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CONSTRUCTING
PAIRS OF DUAL BANDLIMITED FRAMELETS
WITH DESIRED TIME LOCALIZATION

JAKOB LEMVIG

ABsTRACT. For sufficiently small translation parameters, we prove that any
bandlimited function 1, for which the dilations of its Fourier transform form a
partition of unity, generates a wavelet frame with a dual frame also having the
wavelet structure. This dual frame is generated by a finite linear combination
of dilations of ¢ with explicitly given coefficients. The result allows a simple
construction procedure for pairs of dual wavelet frames whose generators have
compact support in the Fourier domain and desired time localization. The
construction is based on characterizing equations for dual wavelet frames and
relies on a technical condition. We exhibit a general class of function satisfy-
ing this condition; in particular, we construct piecewise polynomial functions
satisfying the condition.

1. INTRODUCTION

Let ¢ € L?(R) be a function such that P is compactly supported and the
functions £ — z[;(aj§), j € Z, form a partition of unity for some a > 1. We
prove that for sufficiently small translation parameter b the function 1 generates
a wavelet frame {a//?¢)(a’z — bk) : j,k € Z} with a dual wavelet frame generated
by a finite linear combination of dilations of 1. The result allows a construction
procedure for pairs of dual wavelet frames generated by bandlimited functions with
fast decay in the time domain where both generators are explicitly given.

The principal idea used in the proof of Theorem 3 comes from Christensen’s
construction of dual Gabor frames in [6]. Our construction is similar, but it
takes place in the Fourier domain. The proof of Theorem 3 and the construction
procedure provided by this theorem are based on the well-known characterizing
equations for dual wavelet frames by Chui and Shi [8].

Our aim is to provide a construction of a pair of dual frame generators ¢ and ¢
for which the functions v and ¢ are explicitly given in the sense that the functions
or their Fourier transform are given as finite linear combinations of elementary
functions. To be precise, the construction uses v as a starting point and defines
the dual generator ¢ as a finite linear combination of dilations of ¥ with explicitly
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2 JAKOB LEMVIG

given coefficients. This gives us control of the properties of both generators as
opposed to using canonical duals.

The construction of redundant wavelet representations is often restricted to tight
frames in order to avoid the cumbersome inversion of the frame operator. However,
in this paper we consider general non-tight, non-canonical, non-dyadic dual wavelet
frames. The construction of wavelet frames is usually based on the (mixed) unitary
or oblique extension principle |7,9,12,13|. These principles lead to dual or tight
frame wavelets with many desirable features: compact support, high order of
vanishing moments, high smoothness, and symmetry/antisymmetry; in particular,
explicitly given spline generators are constructed from B-spline multiresolution
analysis in [7,9]. In these and similar constructions one cannot do with fewer than
two generators (see |7, Theorem 9] and [9, Theorem 3.8] including the succeeding
remark); in addition, higher smoothness leads to more generators or larger support
of the generators. Our construction leads to frame wavelet with similar properties,
the most notable difference is that the generators have compact support in the
Fourier domain, not in the time domain.

Wavelet frames constructed by the unitary extension principle from a B-spline
multiresolution analysis will always have one generator with only one vanishing
moment yielding a wavelet system with approximation order of at most 2; this
problem is circumvented in the oblique extension principle. When multiple gen-
erators are needed in our construction, all of these will share the same properties.
In Examples 2 and 3 the constructed wavelet frames are generated by only one
function, and in these cases the smoothness of the generator does not affect the
size of the support (that is, in the Fourier domain).

Our construction is explicit, and it works for arbitrary real dilations, but as
a drawback the wavelet frame generators will not have compact support in the
time domain leading to infinite impulse response filters. In the dyadic case an
efficient algorithm can be implemented by using the fast Fourier transform, see for
example the fractional spline wavelet software for Matlab by Unser and Blu [3].
The idea is to perform the calculation in the Fourier domain using multiplication
and periodization in place of convolution and down-sampling. For this to work,
we need the frequency response of the filter coefficients (sometimes simply called
filters or masks and often denoted by 7;, m;, or H;), but we get this almost
directly from our construction; the frequency response of both high pass filters
(decomposition and reconstruction) can be obtained from dilations of Y. Note
that this relies crucially on the fact that the dual generator ¢ is defined as a finite
linear combination of dilations of ¢ with explicitly given coefficients.

The paper is organized as follows. In Section 2 we prove the main result of this
article, Theorem 3. The theorem contains a technical condition on partition of
unity, and we address this problem in Example 1 where we explicitly construct
functions that satisfy the condition. A note on the terminology: the functions
in the “partition of unity” are not assumed to be non-negative, but can take any
real value. In Example 2 we give an example of a pair of smooth, fast decaying,
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symmetric generators with the translation parameter being 1. The construction of
dual wavelet frames using Theorem 3 often imposes the translation parameter to be
small, e.g. smaller than 1. Consequently, we want methods to expand the range
of the translation parameter, and this is the topic of Section 2.2. In Section 3
we show that the representation of functions provided by Theorem 3 with the
explicitly given dual frame is advantageous over similar representations using tight
frames or canonical dual frames. In Section 4 we present another application of
Theorem 3 with generators in the Schwartz space. However, the construction in
this example is less explicit than in the first example. We end this paper with some
remarks on constructions of pairs of dual wavelet frames for the Hardy space.

