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Abstract

This paper presents a hybrid of a general heuristic framework that has been successfully
applied to vehicle routing problems and a general purpose MIP solver. The framework uses
local search and an adaptive procedure which choses between a set of large neighborhoods
to be searched. A mixed integer programming solver and its built-in feasibility heuristics
is used to search a neighborhood for improving solutions. The general reoptimization
approach used for repairing solutions is specifically suited for combinatorial problems
where it may be hard to otherwise design operations to define a neighborhood of a solution
and to investigate the feasibility of elements in such a neighborhood. The hybrid heuristic
framework is applied to the multi-item capacitated lot sizing problem with dynamic lot
sizes, where experiments have been conducted on a series of instances from the literature.
On average the heuristic solutions are within 0.2% of the previously best known solutions
and we found new improved upper bounds for 3 out of 12 instances.

Keywords: Adaptive large neighborhood search, capacitated lot sizing problem with setup
times

1 Introduction

The adaptive large neighborhood search (ALNS) heuristic is a concept introduced by Røpke
and Pisinger [15]. The ALNS heuristic is an improvement heuristic that operates on top of a
construction heuristic. The improvement is done using a local search method, e.g., simulated
annealing or tabu search, choosing between different neighborhoods. In each iteration of
the search a destroy neighborhood is chosen to destroy the current solution, and a repair
neighborhood is chosen to repair the solution. The neighborhoods are weighted according to
their success and weights are adjusted as the ALNS heuristic progresses.

The main motivation for extending the ALNS heuristic to a hybrid version is, that not
all problem types are equally well suited for defining neighborhoods. Especially the con-
struction and the exploration of repair neighborhoods can be a challenge, both w.r.t. finding
a meaningful repair operation and testing feasibility of such an operation. To address this
problem, we propose to use a mixed integer programming (MIP) solver in the repair phase of
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the ALNS heuristic. The idea is to solve a restricted subproblem that is based on a partial
solution where variables are fixed (or partly fixed). The process of constructing a subproblem,
and the following reoptimization of the subproblem with the use of a MIP solver, can in the
context of an ALNS heuristic be seen as the application of a destroy and a repair neighbor-
hood. As such the hybrid ALNS can be viewed as a specialization of the ALNS framework,
which removes the task of defining repair neighborhoods.

The ALNS framework by Røpke and Pisinger [15] is extended from a large neighborhood
search framework by Shaw [16]. The heuristic has several similarities with variable neighbor-
hood search, see e.g., Mladenović and Hansen [10], and hyper-heuristics, see e.g., Burke et al.
[2]. However, there are no adaptiveness built into the basic idea of the variable neighborhood
search. This approach mainly relies on the diversity of the neighborhoods being used. The
hyper-heuristic approach operates on simpler low-level heuristics where the ALNS heuristic
operates on neighborhoods. Furthermore, an evaluation function is used to calculate a score
for each low-level heuristic and chooses the best scoring heuristic for the next iteration. The
ALNS heuristic uses a random selection between all weighted neighborhoods to choose the
neighborhood for next iteration. In both cases this allows for bad performing or seldom used
neighborhoods to be chosen which can provide diversity in the solution process. An ALNS
heuristic has been implemented for vehicle routing problems with great success, see Pisinger
and Røpke [12], Røpke and Pisinger [15]. Examples of an application of the framework out-
side a routing problem context are few, see Cordeau et al. [4] that schedules technicians and
tasks in a telecommunications company and Muller [11] presented an ALNS heuristic for the
resource constrained project scheduling problem. For a recent survey on large neighborhood
search and the ALNS framework we refer to Pisinger and Røpke [13].

