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CONSTRUCTINGPAIRS OF DUAL BANDLIMITED FRAMELETSWITH DESIRED TIME LOCALIZATIONJAKOB LEMVIGAbstrat. For su�iently small translation parameters, we prove that anybandlimited funtion ψ, for whih the dilations of its Fourier transform form apartition of unity, generates a wavelet frame with a dual frame also having thewavelet struture. This dual frame is generated by a �nite linear ombinationof dilations of ψ with expliitly given oe�ients. The result allows a simpleonstrution proedure for pairs of dual wavelet frames whose generators haveompat support in the Fourier domain and desired time loalization. Theonstrution is based on haraterizing equations for dual wavelet frames andrelies on a tehnial ondition. We exhibit a general lass of funtion satisfy-ing this ondition; in partiular, we onstrut pieewise polynomial funtionssatisfying the ondition. 1. IntrodutionLet ψ ∈ L2(R) be a funtion suh that ψ̂ is ompatly supported and thefuntions ξ 7→ ψ̂(ajξ), j ∈ Z, form a partition of unity for some a > 1. Weprove that for su�iently small translation parameter b the funtion ψ generatesa wavelet frame {aj/2ψ(ajx− bk) : j, k ∈ Z} with a dual wavelet frame generatedby a �nite linear ombination of dilations of ψ. The result allows a onstrutionproedure for pairs of dual wavelet frames generated by bandlimited funtions withfast deay in the time domain where both generators are expliitly given.The prinipal idea used in the proof of Theorem 3 omes from Christensen'sonstrution of dual Gabor frames in [6℄. Our onstrution is similar, but ittakes plae in the Fourier domain. The proof of Theorem 3 and the onstrutionproedure provided by this theorem are based on the well-known haraterizingequations for dual wavelet frames by Chui and Shi [8℄.Our aim is to provide a onstrution of a pair of dual frame generators ψ and φfor whih the funtions ψ and φ are expliitly given in the sense that the funtionsor their Fourier transform are given as �nite linear ombinations of elementaryfuntions. To be preise, the onstrution uses ψ as a starting point and de�nesthe dual generator φ as a �nite linear ombination of dilations of ψ with expliitlyDate: April 24, 2008.2000 Mathematis Subjet Classi�ation. 42C40.Key words and phrases. dual frames, framelets, non-tight frames, partition of unity, bandlim-ited wavelets. 1



2 JAKOB LEMVIGgiven oe�ients. This gives us ontrol of the properties of both generators asopposed to using anonial duals.The onstrution of redundant wavelet representations is often restrited to tightframes in order to avoid the umbersome inversion of the frame operator. However,in this paper we onsider general non-tight, non-anonial, non-dyadi dual waveletframes. The onstrution of wavelet frames is usually based on the (mixed) unitaryor oblique extension priniple [7, 9, 12, 13℄. These priniples lead to dual or tightframe wavelets with many desirable features: ompat support, high order ofvanishing moments, high smoothness, and symmetry/antisymmetry; in partiular,expliitly given spline generators are onstruted from B-spline multiresolutionanalysis in [7,9℄. In these and similar onstrutions one annot do with fewer thantwo generators (see [7, Theorem 9℄ and [9, Theorem 3.8℄ inluding the sueedingremark); in addition, higher smoothness leads to more generators or larger supportof the generators. Our onstrution leads to frame wavelet with similar properties,the most notable di�erene is that the generators have ompat support in theFourier domain, not in the time domain.Wavelet frames onstruted by the unitary extension priniple from a B-splinemultiresolution analysis will always have one generator with only one vanishingmoment yielding a wavelet system with approximation order of at most 2; thisproblem is irumvented in the oblique extension priniple. When multiple gen-erators are needed in our onstrution, all of these will share the same properties.In Examples 2 and 3 the onstruted wavelet frames are generated by only onefuntion, and in these ases the smoothness of the generator does not a�et thesize of the support (that is, in the Fourier domain).Our onstrution is expliit, and it works for arbitrary real dilations, but asa drawbak the wavelet frame generators will not have ompat support in thetime domain leading to in�nite impulse response �lters. In the dyadi ase ane�ient algorithm an be implemented by using the fast Fourier transform, see forexample the frational spline wavelet software for Matlab by Unser and Blu [3℄.The idea is to perform the alulation in the Fourier domain using multipliationand periodization in plae of onvolution and down-sampling. For this to work,we need the frequeny response of the �lter oe�ients (sometimes simply alled�lters or masks and often denoted by τi, mi, or Hi), but we get this almostdiretly from our onstrution; the frequeny response of both high pass �lters(deomposition and reonstrution) an be obtained from dilations of ψ̂. Notethat this relies ruially on the fat that the dual generator φ is de�ned as a �nitelinear ombination of dilations of ψ with expliitly given oe�ients.The paper is organized as follows. In Setion 2 we prove the main result of thisartile, Theorem 3. The theorem ontains a tehnial ondition on partition ofunity, and we address this problem in Example 1 where we expliitly onstrutfuntions that satisfy the ondition. A note on the terminology: the funtionsin the �partition of unity� are not assumed to be non-negative, but an take anyreal value. In Example 2 we give an example of a pair of smooth, fast deaying,



PAIRS OF BANDLIMITED DUAL FRAMELETS 3symmetri generators with the translation parameter being 1. The onstrution ofdual wavelet frames using Theorem 3 often imposes the translation parameter to besmall, e.g. smaller than 1. Consequently, we want methods to expand the rangeof the translation parameter, and this is the topi of Setion 2.2. In Setion 3we show that the representation of funtions provided by Theorem 3 with theexpliitly given dual frame is advantageous over similar representations using tightframes or anonial dual frames. In Setion 4 we present another appliation ofTheorem 3 with generators in the Shwartz spae. However, the onstrution inthis example is less expliit than in the �rst example. We end this paper with someremarks on onstrutions of pairs of dual wavelet frames for the Hardy spae.We end this introdution by reviewing some basi de�nitions and with an ob-servation on the anonial dual frame. A frame for a separable Hilbert spae H isa olletion of vetors {fj}j∈J with a ountable index set J if there are onstants
0 < C1 ≤ C2 <∞ suh that

