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Intrinsic resonance representation of quantum mechanics
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and Department of Chemistry, Technical University of Denmark, DTU-207, DK-2800 Lyngby, Denmark

(Received 14 January 1997; accepted 20 February)1997

The choice of basis states in quantum calculations can be influenced by several requirements, and
sometimes a very natural basis suggests itself. However often one retreats to a “merely complete”
basis, whose coefficients in the eigenstates carry little physical insight. We suggest here an optimal
representation, based purely on classical mechanics. “Hidden” constants of the motion and good
actions already known to the classical mechanics are thus incorporated into the basis, leaving the
quantum effects to be isolated and included by small matrix diagonalizations. This simplifies the
hierarchical structure of couplings between “zero-order” states. We presémraperturbative

method to obtain such a basis-state as solutions to a certain resonant Hamilton—Jacobi equation.
© 1997 American Institute of Physids$0021-960807)02020-3

I. INTRODUCTION of the dynamics of two identical interacting oscillators into
_ _ _ “local” modes characterized by one set of good actions and

There has been a revived interest recently in semi“normal” modes characterized by another set of good ac-
classical theories based on the Fourier analysis of classicgbns induced by a 1:1 resonantsee, e.g., Ref. 20 Thus,
quasiperiodic motiof.These theories were developed in thein a resonant, but near integrable, system the Hamilton—
seventies and eighties by several authors as methods #acobi equation has many solutions valid in different regions
implement Einstein—Brillouin—Kelle(EBK) quantization of = ¢ phase space.
non-separable multidimensional systéniga recent review From a semi-classical point of view, the existence of
by Child’ contains an extensive list of references to the NUonly locally good actions poses a problem. Each of these
merous works in thi; field Non-separaple multidimepsiqnal actions may be quantized by imposing the EBK conditions,
systems are the objects of many studies and applications i) ¢ this jeaves the distinct regions of phase space decoupled.
various fields, from nuclear physics to astronomy. In mo-|, systems with some symmetry, or with a high density of

lecular physics, the correspondence between the classical a@ﬁiﬂes, the decoupling may result in degeneracies or near de-
guantum mechanics of systems of non-linear coupled oscil-

lators is of ti . for th derstandi eneracies in the obtained EBK energies where the exact
ators 1s of paramount importance for the understanding anauantum energies are non-degenerate. This phenomenon is
fitting molecular of spectra.

L . k ical ling:*? Recently, it h
In its original form the EBK quantization scheme re- nown as dynamica tunnem"é ecently, 1t has begn

. . o . suggested that the EBK energies should be refined by intro-
quires that the classical motion is regular, i.e., that the mo-

tion is restricted to invariant tori in phase space, alth0ugqil;%r:ﬁlor:hiai%nb?igl?a;g{?ough complex: solutions of the

some empirical evidence that a tori quantization scheme . o .
Another approach is to remain in a global action-angle

could yield surprisingly good results even when tori do notd ot fthe classical Hamilton q i :
exist classically was found by Swimm and D&las the late escription ot the classical ramiltonian and quantize using a
uniform approximation scheme, either of the Sdimger

seventies and later confirmed by Reinhaetial® As sug- ) i . )
gested by the KAM theorem the classical dynamics of dype where the action variables are replaced by differential
perator$*!® or of the Heisenberg type where the Hamil-

coupled oscillator system is dominated by regular motion aPP€rato 16019 _
low energies which implies that almost everywhere in phasdnian is represented by a matrix.™ Essentially, the prob-
space it is possible to fin constants of the motiofigood ~ !8M is approximated by a system with a single resonance,

actions”). If the system is non-resonafthe frequencies are Oobtained for example by ignoring, or averaging over other
incommensurafethe good actions are global in phase spacd€sonances, treating them as fast variables. The resonance is
and the system is separable. In other words, the Hamiltonthen quantized exactl§i.e., “uniformly” ) rather than semi-
Jacobi equation has one solution valid for all phase space.classically. In this way the tunnel splitting are found cor-

