist a class
In the literature several names have been in use for such af physics problems in complex systems in which “partial
intermediate state. In particular Ptitsyn has discussed thisrdering,” of which we have discussed a particular case, is
phase, see, e.d2] p. 265, and calls it a “native-like molten an important concept, which can be formulated mathemati-
globule.” The concept of thep-times degeneracy of that cally [70], in more general terms. We emphasize that the

VIIl. CONCLUDING REMARKS
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