C1 ‖f‖
2 ≤

∑

j∈J

∣∣〈f, fj〉
∣∣2 ≤ C2 ‖f‖

2 for all f ∈ H.If the upper bound holds in the above inequality, then {fj} is said to be a Besselsequene with Bessel onstant C2. For a Bessel sequene {fj} we de�ne the frameoperator by
S : H → H, Sf =

∑

j∈J

〈f, fj〉fj.This operator is bounded, invertible, and positive. A frame {fj} is said to be tightif we an hoose C1 = C2; this is equivalent to S = C1 I where I is the identityoperator. Two Bessel sequenes {fj} and {gj} are said to be dual frames if
f =

∑

j∈J

〈f, gj〉fj ∀f ∈ H.It an be shown that two suh Bessel sequenes are indeed frames. Given a frame
{fj}, at least one dual always exists; it is alled the anonial dual and is givenby {S−1fj}. Only redundant frames have several duals.For f ∈ L2(R), we de�ne the dilation operator by Daf(x) = a1/2f(ax) and thetranslation operator by Tbf(x) = f(x − b) where 1 < a < ∞ and b ∈ R. We saythat {Dj

aTbkψ}j,k∈Z is the wavelet system generated by ψ where a > 1 and b > 0.In the following we use the index set (j, k) ∈ Z ×Z whenever a sequene is statedwithout index set. If {Dj
aTbkψ} is a frame for L2(R), the generator ψ is termeda framelet or frame wavelet. For f ∈ L1(R) the Fourier transform is de�ned by

f̂(ξ) =
∫
R f(x)e−2πiξxdx with the usual extension to L2(R). Given a measurableset K ⊂ R we de�ne the Paley-Wiener spae Ľ2(K), whih is invariant under alltranslations, by Ľ2(K) = {f ∈ L2(R) : supp f̂ ⊂ K}.



4 JAKOB LEMVIG2. Constrution of dual wavelet framesOur main result, Theorem 3, is obtained from the following result by Chui andShi [8℄. The result is stated in the last two lines of Setion 4 on page 263 in theirartile.Theorem 1. Let a > 1, b > 0, and ψ, ψ̃ ∈ L2(R). Suppose the two waveletsystems {Dj
aTbkψ}j,k∈Z and {Dj

aTbkψ̃}j,k∈Z form Bessel families. Then {Dj
aTbkψ}and {Dj

aTbkψ̃} will be dual frames if the following onditions hold
∑

j∈Z

ψ̂(ajξ)
ˆ̃
ψ(ajξ) = b a.e. ξ ∈ R,(1)

ˆ̃
ψ(ξ)ψ̂(ξ + q) = 0 a.e. ξ ∈ R for 0 6= q ∈ b−1Z.(2)The onditions (1) and (2) are also neessary when a > 1 is suh that aj isirrational for all positive integers j, see [8, p. 263℄. For this reason the aboveonditions are often refereed to as haraterizing equations for suh irrationaldilations. The result in Theorem 1 follows from the general result of haraterizingequations for dual wavelet frames [8, Theorem 2℄.The next result, Lemma 2, gives a su�ient ondition for a wavelet system tobe a Bessel sequene. Its proof an be found in [5, Theorem 11.2.3℄.Lemma 2. Let a > 1, b > 0, and f ∈ L2(R). Suppose that

C2 =
1

b
sup

|ξ|∈[1,a]

∑

j,k∈Z

∣∣∣f̂(ajξ)f̂(ajξ + k/b)
∣∣∣ <∞.Then the a�ne system {Dj

aTbkf} is a Bessel sequene with bound C2.Theorem 1 and Lemma 2 are all we need to prove our main result, Theorem 3.The main result ontains the tehnial ondition (3) on ψ. In the example followingthe proof of the main result, Example 1, we expliitly onstrut funtions satisfyingthis ondition.Theorem 3. Let n ∈ N, a > 1, and ψ ∈ L2(R). Suppose that ψ̂ is a real-valuedfuntion with supp ψ̂ ⊂ [−ac,−ac−n] ∪ [ac−n, ac] for some c ∈ Z, and that(3) ∑

j∈Z

ψ̂(ajξ) = 1 for a.e. ξ ∈ R.Let b ∈ (
0, 2−1a−c

]. Then the funtion ψ and the funtion φ de�ned by
φ(x) = bψ(x) + 2b

n−1∑

j=1

a−jψ(a−jx) for x ∈ R,(4)generate dual frames {Dj
aTbkψ}j,k∈Z and {Dj

aTbkφ}j,k∈Z for L2(R).



PAIRS OF BANDLIMITED DUAL FRAMELETS 5Proof. By assumption the funtion ψ̂ is ompatly supported in R \ {0}; the sameholds for φ̂ sine, by the de�nition in (4) and the linearity of the Fourier transform,
φ̂(ξ) = bψ̂(ξ) + 2b

n−1∑

j=1

ψ̂(ajξ).An appliation of Lemma 2 shows that the funtions ψ and φ generate waveletBessel sequenes.To onlude that ψ and φ generate dual wavelet frames we will show thatonditions (1) and (2) in Theorem 1 hold. By aj-dilation periodiity of the sumin ondition (1) it is su�ient to verify this ondition on the intervals [−a,−1]and [1, a]. On these two intervals, only �nitely many terms in the sum (3) arenonzero sine ψ̂ has ompat support; in partiular, only the terms j = c− n, c−

n+ 1, . . . , c− 1 ontribute whih follows from the support of the dilations of ψ̂:
supp ψ̂(ac−n·) ⊂ [−an,−1] ∪ [1, an] ,

supp ψ̂(ac−n+1·) ⊂ [−an−1,−1/a] ∪ [1/a, an−1],and ontinuing to
supp ψ̂(ac−1·) ⊂ [−a,−a−n+1] ∪ [a−n+1, a].For |ξ| ∈ [1, a], by the assumption, we have