The multi-item capacitated dynamic lot sizing problem with setup times (CLSP) can be
defined as: Schedule the production of a set of items over a given number of time periods such
that all demands of items are met, and such that the capacity of the resource is not exceeded.
The production of each unit of an item and the setup of the production consume capacity on
the resource. The CLSP is NP-hard, see e.g., Pochet and Wolsey [14]. Few papers concern
meta-heuristic approaches for the CLSP, see e.g., the surveys of Jans and Degraeve [8] and
Buschkühl et al. [3]. One of the few is the variable neighborhood search heuristic by Hindi
et al. [7]. Exact approaches for the CLSP includes branch-and-cut algorithms by Belvaux and
Wolsey [1], Wolsey [18], Miller et al. [9] and a branch-and-price algorithm by Degraeve and
Jans [6]. The good performance of the branch-and-cut algorithms suggest that using a MIP
solver to solve restricted subproblems of the CLSP can be done in reasonable time.

The contribution of this paper is an ALNS heuristic which combines the strength of
modern MIP solvers with that of the ALNS heuristic, creating a “hybrid” approach. The
repair neighborhoods employ the MIP solver in a generic fashion and neighborhoods are thus
applicable to a large variety of problems. An evaluation of the hybrid ALNS heuristic is
applied on the CLSP, and its usefulness is indicated by the results where the heuristic is on
average within 0.2 % of the best known upper bounds and is able to find improved upper
bounds on 3 out of 12 instances.

The paper is organized as follows: Section 2 gives an outline of the ALNS framework,
Section 3 describes the hybrid variant proposed in this paper, Section 4 presents an application
of the hybrid ALNS heuristic to the CLSP, and Section 5 contains the experimental results
performed on the instances of Trigeiro et al. [17] and an extension of these described in Miller
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et al. [9]. Section 6 concludes the paper and suggest new directions for future research.

2 ALNS framework

In this section, an outline of the the ALNS framework is presented as described by Pisinger and
Røpke [12]. The framework is divided into three parts, i) a master local search framework,
ii) a set of large neighborhoods that either destroyor repaira possible solution, and iii) a
procedure for choosing neighborhoods which adapts based on historical information.

At the top level (also denoted master level) any local search heuristic can be applied,
e.g., simulated annealing, tabu search, guided local search, or GRASP (greedy randomized
adaptive search procedure). A neighborhood of a solution is a set of solutions obtained by
performing some operation on the original solution. In large neighborhoods these operations
involve changing several settings in the solution at once leading to a neighborhood of po-
tentially exponential size. The procedure for choosing neighborhoods can be pictured as a
roulette wheel spinning and randomly choosing a neighborhood. The weights of all neigh-
borhoods are updated based on historical success. Hence, successful neighborhoods have a
higher probability to be used as time passes.

The ALNS framework can be described as follows: Given a starting solution the heuristic
iteratively tries to improve it. The set of neighborhoods is divided in two – destroy neighbor-
hoods N− and repair neighborhoods N+. Given a current solution x a destroy neighborhood
n− ∈ N− performs an operation on x, stores the removed elements in an item bank B and
leaves a partial solution x. A repair neighborhood inserts elements from the item bank into x
creating a new solution x′. In the case of the hybrid ALNS heuristic presented in this paper,
the repair neighborhoods make use of a MIP solver. A roulette wheel for each of the sets
N− and N+ is used in each iteration to choose which destroy and which repair neighborhood
should be used. This is based on a weight π for each neighborhood that is initialized at the
beginning according to the quality of the neighborhood (this is a user defined consideration
to be made a priori). During execution the weights are updated according to the quality of
the solutions produced with the given neighborhoods. The motivation behind this is, that
not all neighborhoods perform equally good on all problem instances – hence the weights of
the neighborhoods adapt to the instance during the execution of the algorithm and hopefully
produce better solutions overall.

As mentioned above, the weights of the neighborhoods are updated according to how
successful a neighborhood is in obtaining better and new solutions. In the paper by Pisinger
and Røpke [12] the weights are updated after certain given time segments and the weight of a
neighborhood is based on the observed weight πi,t of neighborhood i at time segment t which
in each iteration is incremented with values dependent on the quality of the new solution x′.

