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Effects of nonlocal dispersive interactions on self-trapping excitations
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A one-dimensional discrete nonlinear Schro¨dinger ~NLS! model with the power dependencer2s on the
distancer of the dispersive interactions is proposed. The stationary statescn of the system are studied both
analytically and numerically. Two types of stationary states are investigated: on-site and intersite states. It is
shown that fors sufficiently large all features of the model are qualitatively the same as in the NLS model with
a nearest-neighbor interaction. Fors less than some critical valuescr , there is an interval of bistability where
two stable stationary states exist at each excitation numberN5(nucnu2. For cubic nonlinearity the bistability
of on-site solitons may occur for dipole-dipole dispersive interaction (s53), while scr for intersite solitons is
close to 2.1. For increasing degree of nonlinearitys, scr increases. The long-distance behavior of the intrin-
sically localized states depends ons. Fors.3 their tails are exponential, while for 2,s,3 they are algebraic.
In the continuum limit the model is described by a nonlocal NLS equation for which the stability criterion for
the ground state is shown to bes,s11. @S1063-651X~97!12205-X#

PACS number~s!: 03.40.Kf, 42.65.Tg, 63.20.Pw, 87.10.1e

I. INTRODUCTION

Recently, the determination of the dynamical properties of
physical systems with competition between discreteness,
nonlinearity, and dispersion has attracted a growing interest
because of their wide applicability in various physical prob-
lems. Examples are coupled optical fibers, arrays of coupled
Josephson junctions, nonlinear charge and excitation trans-
port in biological macromolecules, elastic energy transfer in
anharmonic chains, and charge transport in hydrogen-bonded
systems. It is well known that the balance between nonlin-
earity and dispersion in a weak nonlinearity~large disper-
sion! limit provides the existence of low-energy solitonlike
excitations. They are very robust and propagate without en-
ergy loss, and their collisions are almost elastic. Due to their
robust character the soliton excitations are important in the
coherent excitation transport in biological macromolecules
@1,2# and charge transport in organic semiconductors@3,4#.

As a result of the interplay between discreteness, disper-
sion, and nonlinear interactions, new nonlinear excitations,
namely, intrinsically localized oscillatory states, may appear.
The properties of the localized modes have been intensively
studied during the past years@5–14#. For monatomic lattices
with a nearest-neighbor harmonic interaction and quartic an-
harmonic interaction the localized states were found@9–11#
to have frequencies lying above the phonon band. In the case
of a one-dimensional~1D! nonlinear Schro¨dinger~NLS! lat-
tice @15# a localized mode lying below the linear excitation
band in the small-amplitude limit reduces to the one-soliton
solution of the continuum NLS equation.

Recently, a discrete NLS equation with ‘‘tunable’’ diago-
nal and off-diagonal nonlinearities that includes the inte-
grable Ablowitz-Ladik system@5# as a limit was introduced
in @16,17#. It was shown that reflection and translational
symmetries of the integrable NLS are broken by diagonal
nonlinearity and the properties of the Peierls-Nabarro poten-

tial as a function of the tuning parameter were studied. A
further study of the stationary properties of these systems
was recently performed in@18#. The nonintegrable dynamics
of a 1D discrete NLS system with an arbitrary degree of
nonlinearity was investigated in@19#. An analytical stability
criterion for solitons in the discrete NLS equation with an
arbitrary degree of nonlinearity was obtained in Ref.@20#. It
was shown that a process of quasicollapse may take place
when an unstable soliton transfers into an intrinsically local-
ized mode.

In the main part of the previous studies the dispersive
interaction was assumed to be short ranged and a nearest-
neighbor approximation was used. However, there exist
physical situations that definitely cannot be described in the
framework of this approximation. The excitation transfer in
molecular crystals@21# and the vibron energy transport in
biopolymers@2# are due to the transition dipole-dipole inter-
action with a 1/r 3 dependence on the distancer . The DNA
molecule contains charged groups, with a long-range Cou-
lomb interaction (1/r ) between them. In systems where the
dispersion curves of two elementary excitations are close or
intersect, effective long-range transfer occurs. Such a situa-
tion arises for excitons and photons in semiconductors and
molecular crystals~so-called polariton effects@21#!.