If the system exhibits resonances it is no longer comtectly. The simplicity of these schemes inherently depend on
pletely separable. On the other hand, if the motion is stillthe simplicity of the action-angle representation of the clas-
predominantly regular at low energiBisgood actions can be sical Hamiltonian, that is, its angular dependeht!® 1819
found almost everywhere in phase space. The actions af&ior to quantization, it is therefore desirable to simplify the
only local; different good actions exist in different regions of classical Hamiltonian by canonically transforming the origi-
phase space. A well-known example of this is the separational coordinatesthe action-angle variables of the uncoupled
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Carioli, Heller, and Méller: Intrinsic resonance representation 8565

system to a set of “optimal” action-angle variables that end of their papet.The usage of the CGM method to obtain
reduce the angular dependence as much as possible. Thisresonant Hamiltonian when the system is slightly non-
transformation carfto a given orderbe found via resonant resonant has also been suggested by Farrelly and *®zer.
classical perturbation thedresulting in a normal form ap- Farrelly and Uzer, however, used the CGM in its original
proximation to the Hamiltonian. To lowest order, the Hamil- form and did the iteration only once, followed by a pertur-
tonian obtained this way equals the Hamiltonian in the origi-bative resonance analysis, whereas we suggest to carry out
nal coordinates where all angular terms not corresponding tthe iteration to self-consistency in the trial Hamiltonian.
resonances between the uncoupled oscillators have been Since our classical analysis is performed in Fourier
omitted. This simple approach was applied by Kellman andpace, the Hamiltonian is most conveniently quantized
Lynch’” in a Heisenberg matrix context and they obtainedimplementing the Heisenberg type uniform approximation of
good results at low energy for two kinetically coupled Morse Jaffe et alle
oscillators.

For a system of coupled harmonic oscillators, higher ordl. SEMI-CLASSICAL REPRESENTATION OF THE
der normal forms can be found using the Birkhoff— HAMILTONIAN
Gustavson methoth:>#In its original form, the Birkhoff— The failure of the EBK quantization to reproduce split-
Gustavson method takes into account only the resonancegs in resonant or nearly resonant systems is in some sense
due to exact commensurabilities between the frequencies @fue to an inconsistent representation of the Hamiltonian in
the harmonic oscillators and will therefore diverge for nearerms of a basis. A semi-classical basis is given by a set of
resonant systems. To overcome this divergence several afglopa) action-angle variablesl (¢) which are related to
thors have set up methods that treat resonances and neﬂh'ysica] Coordinates andq through a canonical transfor-
resonances on equal footifig!®*® mation. The action variables can be thought of as good

The idea behind all these perturbation treatments is t@ctions for some separable Hamiltoniby. In a uniform
average over “fast terms.” These may, however, becomgsersion of EBK quantization the EBK quantized tori i,
important as the energy is increaseend any perturbation play the role of a semi-classical basis in which the non-
method will break down. separable Hamiltonian of interedt, is diagonalized. Jaffe

In this paper we suggest an alternative, non-perturbativest a1 1° have introduced such a uniform approach derived
route to a set of global action-angle variables that simplifiegrom the classical theory of the Wigner density for separable
the Hamiltonian. This is a self-consistent approach that treatgystem&® and more recently it has been related to a quantum
resonances, near-resonances and fast terms on an equal fagiriational principle! This approach yields a semi-classical
ing. The idea is similar to the idea behind the Hamilton—yersion of Heisenberg’s matrix mechanics where the diago-
Jacobi equation: A set of trial action-angle variablesy.,  nal elements are the mean valuestbfon the EBK tori of
the good actions of the uncoupled oscillators and their cony_ and the off diagonal coupling elements are higher order
jugate anglesare written in terms of a new set of yet un- Fourier components dfl evaluated on the invariant torus of
known action-angle variables. The Hamilton—Jacobi equag intermediate to the two EBK tori that the matrix element
tion is obtained requiring that the Hamiltonian be coyples.
independent of the new angles. For non-separable systems Then'th EBK torus of the separable Hamiltoniat, is

this requirement is clearly too restrictive to allow for a global gefined through the conditioh,=7%(n+1/2); and the semi-
solution, since intervening resonance zones locally destroy|assical representation of is thert®

