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CONSTRUCTINGPAIRS OF DUAL BANDLIMITED FRAMELETSWITH DESIRED TIME LOCALIZATIONJAKOB LEMVIGAbstra
t. For su�
iently small translation parameters, we prove that anybandlimited fun
tion ψ, for whi
h the dilations of its Fourier transform form apartition of unity, generates a wavelet frame with a dual frame also having thewavelet stru
ture. This dual frame is generated by a �nite linear 
ombinationof dilations of ψ with expli
itly given 
oe�
ients. The result allows a simple
onstru
tion pro
edure for pairs of dual wavelet frames whose generators have
ompa
t support in the Fourier domain and desired time lo
alization. The
onstru
tion is based on 
hara
terizing equations for dual wavelet frames andrelies on a te
hni
al 
ondition. We exhibit a general 
lass of fun
tion satisfy-ing this 
ondition; in parti
ular, we 
onstru
t pie
ewise polynomial fun
tionssatisfying the 
ondition. 1. Introdu
tionLet ψ ∈ L2(R) be a fun
tion su
h that ψ̂ is 
ompa
tly supported and thefun
tions ξ 7→ ψ̂(ajξ), j ∈ Z, form a partition of unity for some a > 1. Weprove that for su�
iently small translation parameter b the fun
tion ψ generatesa wavelet frame {aj/2ψ(ajx− bk) : j, k ∈ Z} with a dual wavelet frame generatedby a �nite linear 
ombination of dilations of ψ. The result allows a 
onstru
tionpro
edure for pairs of dual wavelet frames generated by bandlimited fun
tions withfast de
ay in the time domain where both generators are expli
itly given.The prin
ipal idea used in the proof of Theorem 3 
omes from Christensen's
onstru
tion of dual Gabor frames in [6℄. Our 
onstru
tion is similar, but ittakes pla
e in the Fourier domain. The proof of Theorem 3 and the 
onstru
tionpro
edure provided by this theorem are based on the well-known 
hara
terizingequations for dual wavelet frames by Chui and Shi [8℄.Our aim is to provide a 
onstru
tion of a pair of dual frame generators ψ and φfor whi
h the fun
tions ψ and φ are expli
itly given in the sense that the fun
tionsor their Fourier transform are given as �nite linear 
ombinations of elementaryfun
tions. To be pre
ise, the 
onstru
tion uses ψ as a starting point and de�nesthe dual generator φ as a �nite linear 
ombination of dilations of ψ with expli
itlyDate: April 24, 2008.2000 Mathemati
s Subje
t Classi�
ation. 42C40.Key words and phrases. dual frames, framelets, non-tight frames, partition of unity, bandlim-ited wavelets. 1



2 JAKOB LEMVIGgiven 
oe�
ients. This gives us 
ontrol of the properties of both generators asopposed to using 
anoni
al duals.The 
onstru
tion of redundant wavelet representations is often restri
ted to tightframes in order to avoid the 
umbersome inversion of the frame operator. However,in this paper we 
onsider general non-tight, non-
anoni
al, non-dyadi
 dual waveletframes. The 
onstru
tion of wavelet frames is usually based on the (mixed) unitaryor oblique extension prin
iple [7, 9, 12, 13℄. These prin
iples lead to dual or tightframe wavelets with many desirable features: 
ompa
t support, high order ofvanishing moments, high smoothness, and symmetry/antisymmetry; in parti
ular,expli
itly given spline generators are 
onstru
ted from B-spline multiresolutionanalysis in [7,9℄. In these and similar 
onstru
tions one 
annot do with fewer thantwo generators (see [7, Theorem 9℄ and [9, Theorem 3.8℄ in
luding the su

eedingremark); in addition, higher smoothness leads to more generators or larger supportof the generators. Our 
onstru
tion leads to frame wavelet with similar properties,the most notable di�eren
e is that the generators have 
ompa
t support in theFourier domain, not in the time domain.Wavelet frames 
onstru
ted by the unitary extension prin
iple from a B-splinemultiresolution analysis will always have one generator with only one vanishingmoment yielding a wavelet system with approximation order of at most 2; thisproblem is 
ir
umvented in the oblique extension prin
iple. When multiple gen-erators are needed in our 
onstru
tion, all of these will share the same properties.In Examples 2 and 3 the 
onstru
ted wavelet frames are generated by only onefun
tion, and in these 
ases the smoothness of the generator does not a�e
t thesize of the support (that is, in the Fourier domain).Our 
onstru
tion is expli
it, and it works for arbitrary real dilations, but asa drawba
k the wavelet frame generators will not have 
ompa
t support in thetime domain leading to in�nite impulse response �lters. In the dyadi
 
ase ane�
ient algorithm 
an be implemented by using the fast Fourier transform, see forexample the fra
tional spline wavelet software for Matlab by Unser and Blu [3℄.The idea is to perform the 
al
ulation in the Fourier domain using multipli
ationand periodization in pla
e of 
onvolution and down-sampling. For this to work,we need the frequen
y response of the �lter 
oe�
ients (sometimes simply 
alled�lters or masks and often denoted by τi, mi, or Hi), but we get this almostdire
tly from our 
onstru
tion; the frequen
y response of both high pass �lters(de
omposition and re
onstru
tion) 
an be obtained from dilations of ψ̂. Notethat this relies 
ru
ially on the fa
t that the dual generator φ is de�ned as a �nitelinear 
ombination of dilations of ψ with expli
itly given 
oe�
ients.The paper is organized as follows. In Se
tion 2 we prove the main result of thisarti
le, Theorem 3. The theorem 
ontains a te
hni
al 
ondition on partition ofunity, and we address this problem in Example 1 where we expli
itly 
onstru
tfun
tions that satisfy the 
ondition. A note on the terminology: the fun
tionsin the �partition of unity� are not assumed to be non-negative, but 
an take anyreal value. In Example 2 we give an example of a pair of smooth, fast de
aying,