1 =

(∑

j∈Z

ψ̂(ajξ)

)2

=

( c−1∑

j=c−n

ψ̂(ajξ)

)2(5)
=

[
ψ̂(ac−nξ) + ψ̂(ac−n+1ξ) + · · · + ψ̂(ac−1ξ)

]2

= ψ̂(ac−nξ)
[
ψ̂(ac−nξ) + 2ψ̂(ac−n+1ξ) + · · · + 2ψ̂(ac−1ξ)

]

+ ψ̂(ac−n+1ξ)
[
ψ̂(ac−n+1ξ) + 2ψ̂(ac−n+2ξ) + · · · + 2ψ̂(ac−1ξ)

]

+ · · · + ψ̂(ac−1ξ)
[
ψ̂(ac−1ξ)

]

=
1

b

c−1∑

j=c−n

ψ̂(ajξ)φ̂(ajξ) =
1

b

∑

j∈Z

ψ̂(ajξ)φ̂(ajξ),hene ψ and φ satisfy ondition (1).To realize that ψ and φ satisfy equation (2) as well, we note supp ψ̂(· ± q) ⊂

B̄(∓q, ac) and supp φ̂ ⊂
[
−ac,−ac−2n+1

]
∪

[
ac−2n+1, ac

]
⊂ B̄(0, ac) where B̄(x, r) =

[x − r, x + r] denotes the losed ball with enter at x and radius r. The twofuntions above will have disjoint support modulo null sets whenever |q| ≥ 2ac.Consequently, by hoosing the translation parameter b ≤ 2−1a−c, the two fun-tions in ondition (2) will have disjoint support for all q ∈ b−1Z \ {0} sine
min

∣∣b−1Z \ {0}
∣∣ = 1/b ≥ 2ac, and the ondition will be trivially satis�ed. �



6 JAKOB LEMVIGWhenever n = 1 in Theorem 3 above, we have φ = bψ by equation (4), thus ψgenerates a tight frame with bound b. In this ase, i.e., n = 1, the hoies of ψ arevery limited sine funtions ψ satisfying the onditions in Theorem 3 with n = 1must be of the form ψ̂ = χacS, where S = [−1,−1/a]∪ [1/a, 1]. As a onsequene,interesting onstrutions using Theorem 3 are restrited to n > 1. For n > 1, thedual frames generated by ψ and φ will be non-anonial.The important thing to note about the de�nition of φ in (4) is that φ will inheritproperties from ψ that are preserved by linearity and dilation, e.g. φ̂ will haveompat support beause ψ̂ has this property. This holds also for properties suhas smoothness, symmetry, fast deay, and vanishing moments up to some order.If ψ (or ψ̂) an be written in terms of elementary funtions, the same will hold for
φ (or φ̂). These observations naturally lead to a review of the properties generallypossessed by the dual generators we onstrut. As mentioned above, all non-trivialappliations of Theorem 3 involve n > 1, n ∈ N. We will furthermore assume that
ψ̂ ∈ L2(R) is even, expliitly given, and, when mentioned, a Cr-funtion for some
r ∈ N∪{0}. In this situation the resulting pair of dual generators has the followingproperties:

• Expliit and similar form: ψ̂ and φ̂ are of similar form, e.g. pieewise polyno-mial of the same order (see Example 2) unlike the situation for the anonialdual (see Setion 3). A similar onstrution proedure for tight frames gives�less� expliitly given generators (see Setion 3).
• Compat support in Fourier domain of both ψ and φ.
• Fast deay in time domain. For ψ̂ ∈ Cr0(R) the generator ψ will satisfy

lim|x|→∞ xrψ(x) = 0, that is, ψ(x) = o(x−r) as |x| → ∞. The dual genera-tor φ has the same properties.
• High order of vanishing moments. In general for ψ̂ ∈ Cr0(R) the generator
ψ will have vanishing moments up to order r ∈ N ∪ {0} sine

0 =
dmψ̂

dξm
(0) = (−2πi)m

∫

R
xmψ(x)dx for m = 0, . . . , r.And again, the same holds for the dual generator φ.

• Symmetry: ψ̂ and φ̂ are even and real funtions and so are ψ and φ.
• Frequeny overlap between sales for inreased stability and non-semior-thogonality: For all j, k ∈ Z there is a j′ 6= j and a k′ ∈ Z so that
〈Dj

aTbkψ,D
j′
a Tbk′ψ〉 6= 0. The same holds for the dual generator φ.

• Generalized multiresolution struture [1℄ (see also Setion 2.3). The two gen-erators an be assoiated with the same GMRAwith idential ore subspae,the Paley-Wiener spae Ľ2(K) with K = ∪j<0

(
aj supp ψ̂

)
⊂

[
−ac−1, ac−1

],hene both generators an be assoiated with the same saling funtion.These types of dual wavelet frames are alled sibling frames in [7℄. Further-more, the GMRA provides arbitrarily large approximation order [10℄.To make Theorem 3 appliable, we need to show how to onstrut funtionsthat satisfy the tehnial ondition (3) in the theorem. It is important that this