any fixed set of good actions . We therefore suggest an itera-
tive approach where a “tpal form” of the Hamlltpnla}n is <n|H|m>:(2,n_)—Nf depH(1, e i(me| _-
gradually allowed to contain more and more combinations of n+m
the new angles until a global solution of the modified —H (I_ ) 1)
Hamilton—Jacobi equation can be found. Since we do not _ n-minmn
insist on the absence of angle variables the resulting Hamiwhere I, ,=(I,+1,)/2. Thus the element coupling the
tonian can contain isolated resonance zones. To find a globalth and them’th EBK tori of Hg is the n—m’th Fourier
solution of the desired accura¢when it existy we imple- component ofH evaluated on the intermediate invariant
ment an iterative scheme similar to the Chapman—Garretttorus of Hg. This approach obviously leads to a diagonal
Miller (CGM) method developed for solving the Hamilton— matrix containing the EBK energies for a separdblé one
Jacobi equation in Fourier spate. uses the invariant tori ofl as a basis. In fact, we see that
In a resonant system of coupled harmonic oscillators aH does not need to be truly separable in order to use invari-
sufficiently low energy where the primary resonances domiant tori of H as a basis; it is sufficient thail possesses
nate the dynamics, the iterative procedure presented here iisvariant tori of the same family at half-integer actions. The
expected to converge for a trial Hamiltonian including reso-matrix will then contain the EBK energies in the diagonal
nant combinations corresponding to the primary resonancebut there might be non-vanishing off diagonal elements. In
In this case the iterative method thus provides an alternativether words, in this scheme narrow resonance zones or sto-
route to a resonant normal form to the perturbative Birkhoff—chastic regions can be handled; their effect shows up in the
Gustavson approach. Some formal considerations toward thisff diagonal elements in Eql) and the dynamical tunnel
direction were made previously, e.g., Greenbetrgl. at the  splittings they induce are correctly accounted for.
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8566 Carioli, Heller, and Mdller: Intrinsic resonance representation

However a quasi-integrable system with larger reso-  This is readily deduced from Egl). Let us for simplic-
nance zones, large enough to support EBK quantized tority consider a two dimensional system which possesses only
requires modified approaches. The simple EBK energies coan r:s resonance coupling. Then the Hamiltonian can be
responds to energies obtained using the uniform method wittvritten as
differentbases in different regions in phase space, i.e., local
bases, and splittings are therefore not accounted for cor- H(I,¢)=2 Hp(r,_s)(l)eip“‘/’fS("z). (4)
rectly. P

In order to get a simple coupling structure of the semi-K =s|,+rl, is a constant of the motion for the classical

classical matrix a proper choice of badiEBK tori and their  systen?® From Eq. (1) it follows that the semi-classical
intermediates of somel,) is crucial. Since the basis states Hamiltonian can be written as

are coupled by the Fourier componentsHfit is desirable —
to find a set [, ¢) in which H has a simple dependence on  (N[HIM)=Hp —(In+m) ., +prOny.m,—ps- 5
the angles¢. This is a purely classical question and thus
calls for a classical analysis. Let us therefore recapitulate th
elements of a classical resonance anaffsind study the

importance of the various angle-dependent terms. We co

which is a block diagonal matrix each block characterized by
§ fixed value ok= s(ny+1/2)+r(ny,+1/2). In other words,
states with different values &f do not mix. Even when the
Mumber of active resonances equals or exceeds the number of

sider a Hamiltonian of t_he forr1=ﬂo+e\( whereHo is a Sys- degrees of freedom the basis found by perturbation theory
tem of uncoupled oscillators anelVV is a small coupling simplifies the semi-classical matri%:1®

term. Taking 0, 6) to be the basis suggested by the separable Although there is empirical evidence that the approxi-