PAIRS OF BANDLIMITED DUAL FRAMELETS 3symmetri
 generators with the translation parameter being 1. The 
onstru
tion ofdual wavelet frames using Theorem 3 often imposes the translation parameter to besmall, e.g. smaller than 1. Consequently, we want methods to expand the rangeof the translation parameter, and this is the topi
 of Se
tion 2.2. In Se
tion 3we show that the representation of fun
tions provided by Theorem 3 with theexpli
itly given dual frame is advantageous over similar representations using tightframes or 
anoni
al dual frames. In Se
tion 4 we present another appli
ation ofTheorem 3 with generators in the S
hwartz spa
e. However, the 
onstru
tion inthis example is less expli
it than in the �rst example. We end this paper with someremarks on 
onstru
tions of pairs of dual wavelet frames for the Hardy spa
e.We end this introdu
tion by reviewing some basi
 de�nitions and with an ob-servation on the 
anoni
al dual frame. A frame for a separable Hilbert spa
e H isa 
olle
tion of ve
tors {fj}j∈J with a 
ountable index set J if there are 
onstants
0 < C1 ≤ C2 <∞ su
h that

C1 ‖f‖
2 ≤

∑

j∈J

∣∣〈f, fj〉
∣∣2 ≤ C2 ‖f‖

2 for all f ∈ H.If the upper bound holds in the above inequality, then {fj} is said to be a Besselsequen
e with Bessel 
onstant C2. For a Bessel sequen
e {fj} we de�ne the frameoperator by
S : H → H, Sf =

∑

j∈J

〈f, fj〉fj.This operator is bounded, invertible, and positive. A frame {fj} is said to be tightif we 
an 
hoose C1 = C2; this is equivalent to S = C1 I where I is the identityoperator. Two Bessel sequen
es {fj} and {gj} are said to be dual frames if
f =

∑

j∈J

〈f, gj〉fj ∀f ∈ H.It 
an be shown that two su
h Bessel sequen
es are indeed frames. Given a frame
{fj}, at least one dual always exists; it is 
alled the 
anoni
al dual and is givenby {S−1fj}. Only redundant frames have several duals.For f ∈ L2(R), we de�ne the dilation operator by Daf(x) = a1/2f(ax) and thetranslation operator by Tbf(x) = f(x − b) where 1 < a < ∞ and b ∈ R. We saythat {Dj

aTbkψ}j,k∈Z is the wavelet system generated by ψ where a > 1 and b > 0.In the following we use the index set (j, k) ∈ Z ×Z whenever a sequen
e is statedwithout index set. If {Dj
aTbkψ} is a frame for L2(R), the generator ψ is termeda framelet or frame wavelet. For f ∈ L1(R) the Fourier transform is de�ned by

f̂(ξ) =
∫
R f(x)e−2πiξxdx with the usual extension to L2(R). Given a measurableset K ⊂ R we de�ne the Paley-Wiener spa
e Ľ2(K), whi
h is invariant under alltranslations, by Ľ2(K) = {f ∈ L2(R) : supp f̂ ⊂ K}.



4 JAKOB LEMVIG2. Constru
tion of dual wavelet framesOur main result, Theorem 3, is obtained from the following result by Chui andShi [8℄. The result is stated in the last two lines of Se
tion 4 on page 263 in theirarti
le.Theorem 1. Let a > 1, b > 0, and ψ, ψ̃ ∈ L2(R). Suppose the two waveletsystems {Dj
aTbkψ}j,k∈Z and {Dj

aTbkψ̃}j,k∈Z form Bessel families. Then {Dj
aTbkψ}and {Dj

aTbkψ̃} will be dual frames if the following 
onditions hold
∑

j∈Z

ψ̂(ajξ)
ˆ̃
ψ(ajξ) = b a.e. ξ ∈ R,(1)

ˆ̃
ψ(ξ)ψ̂(ξ + q) = 0 a.e. ξ ∈ R for 0 6= q ∈ b−1Z.(2)The 
onditions (1) and (2) are also ne
essary when a > 1 is su
h that aj isirrational for all positive integers j, see [8, p. 263℄. For this reason the above
onditions are often refereed to as 
hara
terizing equations for su
h irrationaldilations. The result in Theorem 1 follows from the general result of 
hara
terizingequations for dual wavelet frames [8, Theorem 2℄.The next result, Lemma 2, gives a su�
ient 
ondition for a wavelet system tobe a Bessel sequen
e. Its proof 
an be found in [5, Theorem 11.2.3℄.Lemma 2. Let a > 1, b > 0, and f ∈ L2(R). Suppose that

C2 =
1

b
sup

|ξ|∈[1,a]

∑

j,k∈Z

∣∣∣f̂(ajξ)f̂(ajξ + k/b)
∣∣∣ <∞.Then the a�ne system {Dj

aTbkf} is a Bessel sequen
e with bound C2.Theorem 1 and Lemma 2 are all we need to prove our main result, Theorem 3.The main result 
ontains the te
hni
al 
ondition (3) on ψ. In the example followingthe proof of the main result, Example 1, we expli
itly 
onstru
t fun
tions satisfyingthis 
ondition.Theorem 3. Let n ∈ N, a > 1, and ψ ∈ L2(R). Suppose that ψ̂ is a real-valuedfun
tion with supp ψ̂ ⊂ [−ac,−ac−n] ∪ [ac−n, ac] for some c ∈ Z, and that(3) ∑

j∈Z

ψ̂(ajξ) = 1 for a.e. ξ ∈ R.Let b ∈ (
0, 2−1a−c

]. Then the fun
tion ψ and the fun
tion φ de�ned by
φ(x) = bψ(x) + 2b

n−1∑

j=1

a−jψ(a−jx) for x ∈ R,(4)generate dual frames {Dj
aTbkψ}j,k∈Z and {Dj

aTbkφ}j,k∈Z for L2(R).