PAIRS OF BANDLIMITED DUAL FRAMELETS 7onstrution is expliit beause one of the key features of the theorem is that thedual generator is expliitly given in terms of dilations of ψ. In Example 1 weonstrut a dyadi partition of unity, that is, we onstrut a funtion g ∈ L2(R)satisfying(6) ∑

j∈Z

g(2jx) = 1 for a.e. x ∈ R.This orresponds to ondition (3) for dyadi dilation a = 2; a generalization of theonstrution to arbitrary real dilation parameter a > 1 is straightforward (replaeevery ourrene of �2� with �a�). As we shall see a very general lass of funtionssatisfy the ondition (see also Example 3).Example 1. For any m ∈ Z, any δ > 0 smaller than or equal to 2m/3, and abounded funtion f on [2m − δ, 2m + δ] satisfying f(2m−δ) = 0 and f(2m+δ) = 1,we de�ne(7) h1(x) =






f(x) x ∈ B̄(2m, δ),

1 x ∈
(
2m + δ, 2m+1 − 2δ

)
,

1 − f(x/2) x ∈ B̄(2m+1, 2δ),

0 otherwise.Any suh h1 ∈ L2(R) will be ontinuous if f is ontinuous, and it will satisfy:
∑

j∈Z

h1(2
jx) =

{
1 for x > 0,

0 for x ≤ 0.We use the same approah to onstrut h2 ∈ L2(R) satisfying:
∑

j∈Z

h2(2
jx) =

{
0 for x ≥ 0,

1 for x < 0,and de�ne g = h1 + h2. This gives us the dyadi partition of unity almost every-where.The funtion f above ould be hosen as any polynomial satisfying f(2m−δ) = 0and f(2m + δ) = 1; this will make g ontinuous. If we also let the polynomial fsatisfy f ′(2m− δ) = f ′(2m + δ) = 0, then g ∈ C1(R). Continuing this way, we anmake g as smooth as desired while still keeping g pieewise polynomial.In the next example we apply the ideas from the above example to Theorem 3and onstrut dual wavelet frames with dyadi dilation and translation parameter
b = 1; atually, any b ∈ (0, 1] an be used, but we take b = 1 for simpliity.



8 JAKOB LEMVIGExample 2. Let f be a ontinuous funtion on the interval [1/4, 1/2] satisfying
f(1/4) = 1 and f(1/2) = 0. For example f an be any of the funtions below:

f(x) = 2 − 4x,(8a)
f(x) = 8(24x2 − 8x+ 1)(2x − 1)2,(8b)
f(x) = −16(320x3 − 192x2 + 42x− 3)(2x − 1)3,(8)
f(x) = 32(4480x4 − 3840x3 + 1280x2 − 192x + 11)(2x − 1)4,(8d)
f(x) = 1

2 + 1
2 cos π(4x− 1).(8e)In de�nitions (8b) and (8e) the funtion f satisfy f ′(1/4) = f ′(1/2) = 0, inde�nition (8) this also holds for the seond derivative, and in (8d) even for thethird derivative. As in Example 1 de�ne ψ ∈ L2(R) by:(9) ψ̂(ξ) =






1 − f(2 |ξ|) for |ξ| ∈ [1/8, 1/4] ,

f(|ξ|) for |ξ| ∈ (1/4, 1/2] ,

0 otherwise.This way ψ̂ beomes a dyadi partition of unity with supp ψ̂ ⊂ [−1/2,−1/8] ∪
[1/8, 1/2], so we an apply Theorem 3 with c = −1, n = 2, and b = 1. FollowingTheorem 3 we de�ne the dual generator φ ∈ L2(R) by:(10) φ̂(ξ) =






2[1 − f(4 |ξ|)] for |ξ| ∈ [1/16, 1/8] ,

1 + f(2 |ξ|) for |ξ| ∈ (1/8, 1/4] ,

f(|ξ|) for |ξ| ∈ (1/4, 1/2] ,

0 otherwise.whereby ψ and φ generate dual frames {Dj
2Tkψ}j,k∈Z and {Dj

2Tkφ}j,k∈Z for L2(R).The translation parameter in these wavelet systems is set to b = 1, and eahwavelet frame is generated by only one funtion.Suppose we let ψ̂ ∈ L2(R) be pieewise polynomial as de�ned by equations (8a)to (8d). Then ψ̂ ∈ Cr(R) with r = 0, 1, 2, 3, respetively. Further, the gen-erators ψ and φ will be real and even, and ψ̂ and φ̂ will be pieewise poly-nomial and have ompat support with supp ψ̂ ⊂ [−1/2,−1/8] ∪ [1/8, 1/2] and
supp φ̂ ⊂ [−1/2,−1/16]∪ [1/16, 1/2]. We have a greater number of vanishing mo-ments and faster deay than indiated by the review of properties above: ψ and φwill have r + 1 vanishing moments and deay as O(x−r−2) as |x| → ∞, e.g. using(8b) we have ψ̂, φ̂ ∈ C1(R), and ψ and φ with vanishing moments up to order 2,and ψ(x) = O(x−3) and φ(x) = O(x−3), see Figures 1 and 2. The expliit formof ψ and hene φ are easily found; in general, they are �nite linear ombinationof sine and osine of the form sin(2παx)/(πx)n and cos(2παx)/(πx)n for integer
n ≥ 2 + r and α ∈ Q.We end the example with some notes on the numerial aspets and the mul-tiresolution struture. We laim that C1 = 1/2 and C2 = 1 are frame bounds
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2 4 6 8 10 12 14Figure 1. A pair of dual generators ψ (solid line) and φ (dashedline) in the time domain with f as in (8b).
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0.1 0.2 0.3 0.4 0.5 0.6Figure 2. A pair of dual generators ψ̂ (solid line) and φ̂ (dashedline) in the Fourier domain with f as in (8b).for {Dj
2Tkψ}, that C1 = 7/2 and C2 = 5 are frame bounds for the dual frame

{Dj
2Tkφ}, and that this holds for any f from equations (8); even more, the framebounds hold for any f satisfying 0 ≤ f(x) ≤ 1 for x ∈ [1/4, 1/2]. To prove thelaim observe that