Until recently there have been few theoretical and numeri-
cal studies of the effect of long-range interactions~LRI’s! on
the properties of nonlinear excitations. Nonlinear waves in a
one-dimensional~1D! chain with a Lennard-Jones (2n,n)
interatomic potential were studied in@22#. It was shown that
the dynamics is governed by the Benjamin-Ono equation in
the casen52 or by the Korteweg–de Vries equation for
n>4. The effective mass of solitons in the Frenkel-
Kontorova model with a repulsive LRI, their shapes and
Peierls barriers were investigated in Ref.@23#. In @24# an
implicit form of solitons was obtained in a sine-Gordon sys-
tem with a LRI of the Kac-Baker type@25,26# and the de-
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pendence of the soliton width and energy on the radius of the
LRI was analyzed. It was postulated in@27# that the nonlin-
ear term in the sine-Gordon equation has a nonlocal charac-
ter and different soliton states, of topological charge zero,
were found to exist at a large enough radius of the interac-
tion. In @28# the effects of a long-range harmonic interaction
in a chain with short-range anharmonicity were considered.
It was demonstrated that the existence of two velocity-
dependent competing length scales leads to two types of soli-
tons with characteristically different width and shapes for
two velocity regions separated by a gap. The effects of long-
range interactions of the Kac-Baker type were studied in
static and dynamic nonlinear Klein-Gordon@23,29,30# and
nonlinear Schro¨dinger @31# continuum models. In@31# we
proposed a nonlocal NLS equation for systems with long-
range dispersion effects. In contrast to the usual NLS equa-
tion, stationary solutions exist only for a finite interval of the
excitation number. In the upper part of this interval two dif-
ferent kinds of stationary solutions were found. The kind that
contains a cusp soliton was shown to be unstable. It was also
pointed out that moving solitons radiate with a wavelength
proportional to the velocity. In Ref.@32# we proposed a non-
local discrete NLS model where the dispersive interaction
had a power dependence on the distance. It was found that
there is an interval of bistability in the NLS models with a
long-range dispersive interaction. One of these states is a
continuumlike soliton and the other is an intrinsically local-
ized mode.

The goal of this paper is to investigate both types of soli-
ton states in the discrete NLS model, on-site and intersite
states, and study the motion of solitons and Peierls-Nabarro
pinning. We develop also a quasicontinuum approach to the
problem. In Sec. II we present the analytical theory and the
results of numerical simulations of stationary states of the
discrete NLS model with a long-range dispersive interaction.
We discuss the bistability phenomenon for the two types
~on-site and intersite! of soliton solutions and their stability.
In the analytical part of this section we use a variational
approach exploiting an exponential-like function as a trial
function. Then, in Sec. III we investigate the long-distance
behavior of the nonlinear excitations and show that intrinsi-
cally localized states of the discrete NLS model with a dis-
persive interaction decaying slower than 1/r 3 have algebraic
tails. In Sec. IV we investigate the soliton states in a quasi-
continuum approximation and derive a continuum nonlocal
NLS equation. We show that the degree of nonlocality de-
pends on the dispersion parameters. In particular, fors52
~inverse square dependence on the distance of excitation
transfer! we obtain an equation, which we denote the
Hilbert-NLSequation, that has a form that is closely related
to the Benjamin-Ono equation. The stability of the ground
state of the nonlocal NLS equation is studied. Section V
presents the concluding discussion.

II. SYSTEM AND EQUATIONS OF MOTION

The model we study is described by the Hamiltonian

H5T1Us , ~1!

where

T5
1

2 (
n,m~nÞm!