PAIRS OF BANDLIMITED DUAL FRAMELETS 5Proof. By assumption the fun
tion ψ̂ is 
ompa
tly supported in R \ {0}; the sameholds for φ̂ sin
e, by the de�nition in (4) and the linearity of the Fourier transform,
φ̂(ξ) = bψ̂(ξ) + 2b

n−1∑

j=1

ψ̂(ajξ).An appli
ation of Lemma 2 shows that the fun
tions ψ and φ generate waveletBessel sequen
es.To 
on
lude that ψ and φ generate dual wavelet frames we will show that
onditions (1) and (2) in Theorem 1 hold. By aj-dilation periodi
ity of the sumin 
ondition (1) it is su�
ient to verify this 
ondition on the intervals [−a,−1]and [1, a]. On these two intervals, only �nitely many terms in the sum (3) arenonzero sin
e ψ̂ has 
ompa
t support; in parti
ular, only the terms j = c− n, c−

n+ 1, . . . , c− 1 
ontribute whi
h follows from the support of the dilations of ψ̂:
supp ψ̂(ac−n·) ⊂ [−an,−1] ∪ [1, an] ,

supp ψ̂(ac−n+1·) ⊂ [−an−1,−1/a] ∪ [1/a, an−1],and 
ontinuing to
supp ψ̂(ac−1·) ⊂ [−a,−a−n+1] ∪ [a−n+1, a].For |ξ| ∈ [1, a], by the assumption, we have

1 =

(∑

j∈Z

ψ̂(ajξ)

)2

=

( c−1∑

j=c−n

ψ̂(ajξ)

)2(5)
=

[
ψ̂(ac−nξ) + ψ̂(ac−n+1ξ) + · · · + ψ̂(ac−1ξ)

]2

= ψ̂(ac−nξ)
[
ψ̂(ac−nξ) + 2ψ̂(ac−n+1ξ) + · · · + 2ψ̂(ac−1ξ)

]

+ ψ̂(ac−n+1ξ)
[
ψ̂(ac−n+1ξ) + 2ψ̂(ac−n+2ξ) + · · · + 2ψ̂(ac−1ξ)

]

+ · · · + ψ̂(ac−1ξ)
[
ψ̂(ac−1ξ)

]

=
1

b

c−1∑

j=c−n

ψ̂(ajξ)φ̂(ajξ) =
1

b

∑

j∈Z

ψ̂(ajξ)φ̂(ajξ),hen
e ψ and φ satisfy 
ondition (1).To realize that ψ and φ satisfy equation (2) as well, we note supp ψ̂(· ± q) ⊂

B̄(∓q, ac) and supp φ̂ ⊂
[
−ac,−ac−2n+1

]
∪

[
ac−2n+1, ac

]
⊂ B̄(0, ac) where B̄(x, r) =

[x − r, x + r] denotes the 
losed ball with 
enter at x and radius r. The twofun
tions above will have disjoint support modulo null sets whenever |q| ≥ 2ac.Consequently, by 
hoosing the translation parameter b ≤ 2−1a−c, the two fun
-tions in 
ondition (2) will have disjoint support for all q ∈ b−1Z \ {0} sin
e
min

∣∣b−1Z \ {0}
∣∣ = 1/b ≥ 2ac, and the 
ondition will be trivially satis�ed. �



6 JAKOB LEMVIGWhenever n = 1 in Theorem 3 above, we have φ = bψ by equation (4), thus ψgenerates a tight frame with bound b. In this 
ase, i.e., n = 1, the 
hoi
es of ψ arevery limited sin
e fun
tions ψ satisfying the 
onditions in Theorem 3 with n = 1must be of the form ψ̂ = χacS, where S = [−1,−1/a]∪ [1/a, 1]. As a 
onsequen
e,interesting 
onstru
tions using Theorem 3 are restri
ted to n > 1. For n > 1, thedual frames generated by ψ and φ will be non-
anoni
al.The important thing to note about the de�nition of φ in (4) is that φ will inheritproperties from ψ that are preserved by linearity and dilation, e.g. φ̂ will have
ompa
t support be
ause ψ̂ has this property. This holds also for properties su
has smoothness, symmetry, fast de
ay, and vanishing moments up to some order.If ψ (or ψ̂) 
an be written in terms of elementary fun
tions, the same will hold for
φ (or φ̂). These observations naturally lead to a review of the properties generallypossessed by the dual generators we 
onstru
t. As mentioned above, all non-trivialappli
ations of Theorem 3 involve n > 1, n ∈ N. We will furthermore assume that
ψ̂ ∈ L2(R) is even, expli
itly given, and, when mentioned, a Cr-fun
tion for some
r ∈ N∪{0}. In this situation the resulting pair of dual generators has the followingproperties:

• Expli
it and similar form: ψ̂ and φ̂ are of similar form, e.g. pie
ewise polyno-mial of the same order (see Example 2) unlike the situation for the 
anoni
aldual (see Se
tion 3). A similar 
onstru
tion pro
edure for tight frames gives�less� expli
itly given generators (see Se
tion 3).
• Compa
t support in Fourier domain of both ψ and φ.
• Fast de
ay in time domain. For ψ̂ ∈ Cr0(R) the generator ψ will satisfy

lim|x|→∞ xrψ(x) = 0, that is, ψ(x) = o(x−r) as |x| → ∞. The dual genera-tor φ has the same properties.
• High order of vanishing moments. In general for ψ̂ ∈ Cr0(R) the generator
ψ will have vanishing moments up to order r ∈ N ∪ {0} sin
e

0 =
dmψ̂

dξm
(0) = (−2πi)m

∫

R
xmψ(x)dx for m = 0, . . . , r.And again, the same holds for the dual generator φ.

• Symmetry: ψ̂ and φ̂ are even and real fun
tions and so are ψ and φ.
• Frequen
y overlap between s
ales for in
reased stability and non-semior-thogonality: For all j, k ∈ Z there is a j′ 6= j and a k′ ∈ Z so that
〈Dj

aTbkψ,D
j′
a Tbk′ψ〉 6= 0. The same holds for the dual generator φ.