∑

k 6=0

∑

j∈Z

∣∣∣ψ̂(2jξ)ψ̂(2jξ + k)
∣∣∣ = 0, for ξ ∈ R,by the support of ψ̂. This redues the frame bound estimates in [5, Theorem11.2.3℄ to

C1 = inf
|ξ|∈[1/4,1/2]

∑

j∈Z

∣∣∣ψ̂(2jξ)
∣∣∣
2
, C2 = sup

|ξ|∈[1/4,1/2]

∑

j∈Z

∣∣∣ψ̂(2jξ)
∣∣∣
2
,



10 JAKOB LEMVIGwhere C1 and C2 are a lower and upper frame bound of {Dj
2Tkψ}, respetively.For |ξ| ∈ [1/4, 1/2] we have, by the de�nition (9),

∑

j∈Z

|ψ̂(2jξ)|2 = f(|ξ|)2 + (1 − f(|ξ|))2 = 1 − 2f(|ξ|) + 2f(|ξ|)2,and thus,
C1 = min

x∈[α,β]
1 − 2x+ 2x2 = 1/2, C2 = max

x∈[α,β]
1 − 2x+ 2x2,with α := min1/4≤x≤1/2 f(x) and β := max1/4≤x≤1/2 f(x). Sine 0 ≤ f(x) ≤ 1for x ∈ [1/4, 1/2], we have α = 0 and β = 1, hene C2 = 1, and this proves thelaim for {Dj

2Tkψ}; similar alulations will show the laim for the dual frame.In partiular, we see that the ondition number C2/C1 does not depend on thesmoothness of the generators, and that the ondition number of the dual frame
{Dj

2Tkφ} is smaller than the ondition number of {Dj
2Tkψ} and the onditionnumber of the anonial dual frame.The ore subspae of the GMRA is the Paley-Wiener spae V0 = Ľ2([−1/4, 1/4]).The funtion η ∈ L2(R) de�ned by η̂ = χ[−1/4,1/4] is a generator for V0, that is,

span{Tkη}k∈Z = V0, and {Tkη}k∈Z is a tight frame with frame bound 1 for V0.We note that this frame ontains twie as many elements as �neessary� in thesense that {T2kη}k∈Z and {T2k+1η}k∈Z are orthogonal bases for V0. Obviously,we an take the re�nable symbol H0 ∈ L2(T) to be the 1-periodi extension of
H0 = χ[−1/8,1/8] so that η̂(2ξ) = H0(ξ)η̂(ξ) for ξ ∈ R; note that the hoie of
H0 is not unique, and by letting H0 = χ[−3/8,1/4)∪[−1/8,1/8)∪[1/4,3/8) we obtain aquadrature mirror �lter sine H0(0) = 1 and |H0(ξ)|

2 + |H0(ξ + 1/2)|2 = 1. There�nable symbol H0 is sometimes alled a low pass �lter or mask. As waveletsymbol (high pass �lter) for the deomposition Hd and reonstrution Hr we antake Hd = ψ̂(2·) and Hr = φ̂(2·) extending them to 1-periodi funtions; thesesymbols obviously satisfy ψ̂(2ξ) = Hd(ξ)η̂(ξ) and φ̂(2ξ) = Hr(ξ)η̂(ξ).2.1. An alternative de�nition of the dual generator. The following resultresembles Theorem 3, but it gives an alternative way of de�ning φ; note the hangefrom ψ(a−jx) in (4) to ψ(ajx) in (11). The result follows from the symmetry ofthe alulations in (5).Proposition 4. Let n ∈ N and a > 1. Suppose ψ ∈ L2(R) is as in Theorem 3.Let b ∈ (
0, a−c(1 + an−1)−1

]. Then the funtion ψ and the funtion φ de�ned by
φ(x) = bψ(x) + 2b

n−1∑

j=1

ajψ(ajx) for x ∈ R(11)generate dual frames {Dj
aTbkψ}j,k∈Z and {Dj

aTbkφ}j,k∈Z for L2(R).Proof. The funtions ψ̂ and φ̂ satisfy ondition (1). This follows from alulationssimilar to those in (5): We start by fatoring out ψ̂(ac−1ξ) instead of ψ̂(ac−nξ),then ψ(ac−2ξ) and ontinue in a similar way. To see that ondition (2) is satis�ed,
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[
−ac+n−1,−ac−n

]
∪

[
ac−n, ac+n−1

] sine supp φ̂(a−n+1·) ⊂[
−ac+n−1,−ac−1

]
∪

[
ac−1, ac+n−1

]. The two funtions in (2) will have disjointsupport modulo null sets whenever |q| ≥ ac + ac+n−1 = ac(1 + an−1). �The hoie of the translation parameter b is more restritive in Proposition 4than in Theorem 3 sine the support of φ̂ de�ned by (11) is larger than whende�ned by (4). Note that b ∈ (
0, a−c(1 + an−1)−1

] an be replaed by the simpler,but more restritive, b ∈ (0, a−c−n] in the ase a ≥ 2.2.2. Expanding the range of the translation parameter. The onstrutionof dual wavelet frames from Theorem 3 often imposes the translation parameter
b to be small, e.g. b < 1. Hene, it would be interesting to know in whih aseswe an take b = 1. For the sake of simpliity let a = 2 for a moment, and assumethat ψ satis�es the assumptions of Theorem 3. Obviously, we an take b = 1 ifthe support of ψ̂ is ontained in [−1/2, 1/2], that is, if c ≤ −1; this is exatlywhat we used in Example 2. If c ≥ 0, we need, in order to ahieve b = 1, toapply Theorem 3 to ψ̂(2c+1·) in plae of ψ̂. This dilated version of ψ will still be adyadi partition of unity and supp ψ̂(2c+1·) ⊂ [−1/2, 1/2]. Moreover, we have thefollowing result.Corollary 5. Let n ∈ N and a > 1. Suppose ψ ∈ L2(R) is as in Theorem 3. Let
b ∈