Ho the Hamiltonian may be written as mate Hamiltonian obtained by perturbation theory may give
_ good quantum results even when the classical dynamics of
H(J,0)=Ho(D)+eX ' > Vp(J)eP?, (2)  the approximate Hamiltonian differs significantly from the
n*0 p=0 dynamics of the real HamiltonidA**8it is an inherent prob-
wheren is a vector of integers with no common factgins- €M Of the perturbative approach that one does not kaow
dicated by the prime on the summation Sigfihe terms in ~ Priori hov_v we_II the resulting Hamlltoman approximates the
the sum with ann containing both positive and negative "¢l Hamiltonian. Furthermore, as pointed out by Lynch and
numbers represent non-linear resonances. Whether the§g!lman” at higher energy the terms that are considered to
resonances are “active(giving rise to resonance zonesan P fast may become important. These are, formally, not
to some extent be determined from the commensurability oPrésent in a Hamiltonian obtained by perturbation theory and
the zeroth-order frequencies(J) = dH(J)/4J; in the sense  MUSt, SO to speak, be put in by hand on top of the perturba-

that only terms for which a resonance condition, tive result.
In the present work we therefore suggest a non-
n- w(J)~0, 3 perturbative way to find an optimal basis. For nearly sepa-

rable systems Chapman, Garrett and MilEGM)>2° have

is met give rise to resonance zones. In the following we Usgieyeloped a non-perturbative method for finding EBK in-
the symbolr to denote vectors satisfying S“Sh a cnondltlon. variant tori. Using a generalized version of this method we
Dynamically speaking these terms are “slow” whereasgeaych for a family of tori with integer or half-integer actions
the terms not satisfying such relations which includes thghich then become the basisvhere the non-separable
term_s withn having _elements all o_f the same sign are “fast.” yamiltonian can be represented by as fels as possible.
To first order classical perturbation theory tells us that thegince the basis constructed this way takes into account the
Hamiltonian in Eq.(2) can be approximated by an effective 5c1yal resonance structure of the system, a representation in
Hamiltonian obtained by averaging out the fast terms leaving,cn a basis is termed #mtrinsic Resonance Representation

only Fourier components with vectors satisfying E8.°  (|RR). First, we summarize the original CGM method.
This, in effect, corresponds to a first order change of biésis.

Implementing higher order perturbation theory, the basis ca
be improved to get a better approximate Hamiltonian tha
still contains only Fourier terms that originate from active We briefly review the CGM method to find invariant
resonances. tori. This method essentially solves iteratively the Hamilton—
The number of active resonances usually depends on thkacobi equation in order to determine the good actions. As-
total energy, increasing when the energy is increased. If theume that the Hamiltonian is expressed in a zeroth order set
number of active resonances is smaller than the number aff action-angle variablesJ(#) where 0 is non-cyclic. The
degrees of freedom the change of basis may relagmgdroxi- goal is then to determine a canonical transformation
mate dynamical constants which play the role of good quan+J, 8 — (I, ¢) such that the Hamiltonian depends on the ac-
tum numbers in a semi-classical theory. These constants ébns | only. The Hamilton—Jacobi characteristic equation
the motion are combinations of basis actiths -1’ where  can only be solved provided that an invariant torus with ac-
the vectorsg span a space orthogonal to the space spanneiibn integralsl exists(which is quite possible by virtue of the
by the resonance vectorg® giving rise to the quantum num- KAM theorem. To solve the Hamilton—Jacobi equation us-
bersk=q-(n+1/2). ing an iterative scheme, the actiodisshould define a torus

pl. INVARIANT TORI

J. Chem. Phys., Vol. 106, No. 20, 22 May 1997
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that is “topologically close” to the target torushe transfor-  actions of the invariant torus. Thus, at each step the action
mation fromJ to | must be a continuous deformation of the map, J(1,0) =1+ VG(™(l, ), defines a new torus with the
identity). It is therefore clear that when phase space is disame action integral§ p-dg=1., e=1,...N. It is on this
vided into topologically distinct zones, different zeroth ordernew torus that all Fourier transforms are evaluated. The se-
set action-angle variables must be utilized to obtain invarianuence of generating functio®™(1, ) is supposed to con-
tori in their respective regions of phase space in the CGMrerge to the solutiorG(l,8) of Eq. (8). The iteration is

approach. stopped when the action map defines a torus where the
The generating function for the transformati@i,#) is  Hamiltonian is constant. It is the fact thhtis a constant
therefore written a$(1,0)=1- 0+ G(l,6) such that parameter set from the beginning that makes this method