• Generalized multiresolution stru
ture [1℄ (see also Se
tion 2.3). The two gen-erators 
an be asso
iated with the same GMRAwith identi
al 
ore subspa
e,the Paley-Wiener spa
e Ľ2(K) with K = ∪j<0

(
aj supp ψ̂

)
⊂

[
−ac−1, ac−1

],hen
e both generators 
an be asso
iated with the same s
aling fun
tion.These types of dual wavelet frames are 
alled sibling frames in [7℄. Further-more, the GMRA provides arbitrarily large approximation order [10℄.To make Theorem 3 appli
able, we need to show how to 
onstru
t fun
tionsthat satisfy the te
hni
al 
ondition (3) in the theorem. It is important that this
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onstru
tion is expli
it be
ause one of the key features of the theorem is that thedual generator is expli
itly given in terms of dilations of ψ. In Example 1 we
onstru
t a dyadi
 partition of unity, that is, we 
onstru
t a fun
tion g ∈ L2(R)satisfying(6) ∑

j∈Z

g(2jx) = 1 for a.e. x ∈ R.This 
orresponds to 
ondition (3) for dyadi
 dilation a = 2; a generalization of the
onstru
tion to arbitrary real dilation parameter a > 1 is straightforward (repla
eevery o

urren
e of �2� with �a�). As we shall see a very general 
lass of fun
tionssatisfy the 
ondition (see also Example 3).Example 1. For any m ∈ Z, any δ > 0 smaller than or equal to 2m/3, and abounded fun
tion f on [2m − δ, 2m + δ] satisfying f(2m−δ) = 0 and f(2m+δ) = 1,we de�ne(7) h1(x) =






f(x) x ∈ B̄(2m, δ),

1 x ∈
(
2m + δ, 2m+1 − 2δ

)
,

1 − f(x/2) x ∈ B̄(2m+1, 2δ),

0 otherwise.Any su
h h1 ∈ L2(R) will be 
ontinuous if f is 
ontinuous, and it will satisfy:
∑

j∈Z

h1(2
jx) =

{
1 for x > 0,

0 for x ≤ 0.We use the same approa
h to 
onstru
t h2 ∈ L2(R) satisfying:
∑

j∈Z

h2(2
jx) =

{
0 for x ≥ 0,

1 for x < 0,and de�ne g = h1 + h2. This gives us the dyadi
 partition of unity almost every-where.The fun
tion f above 
ould be 
hosen as any polynomial satisfying f(2m−δ) = 0and f(2m + δ) = 1; this will make g 
ontinuous. If we also let the polynomial fsatisfy f ′(2m− δ) = f ′(2m + δ) = 0, then g ∈ C1(R). Continuing this way, we 
anmake g as smooth as desired while still keeping g pie
ewise polynomial.In the next example we apply the ideas from the above example to Theorem 3and 
onstru
t dual wavelet frames with dyadi
 dilation and translation parameter
b = 1; a
tually, any b ∈ (0, 1] 
an be used, but we take b = 1 for simpli
ity.



8 JAKOB LEMVIGExample 2. Let f be a 
ontinuous fun
tion on the interval [1/4, 1/2] satisfying
f(1/4) = 1 and f(1/2) = 0. For example f 
an be any of the fun
tions below:

f(x) = 2 − 4x,(8a)
f(x) = 8(24x2 − 8x+ 1)(2x − 1)2,(8b)
f(x) = −16(320x3 − 192x2 + 42x− 3)(2x − 1)3,(8
)
f(x) = 32(4480x4 − 3840x3 + 1280x2 − 192x + 11)(2x − 1)4,(8d)
f(x) = 1

2 + 1
2 cos π(4x− 1).(8e)In de�nitions (8b) and (8e) the fun
tion f satisfy f ′(1/4) = f ′(1/2) = 0, inde�nition (8
) this also holds for the se
ond derivative, and in (8d) even for thethird derivative. As in Example 1 de�ne ψ ∈ L2(R) by:(9) ψ̂(ξ) =






1 − f(2 |ξ|) for |ξ| ∈ [1/8, 1/4] ,

f(|ξ|) for |ξ| ∈ (1/4, 1/2] ,

0 otherwise.This way ψ̂ be
omes a dyadi
 partition of unity with supp ψ̂ ⊂ [−1/2,−1/8] ∪
[1/8, 1/2], so we 
an apply Theorem 3 with c = −1, n = 2, and b = 1. FollowingTheorem 3 we de�ne the dual generator φ ∈ L2(R) by:(10) φ̂(ξ) =






2[1 − f(4 |ξ|)] for |ξ| ∈ [1/16, 1/8] ,

1 + f(2 |ξ|) for |ξ| ∈ (1/8, 1/4] ,

f(|ξ|) for |ξ| ∈ (1/4, 1/2] ,

0 otherwise.whereby ψ and φ generate dual frames {Dj
2Tkψ}j,k∈Z and {Dj

2Tkφ}j,k∈Z for L2(R).The translation parameter in these wavelet systems is set to b = 1, and ea
hwavelet frame is generated by only one fun
tion.Suppose we let ψ̂ ∈ L2(R) be pie
ewise polynomial as de�ned by equations (8a)to (8d). Then ψ̂ ∈ Cr(R) with r = 0, 1, 2, 3, respe
tively. Further, the gen-erators ψ and φ will be real and even, and ψ̂ and φ̂ will be pie
ewise poly-nomial and have 
ompa
t support with supp ψ̂ ⊂ [−1/2,−1/8] ∪ [1/8, 1/2] and
supp φ̂ ⊂ [−1/2,−1/16]∪ [1/16, 1/2]. We have a greater number of vanishing mo-ments and faster de
ay than indi
ated by the review of properties above: ψ and φwill have r + 1 vanishing moments and de
ay as O(x−r−2) as |x| → ∞, e.g. using(8b) we have ψ̂, φ̂ ∈ C1(R), and ψ and φ with vanishing moments up to order 2,and ψ(x) = O(x−3) and φ(x) = O(x−3), see Figures 1 and 2. The expli
it formof ψ and hen
e φ are easily found; in general, they are �nite linear 
ombinationof sine and 
osine of the form sin(2παx)/(πx)n and cos(2παx)/(πx)n for integer
n ≥ 2 + r and α ∈ Q.We end the example with some notes on the numeri
al aspe
ts and the mul-tiresolution stru
ture. We 
laim that C1 = 1/2 and C2 = 1 are frame bounds
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0.1 0.2 0.3 0.4 0.5 0.6Figure 2. A pair of dual generators ψ̂ (solid line) and φ̂ (dashedline) in the Fourier domain with f as in (8b).for {Dj
2Tkψ}, that C1 = 7/2 and C2 = 5 are frame bounds for the dual frame

{Dj
2Tkφ}, and that this holds for any f from equations (8); even more, the framebounds hold for any f satisfying 0 ≤ f(x) ≤ 1 for x ∈ [1/4, 1/2]. To prove the
laim observe that