At the end of a time segment the smoothened weight πi,t is calculated for use in the roulette
wheel. This is based on π̄i,t and a reaction factor r which indicates how much the roulette
weight depends on previous success. Previous success is calculated as the observed weight π̄i,t
divided by the number of times ai,t neighborhood i has been chosen in time segment t. The
updated smoothened weight is: πi,t+1 = r

πi,t

ai,t
+ (1 − r)πi,t A low reaction factor keeps the

weight at about the same level during the algorithm. A neighborhood i has the probability:
pt(i) = πi,tP

j∈N πj,t
of being chosen in time segment t.

In Figure 1 the pseudo-code is given for the ALNS framework. The choices made for the
hybrid ALNS heuristic will be described in the following sections.

3



A hybrid ALNS algorithm applied to a lot-sizing problem L. F. Muller and S. Spoorendonk

ALNS

1 x is an initial solution; set x∗ := x
2 repeat
3 Choose n− ∈ N− and a n+ ∈ N+ based on π
4 Generate solution x′ based on x, n−, and n+

5 if x′ is accepted
6 then x := x′

7 if x′ < x∗

8 then x∗ := x′

9 Update π for N− and N+

10 until stop criteria is meet
11 return x∗

Figure 1: The criteria for accepting a new solution in line 5 depends on the choice of local
search framework and the score update on line 9 can be performed using different strategies.

3 A hybrid ALNS algorithm

In this section, we describe the elements of the proposed hybrid ALNS algorithm, i) the
master level local search procedure, ii) the genereic MIP repair neighborhoods and iii) an
adjusted weight calculation method used in the adaptive procedure.

3.1 Local search

In this paper steepest descent has been chosen as the local search procedure. Because the the
destroy neighborhoods merely removes parts of that solution, and because the MIP repair
neighborhoods use the current solution as an initial upper bound, it is always possible for
the MIP solver to find that solution again. Therefor, the MIP solver never returns a solution
that is worse than the current one. Hence, a selection process for choosing worse solutions
would never apply. It is possible that, when considering all valid solutions explored in a given
iteration of a repair neighborhood worse solutions are found. These are stored and used as
restart points of the local search.

To diversify the search, the search is restarted at different solutions when no improvements
have occurred in a given number of iterations. The number of iterations is chosen to be equal
to the segment size for updating the neighborhood weights. For the initial restart the second
best solution is chosen (the current solution is the best solution). In subsequent restarts, the
local search either switches back to the best solution if it is not the current one or switches to
next best solution that has not previously been used for a restart. The reason for returning to
try and improve on the best solution is that the neighborhoods may have obtained different
scores in the meantime yielding a diversified exploration of the neighborhood of the solution.

3.2 Generic MIP repair neighborhoods

As the name indicates the generic MIP repair neighborhoods make use of a MIP solver in
order to repair or reoptimize a solution. Consider the minimization problem min{cx|Ax =
b, Bx ≤ d, x ≥ 0}, where A is an n ×m matrix, B is an n × l matrix, and c, b, d and x are
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n-dimensional vectors. Given the partial solution x̄ returned from a destroy neighborhood, a
subproblem based on the MIP formulation above is constructed. This is done by using one of
the two rules described below for fixing the lower and upper bounds bound of the variables x
given the values of x.

Bound by solution value. Bound non-removed variables x to a fraction of their current
value, i.e., if xt is a variable which has not been removed by a destroy neighborhood,
fix xt ≥ δxt for δ ∈ [0, 1]. In this paper δ = 0.5 was chosen.

Bound by equality constraints. If for a given equality constraint with a right-hand-side
of b there is only one non-zero variable, say xt, then fix xt ≥ b.

One may argue, that these bounding rules are in fact further relaxations of the partial solution,
and should therefor be thought of as second level destroy neighborhoods. However, since
the MIP solver is used for finding feasible solutions, we stay with the concept of repair
neighborhoods.

To speed up the subproblem solution process, we suggest to limit the number of explored
branch nodes or end the search after a given time limit. MIP heuristics, such as relaxation
induced neighborhood search by Danna et al. [5], are applied in the MIP solver to obtain
feasible solutions rapidly. If no feasible solution is found, the invalid solution is discarded (i.e.
not accepted) and the ALNS heuristic continues to the next iteration.