_ suitable for EBK quantization.
J=1+VG(.0), ©) The original CGM method never needs the angle map,
d=0+V,G(1,0), (7) ¢é=0+V,G(l,0). However, for what follows we need an
approach where both the new actiand angles are known.
To do this, at each step of the iteration we find the angles
H(I+VG,0)=E(l). 8 conjugate to the actions obtained at that step. The Fourier
) . ) _transforms of the Hamiltonian on the torus are evaluated in
Th? CGM methoq solves 'thls_equatlon In Fourier space iermg of the new angles; i.e., the coordinate system is
which the generating function is represented as changed at each step. The Hamiltonian is represented in a set
, , of canonically conjugate coordinates during the process of
G(|,0)=2k Gy(1)e'*?, (9 iteration, which is desirable in the next section where the
Hamiltonian is allowed some dependence of the final angles.
where the prime on the sum implies that the constant ternThe new angles at stapis given by
k=0 is omitted. DefiningH’(l,8)=H(J(l,0),0) we can

and the Hamilton—Jacobi equation then reads as

write ¢M=0+V,G"(,0), (14)
_ which can be inverted to obtai#= (1, ™) using a scheme
H'(|,0)=; HA[{G1(1)em, (100 provided by Warnock and Ruff.
where

. IV. CONSTRUCTION OF AN OPTIMAL BASIS
(G0 =2m [ doe
As described in Sec. Il, an optimal semi-classical basis is
, _ a single family of tori on which the Hamiltonian under con-
+ 2 ikGy(1)e, 0) (11)  sideration has a simple angular dependence. This basis con-
X sists of the usual EBK tori of the Hamiltonian only if it is
and the equations to solve become the non-linear functionalearly separable. In this section we suggest a generalization
equations, of the CGM method which can be used to find such a family
of tori in the non-separable case and which, at the same time,

Hi[{Gid](1)=0, n#0. (12 determines the Fourier components of the Hamiltonian on
For aG that solves these equations, the energy on the invarihese tori.
ant torus determined by the value df is given by First, let us consider a coupled system containing a
E(1)=Hg[{G}1(1). single primary resonance with the resonance vecton-

A study of the convergence properties of iterationstead of seeking action-angle variablesd) where the
schemes to solve Eq12) has been made by Warnock and Hamiltonian depends only on the action integiaise seek a
Ruth?® Kaasalainen and Binney have devised a scheme tget of action-angle variables where the Hamiltonian is on a
construct suitable actiorsunder rather general conditiofs. resonant _form, that is, a transformation such that
Implementing a Newton—Raphson iteration scheme, at eadd(J,0)=H(l,r- ¢6) wherer is a resonance vector. In order
step of the iteration one solves the following linear systemo do this, we search for a generating function,

(n#0):

, HIH{G Y o
% n—aGk, SGV=H[{G"" 1], (13)

G(l ,0)=; "Gy(1)eke?, (15)

where the double prime on the sum implies that the terms
where G{"™ 1) denotes the Fourier transform & at the Kk=pr are omitted; that satisfies a modified Hamilton—Jacobi
(n—1)'th iteration andG("=G{""V+ sG{" . 0 equation:

The first iteration is obtained by setting ﬂlko =0, so =
thatH' (%) is the Fourier transform of the Hamiltonian on the H(+VG, O =H(l.r- ). (16)
torus defined by zeroth-orddr During the iteratiorl is just  Defining H”(l,¢)=H(J(I,¢),#1,$)) we can write the
a fixed parameter which is set to the values desired for thélamiltonian as a Fourier series in the new angles,

J. Chem. Phys., Vol. 106, No. 20, 22 May 1997
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10

H'(1L )= 2 Hi[{G1(De", (17 y
with the Fourier components being ;
HA{GiH (1)

=(2w)*Nf dgpe "H |+;'ika(l)eik"",0 , (18 0

where the old angles are functions of the new action-angle
variables, 0= 6(1, ). The equations to solve then become 5
the non-linear functional equations,

Hi{G}1(1)=0, n#pr. (19)
-10 X
Again implementing a Newton—Raphson iteration scheme, at -10 -5 0 5 10
each step of the iteration one solves the following linear
system Q#pr): FIG. 1. Contours aE=5,10,...,50 of the Pullen—Edmonds potential.
s HIHGE N
%’ 76, 2ok =HIlG (29 v. A NUMERICAL EXAMPLE