∑

k 6=0

∑

j∈Z

∣∣∣ψ̂(2jξ)ψ̂(2jξ + k)
∣∣∣ = 0, for ξ ∈ R,by the support of ψ̂. This redu
es the frame bound estimates in [5, Theorem11.2.3℄ to

C1 = inf
|ξ|∈[1/4,1/2]

∑

j∈Z

∣∣∣ψ̂(2jξ)
∣∣∣
2
, C2 = sup

|ξ|∈[1/4,1/2]

∑

j∈Z

∣∣∣ψ̂(2jξ)
∣∣∣
2
,



10 JAKOB LEMVIGwhere C1 and C2 are a lower and upper frame bound of {Dj
2Tkψ}, respe
tively.For |ξ| ∈ [1/4, 1/2] we have, by the de�nition (9),

∑

j∈Z

|ψ̂(2jξ)|2 = f(|ξ|)2 + (1 − f(|ξ|))2 = 1 − 2f(|ξ|) + 2f(|ξ|)2,and thus,
C1 = min

x∈[α,β]
1 − 2x+ 2x2 = 1/2, C2 = max

x∈[α,β]
1 − 2x+ 2x2,with α := min1/4≤x≤1/2 f(x) and β := max1/4≤x≤1/2 f(x). Sin
e 0 ≤ f(x) ≤ 1for x ∈ [1/4, 1/2], we have α = 0 and β = 1, hen
e C2 = 1, and this proves the
laim for {Dj

2Tkψ}; similar 
al
ulations will show the 
laim for the dual frame.In parti
ular, we see that the 
ondition number C2/C1 does not depend on thesmoothness of the generators, and that the 
ondition number of the dual frame
{Dj

2Tkφ} is smaller than the 
ondition number of {Dj
2Tkψ} and the 
onditionnumber of the 
anoni
al dual frame.The 
ore subspa
e of the GMRA is the Paley-Wiener spa
e V0 = Ľ2([−1/4, 1/4]).The fun
tion η ∈ L2(R) de�ned by η̂ = χ[−1/4,1/4] is a generator for V0, that is,

span{Tkη}k∈Z = V0, and {Tkη}k∈Z is a tight frame with frame bound 1 for V0.We note that this frame 
ontains twi
e as many elements as �ne
essary� in thesense that {T2kη}k∈Z and {T2k+1η}k∈Z are orthogonal bases for V0. Obviously,we 
an take the re�nable symbol H0 ∈ L2(T) to be the 1-periodi
 extension of
H0 = χ[−1/8,1/8] so that η̂(2ξ) = H0(ξ)η̂(ξ) for ξ ∈ R; note that the 
hoi
e of
H0 is not unique, and by letting H0 = χ[−3/8,1/4)∪[−1/8,1/8)∪[1/4,3/8) we obtain aquadrature mirror �lter sin
e H0(0) = 1 and |H0(ξ)|

2 + |H0(ξ + 1/2)|2 = 1. There�nable symbol H0 is sometimes 
alled a low pass �lter or mask. As waveletsymbol (high pass �lter) for the de
omposition Hd and re
onstru
tion Hr we 
antake Hd = ψ̂(2·) and Hr = φ̂(2·) extending them to 1-periodi
 fun
tions; thesesymbols obviously satisfy ψ̂(2ξ) = Hd(ξ)η̂(ξ) and φ̂(2ξ) = Hr(ξ)η̂(ξ).2.1. An alternative de�nition of the dual generator. The following resultresembles Theorem 3, but it gives an alternative way of de�ning φ; note the 
hangefrom ψ(a−jx) in (4) to ψ(ajx) in (11). The result follows from the symmetry ofthe 
al
ulations in (5).Proposition 4. Let n ∈ N and a > 1. Suppose ψ ∈ L2(R) is as in Theorem 3.Let b ∈ (
0, a−c(1 + an−1)−1

]. Then the fun
tion ψ and the fun
tion φ de�ned by
φ(x) = bψ(x) + 2b

n−1∑

j=1

ajψ(ajx) for x ∈ R(11)generate dual frames {Dj
aTbkψ}j,k∈Z and {Dj

aTbkφ}j,k∈Z for L2(R).Proof. The fun
tions ψ̂ and φ̂ satisfy 
ondition (1). This follows from 
al
ulationssimilar to those in (5): We start by fa
toring out ψ̂(ac−1ξ) instead of ψ̂(ac−nξ),then ψ(ac−2ξ) and 
ontinue in a similar way. To see that 
ondition (2) is satis�ed,
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[
−ac+n−1,−ac−n

]
∪

[
ac−n, ac+n−1

] sin
e supp φ̂(a−n+1·) ⊂[
−ac+n−1,−ac−1

]
∪

[
ac−1, ac+n−1

]. The two fun
tions in (2) will have disjointsupport modulo null sets whenever |q| ≥ ac + ac+n−1 = ac(1 + an−1). �The 
hoi
e of the translation parameter b is more restri
tive in Proposition 4than in Theorem 3 sin
e the support of φ̂ de�ned by (11) is larger than whende�ned by (4). Note that b ∈ (
0, a−c(1 + an−1)−1

] 
an be repla
ed by the simpler,but more restri
tive, b ∈ (0, a−c−n] in the 
ase a ≥ 2.2.2. Expanding the range of the translation parameter. The 
onstru
tionof dual wavelet frames from Theorem 3 often imposes the translation parameter
b to be small, e.g. b < 1. Hen
e, it would be interesting to know in whi
h 
aseswe 
an take b = 1. For the sake of simpli
ity let a = 2 for a moment, and assumethat ψ satis�es the assumptions of Theorem 3. Obviously, we 
an take b = 1 ifthe support of ψ̂ is 
ontained in [−1/2, 1/2], that is, if c ≤ −1; this is exa
tlywhat we used in Example 2. If c ≥ 0, we need, in order to a
hieve b = 1, toapply Theorem 3 to ψ̂(2c+1·) in pla
e of ψ̂. This dilated version of ψ will still be adyadi
 partition of unity and supp ψ̂(2c+1·) ⊂ [−1/2, 1/2]. Moreover, we have thefollowing result.Corollary 5. Let n ∈ N and a > 1. Suppose ψ ∈ L2(R) is as in Theorem 3. Let
b ∈