3.3 Adaptive weight adjustments

In this paper a slightly different approach is used for updating the observed weights: Let cx
be the value of the current solution and let cx′ be the value of the new solution. The observed
weight πi,t of neighborhood i at time segment t is updated as follows

π̄i,t = π̄i,t + b(cx−cx
′)/cx

where b is some constant. The observed weights are updated differently because of the choice
of local search procedure. For the selected procedure, a solution is only accepted when it
is better than the current solution, which may result in long periods without any accepted
solutions. If a fixed scoring scheme was used all neighborhoods would score equally bad,
while for the employed scheme it is possible to differentiate the neighborhoods who produce
solutions which are almost as good as the current one and the ones that produce solutions
which are far worse.

4 An application to the CLSP

In this section we present an application of the hybrid ALNS heuristic to the CLSP. First, a
description of the mathematical model is given, followed by a description of the neighborhoods
employed, and finally the parameter values are presented.

4.1 Problem description

This section briefly describes the mathematical formulation of the CLSP. Let I = {1, . . . , n}
be the set of items and T = {1, . . . ,m} be the set of time periods. The data set is given by:
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• hit is the unit inventory cost of item i at time t.

• pit is the unit production cost of item i at time t.

• f it is the fixed cost for producing item i at time t.

• dit is the demand of item i at time t.

• αit is the capacity used for producing item i at time t.

• βit is the capacity used for setting up the production of item i at time t.

• Ct is the capacity of the resource at time t.

• M is a large constant.

and the variables are

• si0 is the number of units of item i in the initial inventory.

• sit is the number of units of item i in stock after time t.

• xit is the number of units of production of item i at time t.

• yit indicates if a setup for production of item i at time t has been done.

All variables except the y-variables are positive continuous variables. The y-variables are
binary and implicitly force the other variables to obtain integer values (if all constants are
also integer).

The mathematical model for the CLSP:

min
∑
i∈I

(
hi0s

i
0 +

∑
t∈T

(hits
i
t + pitx

i
t + f ity

i
t)

)
(1)

s.t. sit−1 + xit = dit + sit t ∈ T, i ∈ I (2)

xit ≤Myit t ∈ T, i ∈ I (3)∑
i∈I

(
αitx

i
t + βity

i
t

)
≤ Ct t ∈ T (4)

sit, s
0
t , x

i
t ≥ 0, yit ∈ B t ∈ T, i ∈ I (5)

The objective (1) is to minimize holding, production, and setup cost. Constraints (2) ensure
flow conservation of the item. That is, items in stock plus the items produced in a time period
must equal the number of items demanded in this time period plus the number of items in
stock after this time period. Constraints (3) ensure that production of an item can only occur
if the resource is set up to produce that item. Constraints (4) impose the restriction on the
resource capacity such that the combined production and setup cannot exceed. The variable
domains are specified by constraints (5).
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4.2 Destroy neighborhoods

Except for the random removal neighborhood each neighborhood focuses on specific structural
problems in a solution to the CLSP, e.g., too many items in stock, or often changing production
of items. The destroy neighborhoods are divided in two steps. First, a candidate set of
production to be removed are constructed and secondly the candidates is removed randomly.

Random. Removes production (positive x-variables in the current solution) at random
throughout the production plan. The neighborhood is good at creating different so-
lutions, and is useful if the search is stuck in a local minimum.

Production causing stock. This neighborhood removes production that causes items to
be placed in stock. Hopefully, the production can be inserted at a later time in the
production plan, hence saving inventory expenses.

Capacity critical. To obtain diversity in a solution where the resource is fully loaded are
removed. This allows for a reshuffling of production. When the production of an item is
removed, the production of that item in the previous and the next time periods are also
removed to open the possibility of shifting the production between these time periods.