We end this introduction by reviewing some basic definitions and with an ob-
servation on the canonical dual frame. A frame for a separable Hilbert space H is
a collection of vectors {f;};ey with a countable index set J if there are constants
0 < Cq < (5 < 0o such that

CLlfIP < SSUA P < CollfI? forall feH,

JeJ

If the upper bound holds in the above inequality, then {f;} is said to be a Bessel
sequence with Bessel constant Cy. For a Bessel sequence {f;} we define the frame
operator by

S:H—M,  Sf=> (1)

JeJ

This operator is bounded, invertible, and positive. A frame {f;} is said to be tight
if we can choose C] = Cb; this is equivalent to S = C71 where I is the identity
operator. Two Bessel sequences {f;} and {g;} are said to be dual frames if

f=Y Af9)f; VfeH

Jjel

It can be shown that two such Bessel sequences are indeed frames. Given a frame
{f;}, at least one dual always exists; it is called the canonical dual and is given
by {S7!f;}. Only redundant frames have several duals.

For f € L?*(R), we define the dilation operator by D, f(z) = a'/?f(ax) and the
translation operator by Tpf(z) = f(x — b) where 1 < a < oo and b € R. We say
that {DITyrh}; kez is the wavelet system generated by ¢ where a > 1 and b > 0.
In the following we use the index set (j, k) € Z x Z whenever a sequence is stated
without index set. If {DITy,2} is a frame for L?(R), the generator v is termed
a framelet or frame wavelet. For f € L'(R) the Fourier transform is defined by
f(&) = Jg f(z)e 2™ dx with the usual extension to L?(R). Given a measurable
set K C R we define the Paley-Wiener space EQ(K), which is invariant under all
translations, by L2(K) = {f € L2(R) : supp f C K}.
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2. CONSTRUCTION OF DUAI WAVELET FRAMES

Our main result, Theorem 3, is obtained from the following result by Chui and
Shi [8]. The result is stated in the last two lines of Section 4 on page 263 in their
article.

Theorem 1. Let a > 1, b > 0, and ¢, ) € L*(R). Suppose the two wavelet
systems {DITyetb}; kez and {DITykp}; kez form Bessel families. Then { DI Ty}
and {DITyab} will be dual frames if the following conditions hold

1) Y@@ = b ae EER,
JEZ
(2) DE)P(E+q) =0 ae. EER for0#£qe b 'Z.

The conditions (1) and (2) are also necessary when a > 1 is such that a’ is
irrational for all positive integers j, see [8, p. 263]. For this reason the above
conditions are often refereed to as characterizing equations for such irrational
dilations. The result in Theorem 1 follows from the general result of characterizing
equations for dual wavelet frames [8, Theorem 2.

The next result, Lemma 2, gives a sufficient condition for a wavelet system to
be a Bessel sequence. Its proof can be found in [5, Theorem 11.2.3].

Lemma 2. Leta > 1,b> 0, and f € L?(R). Suppose that

Ca=7 sw 3 |f@e)f(aie + b/b)] < .
lgl€lLal j kez

Then the affine system {DITyf} is a Bessel sequence with bound Cs.

Theorem 1 and Lemma 2 are all we need to prove our main result, Theorem 3.
The main result contains the technical condition (3) on ¢. In the example following
the proof of the main result, Example 1, we explicitly construct functions satisfying
this condition.

Theorem 3. Let n € N, a > 1, and ¢ € L*(R). Suppose that ¥ is a real-valued
function with supp ¢ C [—a®, —a® "] U [a“"",a¢] for some ¢ € Z, and that

(3) Z@(ajﬁ) =1 forae £cR.
JEL
Let b e (0, 2_1a_c] Then the function i and the function ¢ defined by

n—1

(4) p(z) =bp(x) + 20> aTp(a'z) forx R,

j=1

generate dual frames {DITyptp}; pez and {DiTyd};kez for LA(R).
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Proof. By assumption the function 1) is compactly supported in R\ {0}; the same
holds for ¢ since, by the definition in (4) and the linearity of the Fourier transform,

n—1
B(&) = bih(€) +2b > h(al€).

J=1

An application of Lemma 2 shows that the functions ¢ and ¢ generate wavelet
Bessel sequences.