(
0, 2−1a−c

]. Then the fun
tion ψ̃ := Dbψ and the fun
tion φ̃ := Dbφ, where
φ is de�ned as in (4), generate dual frames {Dj

aTkψ̃}j,k∈Z and {Dj
aTkφ̃}j,k∈Z for

L2(R).Proof. The result basi
ally follows from an appli
ation of the identity(12) DbTbk = TkDb,and the fa
t that dilation preserves the frame property and the duality of (wavelet)frames sin
e it is a unitary operator on L2(R). By assumption {Dj
aTbkψ} and

{Dj
aTbkφ} are dual frames for b ∈ (

0, 2−1a−c
]. The identity (12) yields,

DbD
j
aTbkψ = Dj

aTk(Dbψ),hen
e {Dj
aTkψ̃} is a frame as a unitary image of a wavelet frame where ψ̃ = Dbψ.The same 
on
lusion holds for {Dj

aTkφ̃}. For all f ∈ L2(R), we have
f = Db(D

∗
bf) =

∑

j,k∈Z

〈
f,DbD

j
aTbkφ

〉
DbD

j
aTbkψ =

∑

j,k∈Z

〈
f,Dj

aTkφ̃
〉
Dj
aTkψ̃,and 
on
lude that duality is preserved. �Another approa
h (for obtaining b = 1) makes use of multigenerated waveletsystems. In the following result the 
onstru
ted dual wavelet frames are generatedby m fun
tions again sharing the properties of the starting point fun
tion ψ; inparti
ular, if ψ has vanishing moments up to some order, then so will every fun
tionin the generator sets Ψ and Φ.



12 JAKOB LEMVIGCorollary 6. Let n ∈ N and a > 1. Suppose ψ ∈ L2(R) is as in Theorem 3. Let
m ∈ N and b ∈ (

0, 2−1a−cm
]. Then the fun
tions Ψ = {ψ, Tb/mψ, . . . , T(m−1)b/mψ}and the fun
tions Φ = {φ, Tb/mφ, . . . , T(m−1)b/mφ}, where φ is de�ned as in (4),generate dual frames {Dj

aTbkψ}j,k∈Z,ψ∈Ψ and {Dj
aTbkφ}j,k∈Z,φ∈Φ for L2(R).Proof. Let m ∈ N. For b so that 0 < b/m ≤ 2−1a−c, the fun
tions ψ and φ, where

φ is de�ned as in (4), generate dual frames {Dj
aTbk/mψ}j,k∈Z and {Dj

aTbk/mφ}j,k∈Zfor L2(R). Note that (m−1Z) / Z = {0, 1, . . . ,m− 1}, and de�ne:
Ψ =

{
ψ, Tb/mψ, T2b/mψ, . . . , T(m−1)b/mψ

}
.It follows immediately that {Dj

aTb/mkψ}j,k∈Z = {Dj
aTbkψ}j,k∈Z,ψ∈Ψ. Similarly, wehave for φ that {Dj

aTb/mkφ}j,k∈Z = {Dj
aTbkφ}j,k∈Z,φ∈Φ, where

Φ :=
{
φ, Tb/mφ, T2b/mφ, . . . , T(m−1)b/mφ

}
.We 
on
lude {Dj

aTbkψ}j,k∈Z,ψ∈Ψ and {Dj
aTbkφ}j,k∈Z,φ∈Φ are dual frames for L2(R)for b/m ≤ 2−1a−c, that is, for b ≤ 2−1a−cm. �It follows from the 
orollary that, in the dyadi
 
ase, we 
an always obtain b = 1by using 2c+1 generators.2.3. On the generalized multiresolution stru
ture. We end this se
tion witha 
loser study of the GMRA stru
ture of ψ and φ. To this end, let ψ ∈ L2(R)satisfy the assumptions in Theorem 3. We 
onsider the subspa
es W b

j (ψ) :=

span
{
Dj
aTbkψ : k ∈ Z

}. Let ψ̃ = Dbψ be the generator of frame {Dj
aTkψ̃}, seeCorollary 5. From the identity Tbk = D−1

b TkDb we have W b
0 (ψ) = D−1

b W 1
0 (ψ̃)where W 1

j (ψ̃) = span
{
Dj
aTkψ̃ : k ∈ Z

}. By [10, Theorem 2.14℄,
W 1

0 (ψ̃) =

{
f ∈ L2(R) : f̂ = m

ˆ̃
ψ for some measurable, 1-periodi
 m}and further, using supp ˆ̃ψ ⊂ [−1/2, 1/2],

W 1
0 (ψ̃) =

{
f ∈ L2(R) : supp f̂ ⊂ supp ˆ̃ψ

}
= Ľ2(supp ˆ̃ψ),hen
eW b

0 (ψ) = Ľ2(supp ψ̂) by the above, and by dilation, W b
j (ψ) = Ľ2(aj supp ψ̂).We 
on
lude that the spa
e of negative dilates, also 
alled the 
ore subspa
e,asso
iated with ψ is given by

V0(ψ) = span

( ⋃

j<0

W b
j (ψ)

)
= Ľ2(K), K =

⋃

j<0

(
aj supp ψ̂

)
⊂

[
−ac−1, ac−1

]
,whi
h is a subspa
e invariant under all translations. It is straightforward to see