Jn2mucm2cnu2 ~2!

is the dispersive energy of the excitation and

Us52
1

~s11!(n ucnu2~s11! ~3!

is the potential energy that describes a self-interaction of the
quasiparticle. In Eqs.~1!–~3! n andm are site indices and
cn is the excitation wave function. We investigate the model
with the following power dependence on the distance of the
matrix element of excitation transferJn2m5J/un2mus. The
constantJ characterizes the strength of the transfer ands is a
parameter that is introduced to cover different physical situ-
ations from the nearest-neighbor approximation (s5`) and
the dipole-dipole interaction (s53) to the long-range Cou-
lomb interactions51. We shall show that this equation hav-
ing tunable properties illuminates both the competition be-
tween nonlinearity and dispersion and the interplay of long-
range interactions and lattice discreteness. The degree of
nonlinearitys is another parameter that we include for gen-
erality, as it has been done in several previous works
@19,20,33,34#; however, the main part of this paper is con-
cerned with the cubic (s51) case.

From the Hamiltonian~1! we obtain the equation of mo-
tion i ċn5]H/]cn* for the excitation wave function in the
form

i ċn1 (
m~mÞn!

Jn2m~cm2cn!1ucnu2scn50, ~4!

where the overdot denotes the time derivative. The Hamil-
tonianH and the number of excitations

N5(
n

ucnu2 ~5!

are conserved quantities. Obviously, the Lagrangian for Eq.
~4! can be written via the Legendre transform ofH as

L5 i(
n

1

2
~ ċncn*2ċn*cn!2H. ~6!

We are interested in stationary solutions of Eq.~4! of the
form

cn5fnexp~ iLt !, ~7!

with a real shape functionfn and a frequencyL ~there
seems to be a rather great number of names for this param-
eter; we have here chosen the term ‘‘frequency’’ since this
appears to be the most common; see, e.g.,@34#!. This reduces
the Lagrangian~6! to L5L(nfn

22H and the determining
equation for the functionsfn becomes

Lfn5J (
m~mÞn!

un2mu2s~fm2fn!1fn
~2s11! . ~8!

Thus Eq.~8! is the Euler-Lagrange equation for the problem
of minimizing H under the constraintN5const.
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To obtain an approximate solution of the problem we use
an ansatz for a localized state in the form

fn5A N sinha

cosh$a~2d21!%
exp~2aun2du!, ~9!

wherea is a trial parameter andd is the position of the
center of the localized state, which, without loss of general-
ity, can be restricted to 0<d,1 for the infinite chain. The
ansatz~9! is chosen to automatically satisfy the normaliza-
tion condition

(
n

fn
25N ~10!

such that the problem of minimizingH under the constraint
N5const is reduced to the problem of satisfying the equation
dH/da50.

Variational approaches similar to the one described above
have recently@35,34# been used for the nearest-neighbor case
of Eq. ~4! to analyze static and dynamical properties of the
solitions. In particular, the work of Malomed and Weinstein
@34# is based on the same ansatz, while the work of Aceves
et al. @35# is based on an essentially different ansatz that is
too complicated for analytical analysis.

It will be shown in Sec. III that the long-distance behavior
of the excitation wave functionfn drastically depends on the
value of the dispersive parameters. Only for s.3 are the
tails offn exponential. However, a qualitative description of
the energy spectrum of the system can be obtained using the
trial function in the form~9! at anys.