To conclude that 1 and ¢ generate dual wavelet frames we will show that
conditions (1) and (2) in Theorem 1 hold. By a’-dilation periodicity of the sum
in condition (1) it is sufficient to verify this condition on the intervals [—a, —1]
and [1,a]. On these two intervals, only finitely many terms in the sum (3) are
nonzero since qﬁ has compact support; in particular, only the terms j =c—n,c —
n+1,...,¢— 1 contribute which follows from the support of the dilations of qﬁ:

supp(a~™) C [~a", ~1] U [1,a"],
supp ¢(a“" 1) € [~a" 7!, ~1/a] U [1/a,a"7],
and continuing to
supp (a1 € [—a, —a " U [a7" 1 a].
For [¢| € [1,a], by the assumption, we have

5 1=(X &(aﬂ's)f - ( 5 aﬁ(aﬂ's))z

JEZ j=c—n
= [Bas") + D@ -+ dlae)]]
P(a°7"E) [(a°7"E) + 20 (aHE) + -+ 20(a )]
+ (a7 e [(a ) + 20T 4 -+ 20 (e )|
oo+ P (a1

hence 1 and ¢ satisfy condition (1).

To realize that v and ¢ satisfy equation (2) as well, we note supp zﬁ( +q) C
B(Fq,a¢) and supp ¢ C [—a®, —a“~ 2" |U[a"2"T a¢] C B(0,a¢) where B(z,r) =
[ — r,2 + r] denotes the closed ball with center at xz and radius r. The two
functions above will have disjoint support modulo null sets whenever |¢| > 2a°.
Consequently, by choosing the translation parameter b < 271, the two func-
tions in condition (2) will have disjoint support for all ¢ € b~1Z \ {0} since
min [b71Z \ {0}| = 1/b > 2a¢, and the condition will be trivially satisfied. O
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Whenever n = 1 in Theorem 3 above, we have ¢ = by by equation (4), thus
generates a tight frame with bound b. In this case, i.e., n = 1, the choices of 1 are
very limited since functions v satisfying the conditions in Theorem 3 with n =1
must be of the form 1) = yqeg, where S = [—1,—1/a]U[1/a,1]. As a consequence,
interesting constructions using Theorem 3 are restricted to n > 1. For n > 1, the
dual frames generated by 1 and ¢ will be non-canonical.

The important thing to note about the definition of ¢ in (4) is that ¢ will inherit
properties from 1 that are preserved by linearity and dilation, e.g. qAS will have
compact support because zﬁ has this property. This holds also for properties such
as smoothness, symmetry, fast decay, and vanishing moments up to some order.
If ¢ (or zﬁ) can be written in terms of elementary functions, the same will hold for
¢ (or QAS) These observations naturally lead to a review of the properties generally
possessed by the dual generators we construct. As mentioned above, all non-trivial
applications of Theorem 3 involve n > 1, n € N. We will furthermore assume that
1[1 € L%(R) is even, explicitly given, and, when mentioned, a C"-function for some
r € NU{0}. In this situation the resulting pair of dual generators has the following
properties:

e Explicit and similar form: qﬁ and ngb are of similar form, e.g. piecewise polyno-
mial of the same order (see Example 2) unlike the situation for the canonical
dual (see Section 3). A similar construction procedure for tight frames gives
“less” explicitly given generators (see Section 3).

e Compact support in Fourier domain of both 1 and ¢.

e Fast decay in time domain. For ) € Cy(R) the generator 1 will satisfy
lim | oo "(x) = 0, that is, ¢(z) = o(x™") as |z[ — co. The dual genera-
tor ¢ has the same properties.

e High order of vanishing moments. In general for 1) € Cy(R) the generator
) will have vanishing moments up to order r € NU {0} since

_dm

= g
And again, the same holds for the dual generator ¢.

e Symmetry: zﬁ and (5 are even and real functions and so are ¥ and ¢.

e Frequency overlap between scales for increased stability and non-semior-
thogonality: For all j,k € Z there is a j/ # j and a ¥ € Z so that
(DI Typab, Dg/Tbk/zm # 0. The same holds for the dual generator ¢.

e Generalized multiresolution structure 1] (see also Section 2.3). The two gen-
erators can be associated with the same GMRA with identical core subspace,
the Paley-Wiener space L?(K) with K = Uj<o(a’ supp 1&) C [—a“"t a1,
hence both generators can be associated with the same scaling function.
These types of dual wavelet frames are called sibling frames in [7]. Further-
more, the GMRA provides arbitrarily large approximation order [10].

0 (0) = (—2mi)™ / PMp(x)de form=0,... .7
R

To make Theorem 3 applicable, we need to show how to construct functions
that satisfy the technical condition (3) in the theorem. It is important that this
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construction is explicit because one of the key features of the theorem is that the
dual generator is explicitly given in terms of dilations of 4. In Example 1 we
construct a dyadic partition of unity, that is, we construct a function g € L?(R)
satisfying

(6) Zg(2jx) =1 forae xz€R.
JEZ

This corresponds to condition (3) for dyadic dilation a = 2; a generalization of the
construction to arbitrary real dilation parameter a > 1 is straightforward (replace
every occurrence of “2” with “a”). As we shall see a very general class of functions
satisfy the condition (see also Example 3).