Stocked items. This neighborhood removes production of items that have the largest amount
of units in stock throughout the production plan. The idea is to attempt a reshuffle of
stocked items between those types of items that are favorable to put in stock, e.g., due
to low holding cost. A minimum of two item types are removed in an iteration.

Time periods with high stock density. This neighborhood removes production from time
periods where there are many items in stock. The idea is to reshuffle the production
(and thereby the stocked items) into the previous or succeeding time periods. The time
periods are sorted according to the number of stocked items. When the production in a
time period is cleared, the time period before and after are also cleared. The remaining
time periods are then resorted before the next period is selected.

Production higher than demand. When there are productions that are very high com-
pared to the demand of the corresponding item in the time period, a lot of items are
put in stock. Often a solution can be shifted, such that the majority of the production
is moved to the following time period.

4.3 Repair neighborhoods

The generic MIP repair neighborhoods employed for the MCLS are:

Bound by solution value. In CLSP, the production variables x imply the setup variables
y. Hence, whenever xit > 0 we bound the variable ytt = 1. The x variables are bounded
as described earlier. Stock is generally to be avoided, therefor we fix all lower bounds
of the stock variables s to 0 so that we do not accidentally force unnecessary stock.

Bound by equality constraints. We only consider the production variables x in the con-
text of constraints (2) when xit = dti. Then we bound xit = xit where we have xit = dti.
In solutions for the CLSP, this scenario happens frequently in consecutive time periods
for the production of an item. In order to allow some diversification in the produc-
tion we only fix production when there is no stock in the preceding nor the succeeding
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item periods, i.e., we do not fix the production in the first and the last time period in
consecutive time periods, where production equals demand for a certain item.

4.4 ALNS parameters

A time limit of 60 seconds is chosen as the termination criteria of the steepest decent local
search. The reaction factor r is set fairly high at 0.8 since we expect few iterations, and
therefor would like the neighborhood weights to converge fast. All neighborhoods are ini-
tialized with a weight of 1. During the first iteration, an estimate of the overall number of
iterations is calculated based on the running time of that iteration. The segment size for
updating the weights is set to one hundredth of the estimated number of overall iterations,
or at least 10 and at most 50 iterations. Q is a parameter controlling how large a part of the
current solution is destroyed which is measured in a percentage of combined production for
the CLSP. Muller [11] suggests an exponential decrease of Q from given start value to some
end value. In this paper we propose a linear decrease beginning at Q = 0.4 and decreasing
toward Q = 0.1. The linear decrease provides room for large neighborhoods in more iterations
than the exponential decrease which is crucial when few iterations are expected.

5 Experimental results

The experiments are divided in two: i) a neighborhood performance analysis, and ii) a com-
parison of solution quality of the ALNS heuristic with the best known solutions from the
literature and the MIP solver ILOG CPLEX. The experiments are performed on a 2.66 GHz
Intel(R) Xeon(R) X5355 machine with 8 GB memory using ILOG CPLEX version 10.2. The
time limit for the ALNS heuristic and the tests with ILOG CPLEX is 60 seconds. For the
ALNS heuristic the average is calculated based on 100 runs. The ALNS heuristic is initialized
with a heuristic solution found by ILOG CPLEX after solving the root node.

5.1 Instances

The first set of instances is a small subset of the randomly generated instances from Trigeiro
et al. [17]. These 6 instances are assumed to be among the hardest, see Belvaux and Wolsey
[1]. They have 6, 12, and 24 different types of items respectively, and the planning horizon
is either 15 or 30 time periods. The instances are named as trI-T with I being the number
of items and T being the number of time periods. The second set of instances is an extension
of the first set by Miller et al. [9] and is an attempt to produce even harder instances. These
instances are denoted xtrI-T, and have the same number of items and time periods as the
instances for which they were derived, but with no setup costs and a constant of 10 larger
setup times for all items. Note, that the instance xtr12-15 appears to be further altered since
Miller et al. [9] report solutions with no initial inventory although the lower bounds found
by ILOG CPLEX implies that no solution exists without initial inventory or Miller et al. [9]
have an error in their solution.