To calculate the kinetic energyT we use the discrete Fou-
rier transform

F~k!5(
n

exp~ ikn!fn , J~k!5(
n

exp~ ikn!Jn ,

~11!

which permits us to rewrite Eq.~2! in the form

T5
1

M(
k
L~k!uF~k!u25

1

2pE2p

p

L~k!uF~k!u2, ~12!

where the spectrum function

L~k!5J~0!2J~k! ~13!

determines the linear dispersion of the excitations andM is
the number of sites in the system (M→`). For convenience
we shall use

J5
1

z~s!
, ~14!

with z(s) being Riemann’s zeta function

z~s!5 (
n51

`

n2s ~15!

to haveJ(0) independent ofs. Using

J~k!52J(
n51

`

n2scoskn5
2

z~s!
Re$F~eik,s!%

5
2J

G~s!
E
0

1

dz
~cosk2z!@ ln~1/z!#s21

z222z cosk11
, ~16!

where

F~z,s!5 (
n51

`

~zn/ns! ~17!

is the so-called Jonqie`re function~its properties are described
in Ref. @36#! and

uF~k!u25N
sinha

cosh@a~2d21!#S sinh2a

~cosha2cosk!2

12
sinh~ad!sinh@a~d21!#

cosha2cosk D , ~18!

we obtain, for the kinetic energy,

T52NH 12JS F~e2a,s21!sinha

cosh@a~2d21!#
1F~e2a,s! D J .

~19!

Inserting Eq.~9! into Eq. ~3! we get

Us52
Ns11

s11
f s , ~20!

where

f s5S sinhs11a

coshs11@a~2d21!#

cosh@~s11!a~2d21!#

sinh@~s11!a# D .
~21!

According to the variational principle, we should satisfy the
equationdH/da50, which yields

N58s11JH S 12
cosha

cosh@a~2d21!#
1~2d21!

3
sinhatanh@a~2d21!#

cosh@a~2d21!# DF~e2a,s21!

1
sinha

cosh2@a~2d21!#
F~e2a,s22!J S d fsda D 21

. ~22!

As a direct consequence of Eq.~8!, the frequencyL can be
obtained as

L52
1

N
~T12Us!, ~23!

with T andUs being defined by Eqs.~19! and~20!. We shall
study in detail the stationary states of the system for the case
s51. The two types of stationary states, on-site (d50) and
intersite (d51/2) states, will be considered separately.
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A. On-site localized states:d50

Figures 1 and 2 show the dependenceN(L) obtained ana-
lytically from Eqs. ~22! and ~23! for s51 and from direct
numerical solution of Eq.~8!. A monotonic dependence is
obtained fors.scr . For scr.s.2 the dependence becomes
nonmonotonic~of N type! with a local maximum and a local
minimum. These extrema coalesce ats5scr.2.72 @from
Eqs. ~22! and ~23!# and s5scr.3.03 @from the numerical
solution of Eq.~8!#. Fors,2 the local maximum disappears.
Thus the main features of all discrete NLS models with dis-
persive interactionJn2m decreasing faster thanun2mu2scr

coincide qualitatively with the features obtained in the
nearest-neighbor approximation where only one on-site sta-
tionary state exists for any excitation number. However, in
the case of the long-range nonlocal NLS equation~4!, i.e.,
2,s,scr , there exist for eachN in the interval

@Nl(s),Nu(s)# three stationary states with frequencies
L1(N),L2(N),L3(N). In particular, this means that in the
case of the dipole-dipole interaction (s53) multiple solu-
tions exist. The observed bistability is very similar to the
bistability observed in Refs.@20# and@34#, where the nearest-
neighbor case with an arbitrary degree of nonlinearitys was
studied. The bistability appears in this case fors above a
certain critical value.

Figure 3 shows that the shapes of these solutions differ
significantly. The low-frequency states are wide and continu-
umlike, while the high-frequency solutions represent intrin-
sically localized states with a width of a few lattice spacings.
For s*2 we can expand Eq.~22! in the limits a→0 and
1/a→0 and obtain that the inverse widths of these two stable
states are

a1'S N8JD
1/~s22!

5S N8JD
lnl /~122lnl !

, a3' lnSNJ D , ~24!

where l5exp(1/s) is the characteristic length scale of the
dispersive interaction. It is seen from these expressions that
the existence of two so different soliton states for one value
of the excitation numberN is due to the presence of two
different length scales in the system: the usual scale of the
NLS model, which is related to the competition between
nonlinearity and dispersion~expressed in terms of the ratio
N/J), and the range of the dispersive interactionl .