V0(ψ) = V0(φ); we will denote this spa
e by V0. A fun
tion η ∈ L2(R) is saidto generate V0 if span {Tbkη}k∈Z = V0, and we have that η generates V0 if, andonly if, supp η̂ = K (see [10℄). If we further require {Tbkη}k∈Z to be a frame for
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V0, then η̂ 
annot be 
ontinuous hen
e η will be poorly lo
alized in time. Thisdrawba
k follows from a result in [2℄; indeed, the sum ∑

k∈Z |η̂((ξ + k)/b)|2 redu
esto |η̂(ξ/b)|2 for ξ ∈ [−1/2, 1/2] sin
e b ≤ 2−1a−c implies bac−1 ≤ 1/(2a) ≤ 1/2− εfor some ε > 0 hen
e supp η̂(·/b) = bK ⊂ [−bac−1, bac−1] ⊂ [−1/2 + ε, 1/2 − ε].Now, the 
on
lusion follows from [2, Theorem 3.4℄. We note that the 
onstru
tedwavelet frame will not ne
essarily be a frame for a �xed dilation level subspa
e
Wj(ψ) of L2(R). This situation is similar to that of the unitary and obliqueextension prin
iples, but in 
ontrast to frame multiresolution analysis.3. Dual frames versus tight framesIn Theorem 3 we expli
itly 
onstru
t the dual frame. One might ask why we donot use the 
anoni
al dual frame, or why we do not use the 
hara
terizing equationsfor tight frames to formulate a similar 
onstru
tion pro
edure of tight frames.In the following we will show that these approa
hes have some disadvantages
ompared to Theorem 3.For a wavelet frame {Dj

aTbkψ}j,k∈Z, the 
anoni
al dual frame is given by
{
S−1Dj

aTbkψ : j, k ∈ Z
}

=
{
Dj
aS

−1Tbkψ : j, k ∈ Z
}
,where S is frame operator of {Dj

aTbkψ}j,k∈Z. In general the 
anoni
al dual need nothave the stru
ture of a wavelet system, and this is one reason to avoid workingwith 
anoni
al dual frames. However, as we show below, the 
anoni
al dual ofall wavelet frames 
onsidered in this paper will be of wavelet stru
ture, hen
ethe 
anoni
al dual 
ould be used in the synthesis pro
ess in the frame wavelettransform. The problem with this approa
h is that it is di�
ult to 
ontrol whi
hproperties the 
anoni
al dual frame inherits from the frame sin
e the appli
ationof the inverse frame operator 
an destroy desirable properties. We give an exampleof this issue in the following.Let ψ ∈ L2(R) be as in the assumptions of Theorem 3. Then ψ̂(ξ)ψ̂(ξ + b−1k) =
0 for k ∈ Z \ {0}, and 
onsequently, by [11, Proposition 7.1.19℄ in the dyadi
 
aseand a simple generalization of parts of the proof of the proposition in the general
ase, the asso
iated frame operator is the Fourier multiplier given by(13) Ŝf(ξ) =

(∑

j∈Z

∣∣∣ψ̂(ajξ)
∣∣∣
2
)
f̂(ξ) for a.e. ξ ∈ R,for all f ∈ L2(R) with C1 ≤

∑
j∈Z|ψ̂(ajξ)|2 ≤ C2 and C1, C2 as frame bounds for

{Dj
aTbkψ}. Sin
e S is a Fourier multiplier, it 
ommutes with all translations, thatis, STr = TrS for all r ∈ R, and the same holds for the inverse frame operator,hen
e the 
anoni
al dual takes the form

{
Dj
aTbk(S

−1ψ) : j, k ∈ Z
}
,
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h is a wavelet frame generated by S−1ψ. Moreover, the 
anoni
al dual gener-ator is given by(14) Ŝ−1ψ(ξ) =
ψ̂(ξ)

∑
j∈Z

∣∣ψ̂(ajξ)
∣∣2

for a.e. ξ ∈ R,Sin
e supp ψ̂ ⊂ [−ac,−ac−n] ∪ [ac−n, ac] for some c ∈ Z and n ∈ N , we 
on
lude,by equation (14), supp Ŝ−1ψ = supp ψ̂ and(15) Ŝ−1ψ(ξ) =
ψ̂(ξ)

∑
|j|<n

(
ψ̂(ajξ)

)2 for a.e. ξ ∈ R.This implies, among other things, that ψ̂ and Ŝ−1ψ will have the same regularity.But it also implies that 
hoosing ψ̂ to be pie
ewise linear will not make the 
anon-i
al dual generator S−1ψ pie
ewise linear (in the Fourier domain, that is) owing tothe denominator in (15). This is unlike the situation in Example 2 where a pie
e-wise polynomial ψ̂ by Theorem 3 gave a dual generator φ̂ pie
ewise polynomial ofthe same order, e.g. a pie
ewise linear ψ̂ gave a pie
ewise linear φ̂. In general thedenominator in (15) makes the expression for the 
anoni
al dual generator �less�expli
it. The pri
e we pay for using the non-
anoni
al dual is a slightly largersupport (in the Fourier domain) of the dual generator.Sin
e the 
onstru
tion of wavelet frames by Theorem 3 is based on 
hara
terizingequations for dual wavelet frames, it would be natural to look for a similar way of
onstru
ting tight frames from their 
hara
terizing equations. In a naive approa
hto su
h a 
onstru
tion one would need to 
hoose ψ ∈ L2(R) so that ψ̂ is realand the family ξ 7→ (ψ̂(ajξ))2, j ∈ Z, form a partition of unity and to 
hoose asu�
iently small translation parameter (so that all terms in the series in the so-
alled �tq-equations� be
ome zero owing to disjoint support). Following the ideasfrom Example 1 we take ψ ∈ L2(R) as (extending ψ̂ to an even fun
tion):
ψ̂(ξ) =






f(ξ) ξ ∈ B̄(am, δ),

1 ξ ∈
(
am + δ, am+1 − aδ

)
,√

1 − (f(ξ/a))2 ξ ∈ B̄(am+1, aδ),

0 ξ ∈ [0,∞) \
[
am − δ, am+1 + aδ

]
.for any m ∈ Z, any δ > 0 smaller than or equal to am/3, and a bounded fun
tion

f on [am − δ, am + δ] satisfying f(am − δ) = 0, f(am + δ) = 1, and |f | ≤ 1. Theimportant thing to note with this approa
h is that ψ̂ does not inherit propertiesfrom f in opposition to the situation in Example 1, e.g. taking f to be linear doesnot make ψ̂ pie
ewise linear be
ause of the square root in the expression above;moreover, it is well known that the property of being a smooth (non-negative)fun
tion need not be preserved when taking square roots.
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ation of Theorem 3In Examples 1 and 2 we 
onstru
ted dual wavelet frames in a rather expli
it way.The following 
onstru
tion is less expli
it. In the �rst part of the example belowwe 
onstru
t a C∞ fun
tion on R with 
ompa
t support satisfying the te
hni
al
ondition (6), and in the se
ond part we apply Theorem 3 to the 
onstru
tedfun
tion.Example 3 (Part I). Let f ∈ C∞(R) be de�ned as
f(x) =