Example 1. For any m € Z, any 6 > 0 smaller than or equal to 2"/3, and a
bounded function f on [2" — §,2™ + §] satisfying f(2"'—¢) = 0 and f(2™+0) = 1,
we define

f(z) x € B(2™,9),

1 z € (2m 4 6,2mT —25)
7 hy(z) = .
(7) D =V1pwje) xe B2,

0 otherwise.

Any such hy € L?(R) will be continuous if f is continuous, and it will satisfy:

Z h1(2j$) =

JET

1 for > 0,
0 for x < 0.

We use the same approach to construct hy € L%(R) satisfying:

Z h2(2jaz) =

ez 1 for x < 0,

{0 for z > 0,
and define ¢ = hy + ho. This gives us the dyadic partition of unity almost every-
where.

The function f above could be chosen as any polynomial satisfying f(2™—¢§) =0
and f(2™ + 0) = 1; this will make g continuous. If we also let the polynomial f
satisfy f/(2™ —6) = f/(2™ +6) = 0, then g € C*(R). Continuing this way, we can
make g as smooth as desired while still keeping g piecewise polynomial.

In the next example we apply the ideas from the above example to Theorem 3
and construct dual wavelet frames with dyadic dilation and translation parameter
b = 1; actually, any b € (0,1] can be used, but we take b = 1 for simplicity.
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Example 2. Let f be a continuous function on the interval [1/4,1/2] satisfying
f(1/4) =1 and f(1/2) = 0. For example f can be any of the functions below:
(8a) flz) =2 - da,

) = 8(24x% — 8x +1)(2z — 1),

(8b f()

(8¢c) f(z) = —16(3202% — 19222 + 42z — 3)(2z — 1)3,

(8d) f(z) = 32(4480x* — 38402 + 128022 — 192z + 11)(2z — 1)4,
(8e) f(@) =3+ Lcosm(dw —1).

In definitions (8b) and (8e) the function f satisfy f’(1/4) = f(1/2) = 0, in
definition (8¢) this also holds for the second derivative, and in (8d) even for the
third derivative. As in Example 1 define 1) € L?(R) by:

) 1= fQlg)  for |¢] €[1/8,1/4],
(9) (&) = fUED) for [¢] € (1/4,1/2],

0 otherwise.

This way ¢ becomes a dyadic partition of unity with suppe¢ C [~1/2,—1/8] U
[1/8,1/2], so we can apply Theorem 3 with ¢ = —1, n = 2, and b = 1. Following
Theorem 3 we define the dual generator ¢ € L?(R) by:

21— f(4lgh)]  for [¢] € [1/16,1/8],

e )L f(218]) for ¢ € (1/8,1/4],
o )= AG9)) for |¢| € (1/4,1/2],
0 otherwise.

whereby 1 and ¢ generate dual frames {D3Ty1)}; pez and {D5Ty¢}; kez for L*(R).
The translation parameter in these wavelet systems is set to b = 1, and each
wavelet frame is generated by only one function.

Suppose we let ) € L?(R) be piecewise polynomial as defined by equations (8a)
to (8d). Then ¢ € C"(R) with r = 0,1,2,3, respectively. Further, the gen-
erators @ and ¢ will be real and even, and 1/3 and qAS will be piecewise poly-
nomial and have compact support with suppt) C [—1/2,-1/8] U [1/8,1/2] and
supp ¢ C [—1/2,—1/16] U [1/16,1/2]. We have a greater number of vanishing mo-
ments and faster decay than indicated by the review of properties above: ¥ and ¢
will have r + 1 vanishing moments and decay as O(z~""2) as |z| — oo, e.g. using
(8b) we have ¥, ¢ € C*(R), and ¢ and ¢ with vanishing moments up to order 2,
and ¥ (z) = O(z73) and ¢(z) = O(z~3), see Figures 1 and 2. The explicit form
of 1) and hence ¢ are easily found; in general, they are finite linear combination
of sine and cosine of the form sin(2rax)/(7x)" and cos(2wax)/(wx)™ for integer
n>2+4+rand a € Q.