In this section we illustrate our method with the Pullen—
followed by the inversion of Eq.(14) to obtain  Edmonds HamiltoniaR’
0=06(1,6). At the beginning of the iteration we set
G=0 implying that ¢®=@. The iteration is stopped Hzl(p
when the Fourier componentsi/[{G,}]1(l), n#pr are 2
smaller than the error one decides to tolerate. The desire@jith the parameterso,=w,=1 and e=0.05 Pullen and

X

1
2+ w2x?) + S Py + wy?) + ex?y?. (22)

resonant Hamiltonian is then given by Edmondé’ investigated the problem of the existence of regu-
lar and irregular components of the quantum spectrum. The
H L= H" (1)eP'9. 21 classical dynamics and the cIasm_caI/quantum mechanical
(.9) zp prl1) @D correspondence between highly excited stated states has been

studied by Anchelf® The potential is totally bound with

At this point a few things about convergence of the methoddiamond-shaped contoufsee Fig. 1 leading to four modes
should be noted. If the Hamiltonian is not truly single reso-of non-linear oscillation, each corresponding to the four sym-
nant, the above expression cannot be obtained exactly. Hownetry axis(two “local” and two “normal” modes). The
ever, if the stochastic regions and the resonance zones duedhoice of this Hamiltonian in our case is somewhat arbitrary
higher order resonances are very narrow, the procedure kut it has the quality of being simple and, yet, it exhibits
expected to converge in almost all phase space. In this corsome qualitative features that nicely illustrate our method. At
nection it should be kept in mind that the semi-classical repenergies lower than 20, the classical motion is quasi-
resentation only requires a discrete set of tori, namely thosmtegrable with the only active resonance being primary reso-
having integer and half-integer actions. nance between the uncoupled oscillators, whereas higher or-

Finally, it should be recognized that the phase-space toder resonances and fast terms become active at higher
pology of resonant and nearly resonant systems are alikenergies which ultimately makes the classical motion
and the resonant vector must be included in both cases thaotic>’?® In the quasi-integrable regime, quite strong dy-
obtain convergence. In this way the method does not distinnamical tunneling exists between the “local” modes. These
guish between these two cases. features imply that we can illustrate our method in the case

Above, it was assumed that only one resonance is activavhere only a single resonance condition has to be taken into
If more resonances or fast terms are active, these have to lecount(leading to a block-diagonal Hamiltonipand the
included in order to make the iteration converge. As in thecase where more terms need be included. Furthermore, the
original CGM method, the family of initial tori must be cho- simplicity of the Hamiltonian makes low order perturbation
sen to be “topologically” close to the final family. One theory very easy and the results obtained this way can then
simple way to choose the initial family is to choose a family easily be compared with our results. All numerical calcula-
that—upon using the original CGM method—converges lo-tions as well as symbolic manipulations presented in this
cally to one of the families of invariant tori, and then inclu- section were performed USINGATHEMATICA .
sion of sufficient resonant and fast terms will insure that this  Introducing the action-angle variables of the uncoupled
family will converge globally into an IRR basis. oscillators(representing the zeroth order “local” modes

J. Chem. Phys., Vol. 106, No. 20, 22 May 1997
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TABLE I. Quantum eigenenergies in the quasi-integrable regime and their

Py EBK tori semi-classical estimates obtained via different methods.
4
State QM EBK BG4) IRR
45 10.0133 10.0045 10.1985 10.0169
2 44 10.0129 10.0045 10.1985 10.0162
43 9.6987 9.6835 9.8519 9.6988
42 9.6859 9.6835 0.8435 9.6876
41 9.5166 9.4773 9.5905 9.5150
0 40 9.4265 9.4041 9.5045 9.4219
39 9.3806 9.4041 9.4199 9.3747
38 9.1577 9.1576 9.1819 9.1514
9 37 9.1548 9.1576 9.1731 9.1482
-4 EBK energies obtained in this way are presented in the third
column of Table I. The second column shows the quantum

-4 -2 0 2 4 eigenenergies in the corresponding energy range obtained by
_ f _ diagonalization in the harmonic oscillator basis. The eight
FIG. 2. Surface of section &f+15=9 (the sum of the good actions of the EBK energies of the quantized invariant tori are pair-wise
particular torug of the tori defining an intrinsic resonance representation. degenerate The degeneracy is broken in the quantum
eigenenergies, indicating the existence of dynamical tunnel-