(
0, 2−1a−c

]. Then the funtion ψ̃ := Dbψ and the funtion φ̃ := Dbφ, where
φ is de�ned as in (4), generate dual frames {Dj

aTkψ̃}j,k∈Z and {Dj
aTkφ̃}j,k∈Z for

L2(R).Proof. The result basially follows from an appliation of the identity(12) DbTbk = TkDb,and the fat that dilation preserves the frame property and the duality of (wavelet)frames sine it is a unitary operator on L2(R). By assumption {Dj
aTbkψ} and

{Dj
aTbkφ} are dual frames for b ∈ (

0, 2−1a−c
]. The identity (12) yields,

DbD
j
aTbkψ = Dj

aTk(Dbψ),hene {Dj
aTkψ̃} is a frame as a unitary image of a wavelet frame where ψ̃ = Dbψ.The same onlusion holds for {Dj

aTkφ̃}. For all f ∈ L2(R), we have
f = Db(D

∗
bf) =

∑

j,k∈Z

〈
f,DbD

j
aTbkφ

〉
DbD

j
aTbkψ =

∑

j,k∈Z

〈
f,Dj

aTkφ̃
〉
Dj
aTkψ̃,and onlude that duality is preserved. �Another approah (for obtaining b = 1) makes use of multigenerated waveletsystems. In the following result the onstruted dual wavelet frames are generatedby m funtions again sharing the properties of the starting point funtion ψ; inpartiular, if ψ has vanishing moments up to some order, then so will every funtionin the generator sets Ψ and Φ.



12 JAKOB LEMVIGCorollary 6. Let n ∈ N and a > 1. Suppose ψ ∈ L2(R) is as in Theorem 3. Let
m ∈ N and b ∈ (

0, 2−1a−cm
]. Then the funtions Ψ = {ψ, Tb/mψ, . . . , T(m−1)b/mψ}and the funtions Φ = {φ, Tb/mφ, . . . , T(m−1)b/mφ}, where φ is de�ned as in (4),generate dual frames {Dj

aTbkψ}j,k∈Z,ψ∈Ψ and {Dj
aTbkφ}j,k∈Z,φ∈Φ for L2(R).Proof. Let m ∈ N. For b so that 0 < b/m ≤ 2−1a−c, the funtions ψ and φ, where

φ is de�ned as in (4), generate dual frames {Dj
aTbk/mψ}j,k∈Z and {Dj

aTbk/mφ}j,k∈Zfor L2(R). Note that (m−1Z) / Z = {0, 1, . . . ,m− 1}, and de�ne:
Ψ =

{
ψ, Tb/mψ, T2b/mψ, . . . , T(m−1)b/mψ

}
.It follows immediately that {Dj

aTb/mkψ}j,k∈Z = {Dj
aTbkψ}j,k∈Z,ψ∈Ψ. Similarly, wehave for φ that {Dj

aTb/mkφ}j,k∈Z = {Dj
aTbkφ}j,k∈Z,φ∈Φ, where

Φ :=
{
φ, Tb/mφ, T2b/mφ, . . . , T(m−1)b/mφ

}
.We onlude {Dj

aTbkψ}j,k∈Z,ψ∈Ψ and {Dj
aTbkφ}j,k∈Z,φ∈Φ are dual frames for L2(R)for b/m ≤ 2−1a−c, that is, for b ≤ 2−1a−cm. �It follows from the orollary that, in the dyadi ase, we an always obtain b = 1by using 2c+1 generators.2.3. On the generalized multiresolution struture. We end this setion witha loser study of the GMRA struture of ψ and φ. To this end, let ψ ∈ L2(R)satisfy the assumptions in Theorem 3. We onsider the subspaes W b

j (ψ) :=

span
{
Dj
aTbkψ : k ∈ Z

}. Let ψ̃ = Dbψ be the generator of frame {Dj
aTkψ̃}, seeCorollary 5. From the identity Tbk = D−1

b TkDb we have W b
0 (ψ) = D−1

b W 1
0 (ψ̃)where W 1

j (ψ̃) = span
{
Dj
aTkψ̃ : k ∈ Z

}. By [10, Theorem 2.14℄,
W 1

0 (ψ̃) =

{
f ∈ L2(R) : f̂ = m

ˆ̃
ψ for some measurable, 1-periodi m}and further, using supp ˆ̃ψ ⊂ [−1/2, 1/2],

W 1
0 (ψ̃) =

{
f ∈ L2(R) : supp f̂ ⊂ supp ˆ̃ψ

}
= Ľ2(supp ˆ̃ψ),heneW b

0 (ψ) = Ľ2(supp ψ̂) by the above, and by dilation, W b
j (ψ) = Ľ2(aj supp ψ̂).We onlude that the spae of negative dilates, also alled the ore subspae,assoiated with ψ is given by

V0(ψ) = span

( ⋃

j<0

W b
j (ψ)

)
= Ľ2(K), K =

⋃

j<0

(
aj supp ψ̂

)
⊂

[
−ac−1, ac−1

]
,whih is a subspae invariant under all translations. It is straightforward to see