We end the example with some notes on the numerical aspects and the mul-
tiresolution structure. We claim that C; = 1/2 and Cy = 1 are frame bounds
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FIGURE 1. A pair of dual generators v (solid line) and ¢ (dashed
line) in the time domain with f as in (8b).
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FIGURE 2. A pair of dual generators 9 (solid line) and ¢ (dashed
line) in the Fourier domain with f asin (8b).

for {DITy}, that Cy = 7/2 and Cy = 5 are frame bounds for the dual frame
{D{Ty¢}, and that this holds for any f from equations (8); even more, the frame
bounds hold for any f satisfying 0 < f(x) < 1 for z € [1/4,1/2]. To prove the
claim observe that

ZZWW 23£+l<:‘—0 for £ € R,

k#0 jEZ

by the support of 1[1 This reduces the frame bound estimates in |5, Theorem
11.2.3] to

Sliwel, ¢ aw Slie]

\5\6[1/4 172 €l€[1/4,1/2] jez,
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where C and Cy are a lower and upper frame bound of {Dngzﬁ}, respectively.
For |¢] € [1/4,1/2] we have, by the definition (9),

DB = F(IE)* + (1= f(IEN)* =1 — 2/ (€]) + 2/ (1€D)*,

JET
and thus,

Ci= min 1—-2z+22>=1/2, Cy= max 1—2z+ 222

z€[o ] z€[a, 6]

with a = min; /y<,<i/2 f() and B := max;jy<,<i/2 f(z). Since 0 < f(z) < 1
for x € [1/4,1/2], we have a = 0 and 8 = 1, hence Cy = 1, and this proves the
claim for {Dngw}; similar calculations will show the claim for the dual frame.
In particular, we see that the condition number Co/C; does not depend on the
smoothness of the generators, and that the condition number of the dual frame
{DJTy¢} is smaller than the condition number of {DJT}} and the condition
number of the canonical dual frame.

The core subspace of the GMRA is the Paley-Wiener space Vo = L?([—1/4,1/4]).
The function n € L?(R) defined by 7 = X[-1/4,1/4] 18 a generator for Vp, that is,
span{Tkn}trez = Vo, and {Typn}rez is a tight frame with frame bound 1 for V.
We note that this frame contains twice as many elements as “necessary” in the
sense that {Toxn}trez and {Tokr1n}rez are orthogonal bases for Vy. Obviously,
we can take the refinable symbol Hy € L?(T) to be the 1-periodic extension of
Ho = xj—1/8,1/8) 80 that 7(2§) = Ho(§)n(§) for £ € R; note that the choice of
Hy is not unique, and by letting Ho = X[_3/8,1/4)u[-1/8,1/8)U[1/4,3/8) We obtain a
quadrature mirror filter since Ho(0) = 1 and |Hq(&)|* + |Ho(€ + 1/2)|? = 1. The
refinable symbol Hy is sometimes called a low pass filter or mask. As wavelet
symbol (high pass filter) for the decomposition Hy and reconstruction H, we can
take Hy = ¢(2) and H, = ¢(2) extending them to 1-periodic functions; these

symbols obviously satisfy 1)(2€) = Hy(€)7(€) and ¢(2¢) = H,.()7(€).

2.1. An alternative definition of the dual generator. The following result
resembles Theorem 3, but it gives an alternative way of defining ¢; note the change
from 1 (a=7x) in (4) to ¥(a’z) in (11). The result follows from the symmetry of
the calculations in (5).

Proposition 4. Let n € N and a > 1. Suppose 1 € L*(R) is as in Theorem 3.
Let b € (0,a=¢(1 +a™ 1) 71]. Then the function ¢ and the function ¢ defined by

n—1
(11) o(x) = bp(x) +2b Z ap(a’z) forz € R

j=1
generate dual frames {DITyetb}j pez and {DiTod};kez for LA(R).

Proof. The functions v and ¢ satisfy condition (1). This follows from calculations
similar to those in (5): We start by factoring out ¢ (a"1¢) instead of 1(ac "&),
then v (a“"2¢) and continue in a similar way. To see that condition (2) is satisfied,
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we note that Supp(ﬁ C [_ac—l-n—l7 _ac—n] U [ac—n7 ac—i—n—l} since Supp(zg(a_n"'l') -
[—ac+n_1,—ac_1] U [ac_l,ac+”_1]. The two functions in (2) will have disjoint
support modulo null sets whenever |g| > a® + qctn—1 — a’(1 + an—l)_ 0

The choice of the translation parameter b is more restrictive in Proposition 4
than in Theorem 3 since the support of ngb defined by (11) is larger than when
defined by (4). Note that b € (0,a~¢(1 + a™1)~1] can be replaced by the simpler,
but more restrictive, b € (0,a™°""] in the case a > 2.

2.2. Expanding the range of the translation parameter. The construction
of dual wavelet frames from Theorem 3 often imposes the translation parameter
b to be small, e.g. b < 1. Hence, it would be interesting to know in which cases
we can take b = 1. For the sake of simplicity let a = 2 for a moment, and assume
that 1 satisfies the assumptions of Theorem 3. Obviously, we can take b = 1 if
the support of ¢ is contained in [—1/2,1/2], that is, if ¢ < —1; this is exactly
what we used in Example 2. If ¢ > 0, we need, in order to achieve b = 1, to
apply Theorem 3 to 1&(2”1-) in place of . This dilated version of 1 will still be a
dyadic partition of unity and supp)(2°t1.) € [-1/2,1/2]. Moreover, we have the
following result.