12 Ing.

XZ(&) Cos By, Py=—(2J10y)Y?sin 6y, Now, let us turn to a low order perturbation treatment.
Wx (23) For the Pullen—Edmonds Hamiltonian, the Hamiltonian ob-
23,\12 _ tained by first order perturbation thedhand the fourth or-

= (w—y> cos by, py=—(2Jy0,)"%sin 6,, der Birkhoff—Gustavson normal fofhcoincide, and in the

case of no low order resonance,(/ w,# £.2,1) the result is
the Hamiltonian reads as Ll

ﬁ(|,¢)=wxll+wy|2+e L2 , (25
1+cos29,+cos29, WxWy

and in the case of a 1:1 resonaneg { wy=1) one obtains

Jidz
WyWy

H(J,0)= a)le-f- a)yJ2+ €

+ %(cosa 01— 6,)+cos 64+ 02))] . (29

H(,)=1,+1,+¢€l4l, 1+%0052(¢1—¢2)>. (26)

Choosing the same parameters as Pullen and EdmondI
let us first consider a low-energy situatigenergy around
E=9 was chosen in this cas&here the system is quasi-
integrable. The nine-fold degeneracy of the resonant har- Hp,={(n;+1/2)+(ny,+1/2)+ e(n;+ 1/2)(n,+1/2)}
monic oscillator att=9 is broken by the non-linear cou-

%1’ the latter case, the semi-classical Hamiltonian matrix be-
comes(for A=1)

plings. X Sy mt =€ Ni— = || Nyt —)6 )
The invariant tori, which fill up, practically, all phase Mot 2 2) e
space, are separated into two familigtocal” and “nor- 1 3 1
mal” modes each defined by its own set of good actions. A toemty nz—z) Snm—2r » (27)

straightforward application of the CGM method around
E=9 produces fori=1 eight EBK quantized invariant tori wherer=(1,—1). This is obviously a block diagonal matrix,
satisfying the conditiomf1+lf2=9 (where the superscript in- where each block is characterized by the conserved quantity
dicates the two different definitions of actionfour obtained |;+1,=n;+n,+1. Diagonalizing the block characterized
with the action-angle variables defined in Eg3) as starting by I,+1,=9 gives the results listed in the fourth column of
point and four obtained starting with action-angle variablesTable I. Although the energies are no longer pair-wise de-
rotated /4 in configuration space with respect to these. Agenerate, the results are considerably less accurate than the
surface of section at=0, p,>0, of these eight tori is shown EBK energies. Therefore, a perturbation treatment must cer-
in Fig. 2, where the EBK tori are drawn with thick curves. tainly be carried to a much higher order for this system to
The inner and outer island correspond to the “local” modesgive useful results.

whereas the two intervening islands are the “normal” modes  Alternatively, we now apply the IRR method. The start-
(the small rectangle in each island gives an idea of the wajng point is the Hamiltonian in the zeroth order action-angle
the tori of that island look like in configuration spactnter-  variables, Eq(24). We then search iteratively for solutions
polation yields the EBK-quantized separatrix between thel,$) of the modified Hamilton—Jacobi equation, EG6),
islands(shown with thick dashed curves in Fig. Zhe nine  with r=(1,—1) for all integer and half-integer actiohgsand
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9.5
E
43.7
9.45
43.6
€
9.35 434
0.049 0.0495 0.05 0.0505 0.051
9.3 .99 0.995 1 1.005 1.01 FIG. 4. Quantum and IRR eigenenergies in the chaotic regime as a function

of the perturbation strength.