5.2 Neighborhood performance

Table 1 specifies how often a neighborhood was chosen (in percentage of the total number of
iterations). The destroy neighborhoods are the random (Random), production causing stock
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Destroy nhs. Repair nhs.
Instance Random Prod. Crit. Stock. High High Bound Bound

caus. stock cap. items stock dens. prod. value equal.
tr6-15 16.6 16.8 16.5 16.6 16.7 16.8 49.8 50.2
tr6-30 18.2 16.9 17.1 12.7 17.6 17.5 50.8 49.2
tr12-15 16.5 16.5 17.0 16.7 16.9 16.4 50.0 50.0
tr12-30 16.2 16.9 15.9 17.8 17.0 16.2 48.9 51.1
tr24-15 17.1 16.6 16.6 17.1 16.0 16.6 50.1 49.9
tr24-30 17.6 16.9 15.2 17.2 16.6 16.5 49.0 51.0
xtr6-15 16.7 16.6 16.6 16.6 16.7 16.8 50.1 49.9
xtr6-30 17.0 16.6 16.9 15.6 17.5 16.4 49.6 50.4
xtr12-15 17.5 14.9 17.8 18.0 17.1 14.7 56.2 43.8
xtr12-30 19.1 14.9 17.5 15.3 17.4 15.9 50.1 49.9
xtr24-15 16.4 16.8 17.0 16.4 18.0 15.5 51.4 48.6
xtr24-30 18.4 15.6 18.2 15.0 17.3 15.4 49.5 50.5
Average 17.3 16.3 16.9 16.3 17.1 16.2 50.5 49.5

Table 1: Destroy and repair neighborhood. Number of times a neighborhood is chosen in percentage.

(Prod. caus. stock), capacity critical (Crit. cap), stocked items (Stock. items), time periods
with high stock density (High stock dens.), and production higher than demand (High prod.).
The repair neighborhoods are the bound by solution value (Bound value) and the bound by
equality constraints (Bound equal). Note that the number of times a neighborhood is chosen
also reflects its quality since good neighborhoods scores better than bad neighborhoods. The
difference in usage of less than 1.1 and 1.0 percentage points for the destroy and repair
neighborhoods, respectively, indicates that the neighborhoods all perform equally well.

5.3 Upper bounds

Table 2 shows a comparison of the upper bounds obtained in different papers. The first
column is the instance name (Instance) and the second column reports the best known upper
bounds found in the literature (Prev. best). The next two columns are results from the ALNS
heuristic, best upper bound (ALNS best) and average upper bound of the 100 runs (ALNS
avg.). This is followed by two columns reporting results using ILOG CPLEX with a 60 second
time limit given the default settings (CPLEX default), and given the MIP emphasis parameter
of ILOG CPLEX set to find hidden feasible solutions (CPLEX hidden). Further listed are
the relax-and-fix heuristic (BW) by Belvaux and Wolsey [1] based on their branch-and-cut
algorithm. Thier algorithm is running (on a 200 Mhz Intel(R) Pentium(R) Pro computer)
for about 40 seconds on the smaller instances to a little less than 5 minutes on the largest
instance. Miller et al. [9] considers a branch-and-cut and a cut-and-branch algorithm. In the
latter approach cutting planes are only applied in the root node. In the column (MNS) the
best integer solution for either of these approaches is given. Last in column (DJ) the results
of the branch-cut-and-price-algorithm by Degraeve and Jans [6] is presented. The integer
solutions are found with a limit of 2000 branch nodes on an Intel(R) Pentium(R) III 750
Mhz. A boldface entry indicates the best upper bound for an instance or the best total, and
a ’-’ entry indicates that no result is available.