Corollary 5. Let n € N and a > 1. Suppose ¢ € L3(R) is as in_Theorem 5. Let
be (0,2_1a_c]. Then the function ¢ := Dyp and the function ¢ := Dy, where
¢ is defined as in (4), generate dual frames {DiTi}; kez and {DIiTy¢}; kez for
L*(R).

Proof. The result basically follows from an application of the identity
(12) Dy Ty, = Tk Dy,

and the fact that dilation preserves the frame property and the duality of (wavelet)
frames since it is a unitary operator on L?(R). By assumption {DJ Ty} and
{DIT,,¢} are dual frames for b € (0,27 a~¢]. The identity (12) yields,

DyDITyetp = DITy(Dy),

hence {DIT1} is a frame as a unitary image of a wavelet frame where Y = Dyip.
The same conclusion holds for {DJTy¢}. For all f € L?(R), we have

f=Dy(Dsf) = 3 (f, DoDiToé) DyDiTkts = 3 (f, DiTid) DT,

J,kEZ J,kEZ

and conclude that duality is preserved. O

Another approach (for obtaining b = 1) makes use of multigenerated wavelet
systems. In the following result the constructed dual wavelet frames are generated
by m functions again sharing the properties of the starting point function 1; in
particular, if ¢ has vanishing moments up to some order, then so will every function
in the generator sets ¥ and ®.



12 JAKOB LEMVIG

Corollary 6. Let n € N and a > 1. Suppose ¢ € L*(R) is as in Theorem 3. Let
m € Nandb € (0,27 a=m]. Then the functzons U= {”L/J,Tb/ml/J, ooy Tom—1)pm ¥}
and the functions ® = {$, Tym®, - - -, Tm-1)p/m®}, where ¢ is deﬁned as in (4),

generate dual frames {DJTbkl/J}J,kGZﬂ/,E\p and {DJTbk¢}]7k€Z7¢e¢ for L2(R).

Proof. Let m € N. For b so that 0 < b/m < 2f1a_c, the functions ¢ and ¢, where
¢ is defined as in (4), generate dual frames { D} Ty, /m ¥} jrez and { D) Ty /m®}j kez
for L?(R). Note that (m_lZ) /Z=A{0,1,...,m — 1}, and define:

{?/), Tyjm¥, Topym ¥, - - - s Tm—1 b/mT/)}

It follows immediately that {DéTb/mkw}j,keZ = {DéTbkw}j,keZ,dJE\P- Similarly, we
have for ¢ that {D]T} /i ¢} jkez = {D)Torx 9} j kez,pea, Where

® := {6, Tyym® Tapms - Tim—1)p/m } -
We conclude {DgTbkw}j7k€Z7¢€¢ and {DgTbk¢}j7k€Z7¢e¢ are dual frames for L?(R)
for b/m < 271a~¢, that is, for b < 27 la=°m. O

It follows from the corollary that, in the dyadic case, we can always obtain b =1
by using 2¢T! generators.

2.3. On the generalized multiresolution structure. We end this section with
a closer study of the GMRA structure of ¢ and ¢. To this end, let 1 € L*(R)
satisfy the assumptions in Theorem 3. We consider the subspaces W;’(w) =

span { DTy : k € Z). Let ¢ = Dyyp be the generator of frame {DITii}, see
Corollary 5. From the identity Ty = Dj 'TxDy we have W () = Dy ' Wi ()
where W} (4) = W{ngﬁ ke Z}. By [10, Theorem 2.14],

We () = {f e L’(R): f = mi/:) for some measurable, 1-periodic m}

and further, using supp ) C [—1/2,1/2],

Wo (¥) = {f € L*(R) : supp f C Supm;} = [2(supp ),

hence W () = L?(supp T/A)) by the above, and by dilation, ij(T/)) = L?(a’ supp 1;)
We conclude that the space of negative dilates, also called the core subspace,
associated with ¢ is given by

W (v) = W(U Wf(?/))) = [*(K), K= U (a supp@) C [—ac_l,ac_l} ,
j<0 J<0
which is a subspace invariant under all translations. It is straightforward to see
Vo(y) = Vo(¢); we will denote this space by Vo. A function n € L?(R) is said
to generate Vj if span {Tyn},c;, = Vo, and we have that n generates Vj if, and
only if, supp#) = K (see [10]). If we further require {0} ,c; to be a frame for
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Vb, then 7 cannot be continuous hence n will be poorly localized in time. This
drawback follows from a result in [2[; indeed, the sum Y, o7 |7((§ + k)/b)|? reduces
to [A(£/b)|? for € € [-1/2,1/2] since b < 271a~¢ implies ba®~! < 1/(2a) < 1/2—¢
for some ¢ > 0 hence supp#(-/b) = bK C [~ba®"! ba®"1] C [-1/2+¢,1/2 —¢].
Now, the conclusion follows from |2, Theorem 3.4]. We note that the constructed
wavelet frame will not necessarily be a frame for a fixed dilation level subspace
W;(¢) of L?(R). This situation is similar to that of the unitary and oblique
extension principles, but in contrast to frame multiresolution analysis.