{
e−1/x x > 0,

0 x ≤ 0,and 
hoose positive 
onstants R > r > 0 so that(16) ∃δ > 0 :
⋃

j∈Z

2j [r + δ,R − δ] = [0,∞) ,holds, e.g. take r = 1/8 and R = 1/2. We de�ne f1(x) = f(x − r)f(R − x) for
x ∈ R, hen
e supp f1 ⊂ [r,R] and f1 ∈ C∞

0 (R), and we introdu
e a symmetri
version of f1, denoted f2, in order to get a dyadi
 partition of unity of the negativeas well as the positive real line.(17) f2(x) =

{
f1(x) for x > 0,

f1(−x) for x ≤ 0.The fun
tion w will be used to normalize f2:
w(x) =

∑

j∈Z

f2(2
jx).For a �xed x ∈ R this sum only has �nitely many nonzero terms. Obviously, wis a 2j-dyadi
 periodi
 fun
tion and, by (16) and the de�nition of f1, it is alsobounded away from 0 and ∞:

∃c, C > 0 : c < w(x) < C for all x ∈ R \ {0},hen
e we 
an de�ne a fun
tion g ∈ C∞
0 (R) by(18) g(x) =

f2(x)

w(x)
for x ∈ R \ {0}, and, g(0) = 0.This g will be a dyadi
 partition of unity; the 
al
ulations are straightforward:

∑

j∈Z

g(2jx) =
∑

j∈Z

f2(2
jx)

w(2jx)
=

∑

j∈Z

f2(2
jx)

w(x)
=

∑
j∈Z f2(2

jx)
∑
k∈Z f2(2kx)

= 1.The 
onstru
tion of g looks indeed less expli
it than the pie
ewise polynomialpartition of unity in Example 1 primarily be
ause g is normalized by an in�niteseries w. This situation improves by noti
ing that, in pra
ti
e, the series w redu
eto a �nite sum sin
e supp g = supp f2 ⊂ [−R,−r] ∪ [r,R]. For example, if we let
r = 1/8 and R = 1/2, we 
an do with three terms g(x) = f2(x)/

∑1
j=−1 f2(2

jx)for all x ∈ R \ {0}.



16 JAKOB LEMVIGRemark 1. 1. Note that the mirroring step (17) introdu
ing f2 also makes
g symmetri
. But it is obvious from the example that we 
an 
arry outthe 
onstru
tion for the positive part of the real line only to get a dyadi
partition of the unity on the positive real line, and, then, by the sameapproa
h (but with di�erent 
hoi
es of r and R), for the negative real line.This way g will not be symmetri
.2. In pla
e of f one 
ould 
hoose any fun
tion in C∞

0 (R) having the samesupport as f . In pla
e of f1 one 
ould take any 
hara
teristi
 fun
tion
f1 = χ[2n,2n+1] for some n ∈ N 
onvolved with a smooth hδ ∈ C∞

0 (R)for a su�
iently small δ > 0, where hδ(x) = δ−1h(δ−1x), and supph ⊂
[−1, 1], h ≥ 0, ∫

hdµ = 1, and h ∈ C∞
0 (R). Then supphδ ⊂ [−δ, δ] and

supphδ ∗ f1 ⊂
[
2n − δ, 2n+1 + δ

].Example 3 (Part II). We take r = 1/8 and R = 1/2 in Example 3 and set
ψ̂ = f2/

∑1
j=−1 f2(2

j ·) where f2 is given by (17), hen
e
ψ̂(ξ) =






e(1/8−ξ)−1
e(ξ−1/2)−1

e(1/8−ξ)−1
e(ξ−1/2)−1

+e(1/8−2ξ)−1
e(2ξ−1/2)−1 ξ ∈ (1/8, 1/4) ,

1 ξ = 1/4,

e(1/8−ξ)−1
e(ξ−1/2)−1

e(1/8−ξ/2)−1
e(ξ/2−1/2)−1

+e(1/8−ξ)−1
e(ξ−1/2)−1 ξ ∈ (1/4, 1/2) ,

0 ξ ∈ R+ \ (1/8, 1/2) ,and symmetri
ally for the negative real line. Applying this to Theorem 3 with
n = 2, c = −1, and b = 1 yields a pair of dual wavelet generators with ψ̂, φ̂ ∈
C∞(R), where φ̂ is de�ned as in (4), and supp ψ̂ ⊂ [−1/2,−1/8] ∪ [1/8, 1/2] and
supp φ̂ ⊂ [−1/2,−1/16]∪[1/16, 1/2]. The generators are smooth, rapidly de
aying,symmetri
 dual framelets with vanishing moments of in�nite order. It is 
lear thatboth belong to the S
hwartz spa
e, but it is also 
lear, from the equation above,that ψ and φ are not expli
itly given in the time domain.5. The Hardy spa
eA similar 
onstru
tion pro
edure for dual wavelet frames holds for the Hardyspa
e H2(R) = {f ∈ L2(R) : supp f̂ ⊂ [0,∞)}. The result in Corollary 1 
aneasily be transformed from L2(R) settings to the Hardy spa
e H2(R). Indeed, weonly need to repla
e the right hand side b in equation (1) by bχ[0,∞)(ξ). In [4,Theorem 1.3℄ su
h a transformation is 
arried out for a similar result on tightwavelet frames [8, Theorem 1℄. The analogue version of Theorem 3 for the Hardyspa
e is as follows. Let n ∈ N and a > 1. Suppose for ψ ∈ H2(R) that ψ̂ is areal-valued fun
tion with supp ψ̂ ⊂ [ac−n, ac] for some c ∈ Z and that

∑

j∈Z

ψ̂(ajξ) = χ[0,∞)(ξ) for a.e. ξ ∈ R.Let b ∈ (0, a−c]; a
tually, we 
ould even let b ∈
(
0, a−c(1 − a−2n+1)−1

]. Then ψand φ de�ned by (4) generate dual frames for H2(R). We note that, in the Hardy
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e, the 
hoi
e of translation parameter be
omes less restri
tive than for L2(R).This owes to the fa
t that ψ̂ and φ̂ have smaller support sin
e they are zero onthe negative real line. A
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