Exploiting that, for a,p, the Jonqie`re function
F(e2a,s) can be represented in the form

F~e2a,s!5G~12s!as211(
r50

`

z~s2r !
~2a!r

r !
, ~25!

we obtain, for the discrete lattice from Eqs.~22! and~23! in
the limit of small excitation numberN,

a5
z~s!

8z~s22!
N, H52

z~s!

64z~s22!
N3 for s.3;

~26!

FIG. 1. Number of excitationsN versus frequencyL. A com-
parison between analytical dependence Eq.~21! for s52.1 ~long-
dashed line!, 2.5 ~short-dashed line!, and numerical dependence
from Eq. ~4! for s52.1 ~dash-dotted line! and 2.5~full line!.

FIG. 2. Number of excitationsN versus frequencyL numeri-
cally from Eq. ~7! for s5` ~full line!, 4 ~dotted line!, 3 ~short-
dashed line!, 2.5 ~long-dashed line!, 2 ~short-dash–long-dashed
line!, 1.9 ~dash-dotted line!.

FIG. 3. Shapes of the three stationary states fors52.5 and
N53.1: the stable statesL50.21 ~long-dashed line! andL50.74
~full line! and the ustable stateL50.57 ~short-dashed line!.
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a5SNz~s!G~s!sin~ps!

8p~s21!~s22! D 1/~s22!

,

H5
22s

4~s21!S z~s!G~s!sin~ps!

8p~s21!~s22! D
1/~s22!

N~2s23!/~s22!

for s,3. ~27!

The particular values52 separates two different kinds of
behavior: fors.2, H→0, while for 1,s,2, H→` when
N→0 and the stable continuumlike soliton disappears. This
is confirmed by our simulation~see Fig. 2!.

B. Intersite localized states:d51/2

In Fig. 4 we plot the excitation numberN as a function of
the frequencyL for intersite localized states obtained from
the numerical solution of Eq.~8!. The analytical results ob-
tained from Eqs.~22! and ~23! for s51 andd51/2 are in
qualitative agreement with the numerical results, but the
quantitative agreement is not as good as in the on-site soliton
case. It is seen from Fig. 4 that this dependence is similar to
the dependenceN(L) obtained for on-site localized states
~see Figs. 1 and 2! but with the following distinctions.

~i! While theN(L) curves for on-site states with different
dispersion parameterss tend to coincide at highL, the same
curves for intersite states become parallel atL→`. The rea-
son for this difference is seen from the definition of the fre-
quency given by Eqs.~19!, ~20!, and~23!: for d51/2

N52L142
2

z~s!
~L→`!, ~28!

while for d50

N5L12 ~L→`!. ~29!

~ii ! The critical value of the dispersion parameter
scr8 .2.1 is much less than the value obtained for on-site lo-
calized states.

~iii ! The interval ofs where the two stable intersite states
can exist, 2,s,scr8 , is very narrow. Thus intersite localized
states are much less sensitive to the long-range character of
the dispersion than the on-site states.

To investigate the stability properties of the different sta-
tionary states we use the approach developed in@20# and find
that the positive definiteness of the dispersion termT given
by Eq. ~2! and the form of the nonlinear termU permit
generalization of the theorem given by Laedke, Spatschek,
and Turitsyn@20# to this nonlocal case. According to this
theorem, the necessary and sufficient stability criterion for
on-site stationary states is

dN

dL
5

d

dL(
n

fn
2.0. ~30!

Therefore, we can conclude that in the interval
@Nl(s),Nu(s)# there are only two linearly stable stationary
states@L1(N) andL3(N)#. The third state is unstable since
dN/dL,0 atL5L2.