3. DUAL FRAMES VERSUS TIGHT FRAMES

In Theorem 3 we explicitly construct the dual frame. One might ask why we do
not use the canonical dual frame, or why we do not use the characterizing equations
for tight frames to formulate a similar construction procedure of tight frames.
In the following we will show that these approaches have some disadvantages
compared to Theorem 3.

For a wavelet frame {Dgwa}j,keZ, the canonical dual frame is given by

{S—ngTbkw ke Z} - {DgS‘lTbkw ke Z},

where S is frame operator of {DgTbkzp}j,keZ. In general the canonical dual need not
have the structure of a wavelet system, and this is one reason to avoid working
with canonical dual frames. However, as we show below, the canonical dual of
all wavelet frames considered in this paper will be of wavelet structure, hence
the canonical dual could be used in the synthesis process in the frame wavelet
transform. The problem with this approach is that it is difficult to control which
properties the canonical dual frame inherits from the frame since the application
of the inverse frame operator can destroy desirable properties. We give an example
of this issue in the following.

Let ¢» € L2(R) be as in the assumptions of Theorem 3. Then ¢(&)Y (€ + b~1k) =
0 for k € Z )\ {0}, and consequently, by [11, Proposition 7.1.19] in the dyadic case
and a simple generalization of parts of the proof of the proposition in the general
case, the associated frame operator is the Fourier multiplier given by

_ S 2\ s
(13) 510 = (S [p@of ) fe) tfor e cer,
JEZL
for all f € L?(R) with O < Ejez|1/3(aj§)|2 < Cy and C4,Cy as frame bounds for
{DITy1p}. Since S is a Fourier multiplier, it commutes with all translations, that

is, ST, = T,.S for all » € R, and the same holds for the inverse frame operator,
hence the canonical dual takes the form

{DiTw(s7'¥) 1 4k e 2},
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which is a wavelet frame generated by S~!4. Moreover, the canonical dual gener-
ator is given by

(3

(14) S—yY(€) = — for a.e. £ €R,
Y jerl (@)

Since supp ¢ C [—a®, —a®"] U [a®™™, a¢] for some ¢ € Z and n € N, we conclude,

by equation (14), supp S—1¢ = supp ¢ and

0 D(E)
15 S (&) = ——
9) & @)

for a.e. £ € R.

This implies, among other things, that 1[1 and S—14 will have the same regularity.
But it also implies that choosing qﬁ to be piecewise linear will not make the canon-
ical dual generator S~1¢ piecewise linear (in the Fourier domain, that is) owing to
the denominator in (15). This is unlike the situation in Example 2 where a piece-
wise polynomial qﬁ by Theorem 3 gave a dual generator qAS piecewise polynomial of
the same order, e.g. a piecewise linear zﬁ gave a piecewise linear qg In general the
denominator in (15) makes the expression for the canonical dual generator “less”
explicit. The price we pay for using the non-canonical dual is a slightly larger
support (in the Fourier domain) of the dual generator.

Since the construction of wavelet frames by Theorem 3 is based on characterizing
equations for dual wavelet frames, it would be natural to look for a similar way of
constructing tight frames from their characterizing equations. In a naive approach
to such a construction one would need to choose 1 € L?(R) so that ¥ is real
and the family & — (zﬁ(a]f))Q, j € Z, form a partition of unity and to choose a
sufficiently small translation parameter (so that all terms in the series in the so-
called “t,-equations” become zero owing to disjoint support). Following the ideas

from Example 1 we take 1) € L%(R) as (extending ¢ to an even function):

f(6) ¢ € B(a™,6),
1 ¢€€ (a™+d,am —ad),
YO\ T TEar e B, a),

0 £€10,00)\ [@™ —§,a™ T +ad].

for any m € Z, any 0 > 0 smaller than or equal to a™ /3, and a bounded function
fon [a™ —6,a™ + ] satisfying f(a™ —0) =0, f(a™ +9) =1, and |f| < 1. The
important thing to note with this approach is that qﬁ does not inherit properties
from f in opposition to the situation in Example 1, e.g. taking f to be linear does
not make 1[1 piecewise linear because of the square root in the expression above;
moreover, it is well known that the property of being a smooth (non-negative)
function need not be preserved when taking square roots.
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4. ANOTHER APPLICATION OF THEOREM 3

In Examples 1 and 2 we constructed dual wavelet frames in a rather explicit way.
The following construction is less explicit. In the first part of the example below
we construct a C'°° function on R with compact support satisfying the technical
condition (6), and in the second part we apply Theorem 3 to the constructed
function.