V0(ψ) = V0(φ); we will denote this spae by V0. A funtion η ∈ L2(R) is saidto generate V0 if span {Tbkη}k∈Z = V0, and we have that η generates V0 if, andonly if, supp η̂ = K (see [10℄). If we further require {Tbkη}k∈Z to be a frame for
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V0, then η̂ annot be ontinuous hene η will be poorly loalized in time. Thisdrawbak follows from a result in [2℄; indeed, the sum ∑

k∈Z |η̂((ξ + k)/b)|2 reduesto |η̂(ξ/b)|2 for ξ ∈ [−1/2, 1/2] sine b ≤ 2−1a−c implies bac−1 ≤ 1/(2a) ≤ 1/2− εfor some ε > 0 hene supp η̂(·/b) = bK ⊂ [−bac−1, bac−1] ⊂ [−1/2 + ε, 1/2 − ε].Now, the onlusion follows from [2, Theorem 3.4℄. We note that the onstrutedwavelet frame will not neessarily be a frame for a �xed dilation level subspae
Wj(ψ) of L2(R). This situation is similar to that of the unitary and obliqueextension priniples, but in ontrast to frame multiresolution analysis.3. Dual frames versus tight framesIn Theorem 3 we expliitly onstrut the dual frame. One might ask why we donot use the anonial dual frame, or why we do not use the haraterizing equationsfor tight frames to formulate a similar onstrution proedure of tight frames.In the following we will show that these approahes have some disadvantagesompared to Theorem 3.For a wavelet frame {Dj

aTbkψ}j,k∈Z, the anonial dual frame is given by
{
S−1Dj

aTbkψ : j, k ∈ Z
}

=
{
Dj
aS

−1Tbkψ : j, k ∈ Z
}
,where S is frame operator of {Dj

aTbkψ}j,k∈Z. In general the anonial dual need nothave the struture of a wavelet system, and this is one reason to avoid workingwith anonial dual frames. However, as we show below, the anonial dual ofall wavelet frames onsidered in this paper will be of wavelet struture, henethe anonial dual ould be used in the synthesis proess in the frame wavelettransform. The problem with this approah is that it is di�ult to ontrol whihproperties the anonial dual frame inherits from the frame sine the appliationof the inverse frame operator an destroy desirable properties. We give an exampleof this issue in the following.Let ψ ∈ L2(R) be as in the assumptions of Theorem 3. Then ψ̂(ξ)ψ̂(ξ + b−1k) =
0 for k ∈ Z \ {0}, and onsequently, by [11, Proposition 7.1.19℄ in the dyadi aseand a simple generalization of parts of the proof of the proposition in the generalase, the assoiated frame operator is the Fourier multiplier given by(13) Ŝf(ξ) =

(∑

j∈Z

∣∣∣ψ̂(ajξ)
∣∣∣
2
)
f̂(ξ) for a.e. ξ ∈ R,for all f ∈ L2(R) with C1 ≤

∑
j∈Z|ψ̂(ajξ)|2 ≤ C2 and C1, C2 as frame bounds for

{Dj
aTbkψ}. Sine S is a Fourier multiplier, it ommutes with all translations, thatis, STr = TrS for all r ∈ R, and the same holds for the inverse frame operator,hene the anonial dual takes the form

{
Dj
aTbk(S

−1ψ) : j, k ∈ Z
}
,



14 JAKOB LEMVIGwhih is a wavelet frame generated by S−1ψ. Moreover, the anonial dual gener-ator is given by(14) Ŝ−1ψ(ξ) =
ψ̂(ξ)

∑
j∈Z

∣∣ψ̂(ajξ)
∣∣2

for a.e. ξ ∈ R,Sine supp ψ̂ ⊂ [−ac,−ac−n] ∪ [ac−n, ac] for some c ∈ Z and n ∈ N , we onlude,by equation (14), supp Ŝ−1ψ = supp ψ̂ and(15) Ŝ−1ψ(ξ) =
ψ̂(ξ)

∑
|j|<n

(
ψ̂(ajξ)

)2 for a.e. ξ ∈ R.This implies, among other things, that ψ̂ and Ŝ−1ψ will have the same regularity.But it also implies that hoosing ψ̂ to be pieewise linear will not make the anon-ial dual generator S−1ψ pieewise linear (in the Fourier domain, that is) owing tothe denominator in (15). This is unlike the situation in Example 2 where a piee-wise polynomial ψ̂ by Theorem 3 gave a dual generator φ̂ pieewise polynomial ofthe same order, e.g. a pieewise linear ψ̂ gave a pieewise linear φ̂. In general thedenominator in (15) makes the expression for the anonial dual generator �less�expliit. The prie we pay for using the non-anonial dual is a slightly largersupport (in the Fourier domain) of the dual generator.Sine the onstrution of wavelet frames by Theorem 3 is based on haraterizingequations for dual wavelet frames, it would be natural to look for a similar way ofonstruting tight frames from their haraterizing equations. In a naive approahto suh a onstrution one would need to hoose ψ ∈ L2(R) so that ψ̂ is realand the family ξ 7→ (ψ̂(ajξ))2, j ∈ Z, form a partition of unity and to hoose asu�iently small translation parameter (so that all terms in the series in the so-alled �tq-equations� beome zero owing to disjoint support). Following the ideasfrom Example 1 we take ψ ∈ L2(R) as (extending ψ̂ to an even funtion):
ψ̂(ξ) =






f(ξ) ξ ∈ B̄(am, δ),

1 ξ ∈
(
am + δ, am+1 − aδ

)
,√

1 − (f(ξ/a))2 ξ ∈ B̄(am+1, aδ),

0 ξ ∈ [0,∞) \
[
am − δ, am+1 + aδ

]
.for any m ∈ Z, any δ > 0 smaller than or equal to am/3, and a bounded funtion

f on [am − δ, am + δ] satisfying f(am − δ) = 0, f(am + δ) = 1, and |f | ≤ 1. Theimportant thing to note with this approah is that ψ̂ does not inherit propertiesfrom f in opposition to the situation in Example 1, e.g. taking f to be linear doesnot make ψ̂ pieewise linear beause of the square root in the expression above;moreover, it is well known that the property of being a smooth (non-negative)funtion need not be preserved when taking square roots.