At the pointsL(Nl) andL(Nu) the stability condition is
violated since (]N/]L)s vanishes. Constructing the locus of
the end points, we obtain the curve that is presented in Fig. 5.
This curve bounds the region of bistability. It is analogous to
the critical curve in van der Waals’ theory of liquid-vapor
phase transition@37#. Thus, in the present case we have a
similar phase transitionlike behavior where the two phases
are the continuum states and the intrinsically localized states,
respectively. The analog of temperature is the parameters.
For the parity-conserving~even! perturbations the stability
condition of intersite stationary states is the same as Eq.~30!,
but these excitations are unstable with respect to parity-
nonconserving perturbations. A typical evolution of these ex-
citations is presented in Fig. 6. It is seen that by choosing as
an initial condition the intersite state it transforms into an
intrinsically localized on-site state with a time-dependent
width.

Now we turn to discuss stationary states of the discrete
NLS model given by Eq.~4! with an arbitrary degree of
nonlinearity. The main properties of the system remain un-

FIG. 4. Number of excitationsN versus frequency,L numeri-
cally from Eq. ~7! for s5` ~full line!, 4 ~dotted line!, 3 ~short-
dashed line!, 2.5 ~long-dashed line!, 2 ~short-dash–long-dashed
line!, and 1.9~dash-dotted line!.

FIG. 5. End points of the bistability interval forN versus the
dispersion parameters. For s5scr the end points coalesce. Analyti-
cal dependence~dashed line! scr.2.72 and numerical dependence
~full line! scr.3.03.
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changed, but the critical value of the dispersion parameter
scr is now a function ofs. The results of the analytical con-
sideration confirmed by simulation~see Fig. 7! show that
scr increases whens increases. In particular, fors>1.4 ~the
value at which the discrete symmetric ground state can be
unstable in the nearest-neighbor approximation@20#; Mal-
omed and Weinstein@34# found the critical value to
s.1.32 due to the approximative character of the variational

approach! the bistability in the nonlinear energy spectrum
occurs even fors<6.

III. TAILS OF INTRINSICALLY LOCALIZED STATES

Investigating the asymptotic behavior of the excitations, it
is convenient to rewrite Eq.~8! ~we consider here the case
s51) in the form

fn5(
m

Gn2m~L!fn
3 , ~31!

where

Gn~L!5
1

2pE2p

p

dk
cos~kn!

L1L~k!
~32!

is the Green’s function. For largeunu, the main contribution
to the integral on the left-hand side of Eq.~32! is due to
smallk. Hence we can extend the integration over the whole
axis and taking into account properties of the Jonqie`re func-
tion @36# in the k→0 limit, write the Green’s function~32!
for unu→` as

Gn~L!5
1

2pE2`

`

dk
cos~kn!

L1ask
n~s! , ~33!

where

n~s!5H 2 for s.3

s21 for 2,s,3,

and

as5H z~s22!

2z~s!
for s.3

2
p

G~s!z~s!cos~ps/2!
for 2,s,3.

Applying Jordan’s lemma we get

Gn~L!5
1

2ALas
e2AL/asunu, s.3 ~34!

Gn~L!5
1

L2 unu2s, 2,s,3, ~35!

so the Green’s function~32! decays exponentially only for
s.3. For s,3 the exponential decay is replaced by an al-
gebraic decay.

From Eqs.~31!, ~34!, and ~35! we see that the leading
term in the asymptotic expansion of the excitation wave
functionfn in unu is given by

fn;A~L!Gn~L!, ~36!

with

A~L!5(
n

fn
3 . ~37!

FIG. 6. ~a! Evolution of an intersite states52.57,N54.53.~b!
The intersite state used as the initial condition and the resulting
on-site state att540 whereN53.99.