Example 3 (Part I). Let f € C°°(R) be defined as

—-1/x

e x>0,

=" T

and choose positive constants R > r > 0 so that

(16) 36> 0: U2j[r+5,R—5]:[O,oo),
JEZL

holds, e.g. take r = 1/8 and R = 1/2. We define fi(z) = f(x —r)f(R — z) for
x € R, hence supp fi C [r,R] and f; € C§°(R), and we introduce a symmetric
version of f1, denoted fs, in order to get a dyadic partition of unity of the negative
as well as the positive real line.

fi(z) for z > 0,

(17) fol@) = {fl(—x) for z < 0.

The function w will be used to normalize fo:
w(zx) = Zf2(2j$).
JEZ
For a fixed x € R this sum only has finitely many nonzero terms. Obviously, w

is a 2/-dyadic periodic function and, by (16) and the definition of f;, it is also
bounded away from 0 and co:

de,C >0:c<w(z)<C forall zeR\{0},
hence we can define a function g € C§°(R) by

(1 o) = 22

This g will be a dyadic partition of unity; the calculations are straightforward:

R I
jez =/

jez x)

for x € R\ {0}, and, g¢(0)=0.

() Ygez fo(2kx)

The construction of g looks indeed less explicit than the piecewise polynomial
partition of unity in Example 1 primarily because g is normalized by an infinite
series w. This situation improves by noticing that, in practice, the series w reduce
to a finite sum since supp g = supp fo C [—R, —r] U [r, R]. For example, if we let
r =1/8 and R = 1/2, we can do with three terms g(z) = fa(z)/ 2]1-:_1 f2(272)
for all z € R\ {0}.
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Remark 1. 1. Note that the mirroring step (17) introducing fs also makes
g symmetric. But it is obvious from the example that we can carry out
the construction for the positive part of the real line only to get a dyadic
partition of the unity on the positive real line, and, then, by the same
approach (but with different choices of r and R), for the negative real line.
This way g will not be symmetric.

2. In place of f one could choose any function in C§°(R) having the same
support as f. In place of f; one could take any characteristic function
fi = Xpangnt1) for some n € N convolved with a smooth hs € Cg°(R)
for a sufficiently small § > 0, where hs(z) = 6~'h(6~'z), and supph C
[-1,1], A > 0, [hdp = 1, and h € C3°(R). Then supphs C [—d,d] and
supp hs x f1 C [2" — §,2"1 4 §].

Example 3 (Part II). We take » = 1/8 and R = 1/2 in Example 3 and set
U= faf Z}:_l f2(27-) where f5 is given by (17), hence

o(1/8—6 71 (e—1/2)7L

e(1/8=8~Ta(e-1/2)71 4 o(1/8-26) 71 g(2¢-1/2)~1 §€(1/8,1/4),
A 1 §= 1/47
b(&) = (1/8-8)~1 o(e-1/2)7}
0(1/875/2)*10?5/271/2%10%(1/875)*10(571/2%1 £e(1/4,1/2),
0 £eRL\(1/8,1/2),
and symmetrically for the negative real line. Applying this to Theorem 3 with
n =2, ¢c= —1, and b = 1 yields a pair of dual wavelet generators with ¢, ¢ €

C°°(R), where ¢ is defined as in (4), and supp¢ C [—1/2,—1/8] U[1/8,1/2] and
supp ¢ C [—1/2,—1/16]U[1/16,1/2]. The generators are smooth, rapidly decaying,
symmetric dual framelets with vanishing moments of infinite order. It is clear that
both belong to the Schwartz space, but it is also clear, from the equation above,
that ¢ and ¢ are not explicitly given in the time domain.

5. THE HARDY SPACE

A similar construction procedure for dual wavelet frames holds for the Hardy
space H2(R) = {f € L*(R) : supp f C [0,00)}. The result in Corollary 1 can
easily be transformed from L?(R) settings to the Hardy space H?(R). Indeed, we
only need to replace the right hand side b in equation (1) by bx|gsc)(§). In [4,
Theorem 1.3| such a transformation is carried out for a similar result on tight
wavelet frames |8, Theorem 1|. The analogue version of Theorem 3 for the Hardy
space is as follows. Let n € N and a > 1. Suppose for 1 € H?(R) that ¥ is a
real-valued function with supp& C [a“~™,a¢] for some ¢ € Z and that

D (7€) = Xpo,00) (&) for ace. EER.

JEZ
Let b € (0,a™¢]; actually, we could even let b € (0,a™¢(1 —a~2"*1)~71]. Then ¢
and ¢ defined by (4) generate dual frames for H?(R). We note that, in the Hardy
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space, the choice of translation parameter becomes less restrictive than for L?(R).
This owes to the fact that ¢ and ¢ have smaller support since they are zero on
the negative real line.
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