PAIRS OF BANDLIMITED DUAL FRAMELETS 154. Another appliation of Theorem 3In Examples 1 and 2 we onstruted dual wavelet frames in a rather expliit way.The following onstrution is less expliit. In the �rst part of the example belowwe onstrut a C∞ funtion on R with ompat support satisfying the tehnialondition (6), and in the seond part we apply Theorem 3 to the onstrutedfuntion.Example 3 (Part I). Let f ∈ C∞(R) be de�ned as
f(x) =

{
e−1/x x > 0,

0 x ≤ 0,and hoose positive onstants R > r > 0 so that(16) ∃δ > 0 :
⋃

j∈Z

2j [r + δ,R − δ] = [0,∞) ,holds, e.g. take r = 1/8 and R = 1/2. We de�ne f1(x) = f(x − r)f(R − x) for
x ∈ R, hene supp f1 ⊂ [r,R] and f1 ∈ C∞

0 (R), and we introdue a symmetriversion of f1, denoted f2, in order to get a dyadi partition of unity of the negativeas well as the positive real line.(17) f2(x) =

{
f1(x) for x > 0,

f1(−x) for x ≤ 0.The funtion w will be used to normalize f2:
w(x) =

∑

j∈Z

f2(2
jx).For a �xed x ∈ R this sum only has �nitely many nonzero terms. Obviously, wis a 2j-dyadi periodi funtion and, by (16) and the de�nition of f1, it is alsobounded away from 0 and ∞:

∃c, C > 0 : c < w(x) < C for all x ∈ R \ {0},hene we an de�ne a funtion g ∈ C∞
0 (R) by(18) g(x) =

f2(x)

w(x)
for x ∈ R \ {0}, and, g(0) = 0.This g will be a dyadi partition of unity; the alulations are straightforward:

∑

j∈Z

g(2jx) =
∑

j∈Z

f2(2
jx)

w(2jx)
=

∑

j∈Z

f2(2
jx)

w(x)
=

∑
j∈Z f2(2

jx)
∑
k∈Z f2(2kx)

= 1.The onstrution of g looks indeed less expliit than the pieewise polynomialpartition of unity in Example 1 primarily beause g is normalized by an in�niteseries w. This situation improves by notiing that, in pratie, the series w redueto a �nite sum sine supp g = supp f2 ⊂ [−R,−r] ∪ [r,R]. For example, if we let
r = 1/8 and R = 1/2, we an do with three terms g(x) = f2(x)/

∑1
j=−1 f2(2

jx)for all x ∈ R \ {0}.



16 JAKOB LEMVIGRemark 1. 1. Note that the mirroring step (17) introduing f2 also makes
g symmetri. But it is obvious from the example that we an arry outthe onstrution for the positive part of the real line only to get a dyadipartition of the unity on the positive real line, and, then, by the sameapproah (but with di�erent hoies of r and R), for the negative real line.This way g will not be symmetri.2. In plae of f one ould hoose any funtion in C∞

0 (R) having the samesupport as f . In plae of f1 one ould take any harateristi funtion
f1 = χ[2n,2n+1] for some n ∈ N onvolved with a smooth hδ ∈ C∞

0 (R)for a su�iently small δ > 0, where hδ(x) = δ−1h(δ−1x), and supph ⊂
[−1, 1], h ≥ 0, ∫

hdµ = 1, and h ∈ C∞
0 (R). Then supphδ ⊂ [−δ, δ] and

supphδ ∗ f1 ⊂
[
2n − δ, 2n+1 + δ

].Example 3 (Part II). We take r = 1/8 and R = 1/2 in Example 3 and set
ψ̂ = f2/

∑1
j=−1 f2(2

j ·) where f2 is given by (17), hene
ψ̂(ξ) =






e(1/8−ξ)−1
e(ξ−1/2)−1

e(1/8−ξ)−1
e(ξ−1/2)−1

+e(1/8−2ξ)−1
e(2ξ−1/2)−1 ξ ∈ (1/8, 1/4) ,

1 ξ = 1/4,

e(1/8−ξ)−1
e(ξ−1/2)−1

e(1/8−ξ/2)−1
e(ξ/2−1/2)−1

+e(1/8−ξ)−1
e(ξ−1/2)−1 ξ ∈ (1/4, 1/2) ,

0 ξ ∈ R+ \ (1/8, 1/2) ,and symmetrially for the negative real line. Applying this to Theorem 3 with
n = 2, c = −1, and b = 1 yields a pair of dual wavelet generators with ψ̂, φ̂ ∈
C∞(R), where φ̂ is de�ned as in (4), and supp ψ̂ ⊂ [−1/2,−1/8] ∪ [1/8, 1/2] and
supp φ̂ ⊂ [−1/2,−1/16]∪[1/16, 1/2]. The generators are smooth, rapidly deaying,symmetri dual framelets with vanishing moments of in�nite order. It is lear thatboth belong to the Shwartz spae, but it is also lear, from the equation above,that ψ and φ are not expliitly given in the time domain.5. The Hardy spaeA similar onstrution proedure for dual wavelet frames holds for the Hardyspae H2(R) = {f ∈ L2(R) : supp f̂ ⊂ [0,∞)}. The result in Corollary 1 aneasily be transformed from L2(R) settings to the Hardy spae H2(R). Indeed, weonly need to replae the right hand side b in equation (1) by bχ[0,∞)(ξ). In [4,Theorem 1.3℄ suh a transformation is arried out for a similar result on tightwavelet frames [8, Theorem 1℄. The analogue version of Theorem 3 for the Hardyspae is as follows. Let n ∈ N and a > 1. Suppose for ψ ∈ H2(R) that ψ̂ is areal-valued funtion with supp ψ̂ ⊂ [ac−n, ac] for some c ∈ Z and that

∑

j∈Z

ψ̂(ajξ) = χ[0,∞)(ξ) for a.e. ξ ∈ R.Let b ∈ (0, a−c]; atually, we ould even let b ∈
(
0, a−c(1 − a−2n+1)−1

]. Then ψand φ de�ned by (4) generate dual frames for H2(R). We note that, in the Hardy
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