In 11 out of the 12 cases (not tr24-30) the ALNS heuristic finds a solution that is at least
as good as the previously best known upper bound, and in three of these cases (xtr12-30,
xtr24-15 and xtr24-30) the heuristic finds better solutions. On average, the ALNS heuristic
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Instance Prev. ALNS ALNS CPLEX CPLEX BW MNS DJ
best best avg. default hidden

tr6-15 37721 37721 37776.4 37721 37721 37721 37721 38162
tr6-30 61746 61746 61792.2 61782 61765 61746 61746 62162
tr12-15 74634 74634 74720.8 74634 74634 74752 74634 75035
tr12-30 130596 130596 130675.0 130705 130599 130599 130596 131234
tr24-15 136509 136509 136510.0 136568 136509 136509 136509 136860
tr24-30 287929 287942 287966.0 287981 287937 287950 287929 288383
xtr6-15 5170 5170 5185.1 5203 5170 - 5170 -
xtr6-30 7880 7880 7902.4 7985 7880 - 7880 -
xtr12-15 -? 817451 824002.0 817647 817451 - 7889? -
xtr12-30 14799 14386 14800.6 14925 14510 - 14799 -
xtr24-15 14120 13978 14147.0 14165 13978 - 14120 -
xtr24-30 19289 18318 18711.9 18687 18641 - 19289 -
Total tr 729135 729148 729440.4 729391 729165 729277 729135 731836
Total xtr♦ 61258 59732 60747.0 60965 60179 - 61258 -
Total xtr - 877183 884749.0 878612 877630 - - -
Total♦ 790393 788880 790187.4 790356 789344 - 790393 -
Total - 1606331 1614189.4 1608003 1606795 - - -

Table 2: Comparison of upper bounds with other approaches. The value marked with ? is less than
the lower bound reported by ILOG CPLEX. This indicates that modification additional to the ones
described was made to this instance by Miller et al. [9]. A total marked with ♦ is minus the xtr12-15
instance.

is within 0.2% of the best solutions, and it outperforms ILOG CPLEX solver with defaults
settings.

6 Conclusion

We have presented a hybrid heuristic solution approach based on the ALNS framework and
the generic use of a MIP solver in the repair phase. This results in a general hybrid ALNS
algorithm where i) the “difficult” part of creating repair neighborhoods has been eliminated
and ii) the strength of modern MIP solvers can be exploited.

The proposed hybrid algorithm has been applied to the CLSP and the computational
results indicates that the heuristic is competitive w.r.t to solution quality, within a 60 second
time limit when compared with the commercial MIP optimizer ILOG CPLEX. The proposed
neighborhoods all benefited the solution process, both the problem specific destroy neighbor-
hoods and the more general repair neighborhood. Furthermore, the ALNS heuristic is, to the
best of our knowledge, able to find new best known upper bounds for three instances. Finally,
the solution values provided by the ALNS are on average within less than 0.2% of the best
known solutions including upper bounds found in this paper. This indicates the use of general
MIP based repair neighborhoods in combination with problem specific destroy neighborhoods
is effective.

A suggestion for a future improvement for the CLSP and other kinds of problems, is to
apply the hybrid ALNS heuristic within the reoptimization process of the subproblems. In
order to solve larger problems the MIP solver may become too slow to use in the repair
neighborhoods, and it may be beneficial to apply a heuristic approach to reoptimize the

10
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subproblem. This approach can be applied recursively until the subproblems are small enough
for the MIP solver to handle efficiently.
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This paper presents a hybrid of a general heuristic framework that has been successfully applied to 
vehicle routing problems and a general purpose MIP solver. The framework uses local search and an 
adaptive procedure which choses between a set of large neighborhoods to be searched. A mixed 
integer programming solver and its built-in feasibility heuristics is used to search a neighborhood for 
improving solutions. The general reoptimization approach used for repairing solutions is specifically 
suited for combinatorial problems where it may be hard to otherwise design operations to  define a 
neighborhood of a solution and to investigate the feasibility of elements in such a neighborhood. 
The hybrid heuristic framework is applied to the multi-item capacitated lot sizing problem with dy-
namic lot sizes, where experiments have been conducted on a series of instances from the literature. 
On average the heuristic solutions are within 0.2% of the previously best known solutions and we 
found new improved upper bounds for 3 out of 12 instances.
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