FIG. 3. Crossing of EBK energies and anti-crossing of quantum and IRR
eigenenergies in the quasi-integrable regime as a function of the frequency
ratio of the unperturbed system. diagonal but the coupling structure is still simplified with the

blocks yielded byr=(1,—1) coupled by the increasingly
strong matrix elements generated ywarying the coupling
trengthe, Fig. 4 shows the anti-crossing of two quantum
nergies in the classically chaotic regimeontinuous
curves. The corresponding eigenvalues of the IRR are

dashed curveiha}lf-mteger quantization Note that these shown with the dashed curves illustrating an excellent agree-
curves are oblivious to the 1:1 resonance local-normod ent

structures present in the surface of section. This is actually
what we desire and is a result of using the correspondin
resonance term in Eq16) on the right hand side. The main % CONCLUSIONS
point is that the tori of the modified problem, E46), nicely The structure of a matrix representation of a Hamiltonian
interpolate between resonance islands arake an optimal depends of course on the basis in which the matrix elements
basis for describing the true eigenstat@fe diagonalization are evaluated. In the present work we have been concerned
of the 9X 9 semi-classical block obtained this way gives thewith a system of coupled oscillators. In a semi-classical rep-
results in the fourth column of Table I. These energies are imesentation, the basis essentially lives on tori in phase space
very good agreement with the quantum eigenenergies. Thigiven by the choice of action-angle variables. A natural
last step is a “uniform” one, i.e. diagonalizing a small basis. choice for a quantum mechanical basis would be the eigen-
All the methods discussed here have been unif@ren, in-  functions of the uncoupled system, and correspondingly one
corporating quantum solutiongn some sense. For example choice for the semi-classical basis is the tori of the uncoupled
in reduction to a pendulum Hamiltoniawia a canonical system. This choice may not however be the most conve-
transformatior(ignoring fast termsone uses finally the pen- nient or optimal. The coupling structure in a semi-classical
dulum eigenstates, not the semi-classical states, which woulegpresentation is determined by the angular dependence of
again be degenerate at the simplest ledle do not con- the classical Hamiltonian in action-angle variables defining
sider a final step of a tunnel integral rather than a uniformthat representation. The goal of finding an optimal represen-
approximation; this is a possibility if the barriers are robusttation is thus to find a basis in which the angular dependence
and tunneling is small. The small diagonalization is muchof the classical Hamiltonian is minimal.
more general and handles weak barriers,) ditteger tori In previous works the “optimal” action-angle variables
couple diagonal elements separated by an odd number diave been obtained by classical perturbation theory. In this
guanta(as for instance two neighbgrand half-integer tori paper we have presented an alternative, non-linear iterative
couple diagonal elements separated by an even number pfocedure. In the perturbative approaches one does not work
guanta. directly with the dynamics of the classical system but merely
Furthermore, we have considered the result of solvingperforms a series of canonical transformations on the Hamil-
Eq. (16) in a slightly non-resonant case. Figure 3 shows theonian itself. The input in both cases is the desired angular
anti-crossing of the two quantum eigenenergies of states 3@pendence in the final action-angle variables. In rigorous
and 40 (continuous curvesas the parametew, is swept perturbation theory these only correspond to exact reso-
around the resonant valug,= 1. The crossing of the corre- nances in the zeroth order Hamiltonian and other terms must
sponding EBK energies is also showaotted curves The  be put in by hand. Since the true dynamics is not considered
IRR eigenvaluegdashed curvesanti-cross and approximate there is, in general, no knowledge about how well the Hamil-
fairly well the quantum ones throughout the anti-crossingtonian in the final action-angle variables approximate the
region. original Hamiltonian. On the other hand, in our approach we
We turn to higher energy where the dynamics is chaoticsearch for actual tori. The existence of these tori ensures that
In this case the inclusion of only the resonance vector is noanticipated angular dependence is sufficient, whereas if the
sufficient to obtain convergence; a second vector has to beri can not be found, the input is insufficient. Thus, our
included. Inclusion of the fast terms arising from the vectormethod takes into account the true dynamics of the classical
s=(1,1) is sufficient to obtain convergence at energiessystem incorporating terms corresponding to the “active”
around 50. Of course, the Hamiltonian is no longer blockresonances and, perhaps at high energy, their corresponding

I, satisfyingl,;+1,=9. All the 17 tori defined by this con-
dition can be found and these tori are also shown in Fig.
with thin continuous curvesginteger quantizationand thin
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fast terms. A representation constructed on such a resonaeigenenergies are in excellent agreement with the quantum
basis we termed an intrinsic resonance representdfRi).  ones also at higher energies.

The main point is that our basis is small, and physically
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