FIG. 7. Critical dispersion parameterscr versus the degree of
nonlinearitys: analytical dependence~full line! and numerical de-
pendence~circles!.
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It is seen from Eqs.~34!–~36! that for all s.2, fn
3 is a

rapidly decaying function ofn. Hence, being interested in the
long-distance behavior of the intrinsically localized states
with large frequenciesL, we obtain from Eq.~31!

f0.G0f0
312G1f1

3 , ~38!

f1.G1f0
312G0f1

3 ,

where

G05
1

L11
1OS 1

~L11!3D , ~39!

G15
1

2~L11!2
1OS 1

~L11!3D .
Using Eqs.~38! and ~39!, we then get

f0.AL11, ~40!

f1.
J

2
A 1

L11
.

Inserting Eqs.~17! and~40! into Eq. ~36!, we obtain that the
tails of intrinsically localized states are given by the expres-
sions

fn→A~L11!3z~s!

2Lz~s22!
expS 2A2Lz~s!

z~s22!
unu D , s.3

~41!

fn→
~L11!3/2

L2 unu2s, 2,s,3 ~42!

for unu→`. Thus we can conclude here that only in the case
of the short-range dispersion (s.3) do the tails of intrinsi-
cally localized states have a usual exponential form. In the
systems with long-range dispersive interactions these states
have algebraic tails. Figure 8 shows the long-distance behav-
ior of intrinsically localized states for different values of the
dispersive parameters. It is seen that the form of the tails

predicted by Eq.~42! is in good agreement with the results of
numerical simulations. Moreover, Fig. 9 shows that theL
dependence predicted by Eq.~42! agrees rather well with the
numerical results.

IV. QUASICONTINUUM APPROXIMATION

Now we turn to discuss the quasicontinuum limit of the
discrete NLS model given by Eqs.~1!–~3! with arbitrary
dispersion parameters and arbitrary degree of nonlinearity
s. We are here interested in the case where the characteristic
size of the excitations is much bigger than the lattice spacing
~which we choose to be equal to unity!. It permits us to
replacecn(t) by the functionc(x,t) of the continuous vari-
able x and using the Euler-Maclaurin summation formula
@38# to obtain instead of Eq.~3! the expression for the po-
tential self-trapping energy

Us52
1

s11E2`

`

dxuc~x,t !u2~s11!. ~43!

Under the above-mentioned assumption the most important
role in the expression~12! for the kinetic energyT is played
by components with small wave numbers (k!1). Therefore,
we can safely extend the integration interval to the wholek
axis and get

T5
1

2pE2`

`

dkL~k!uC~k,t !u2

5E
2`

`

dxE
2`

`

dy@]xc* ~x,t !#q~x2y!]yc~y,t !, ~44!

where]x[]/]x and the Fourier transformQ(k) of the ker-
nel q(x) is given by

Q~k!5
1

k2
L~k!. ~45!

From Eqs.~43! and ~44! we obtain that the dynamics of the
excitation is governed by the integro-differential NLS equa-
tion

FIG. 8. Shape of the stationary state~dashed line! for s52.5 and
L50.7 and the result of Eq.~41! ~full line! on a log-log scale.

FIG. 9. Amplitude in the tail of the stationary state fors52.5
andn5450. Numerical results~circles! and Eq.~41! ~full line!.
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i ] tc1]x~ q̂]xc!1ucu2sc50, ~46!

whereq̂ is the Fourier multiplier operator defined by

~ q̂c!~k!5Q~k!C~k!. ~47!

The kernelq(x) in Eqs.~44! and~46! can be considered as a
generalized inverse effective mass of excitation. From Eqs.
~13! and ~45! we obtain that its Fourier transform can be
represented in the form

Q~k!5
2

k2
ReS 12

F~eik,s!

z~s! D , ~48!

where the Jonqie`re function F(z,s) is given by Eq.~17!.
Applying Eq.~25! for the Jonqie`re function, we obtain in the
long-wavelength limit~that is, for k!1) that the inverse
mass functionQ(k) can be expressed as

Q~k!5
z~s22!

2z~s!
1O~ks23!, s.3 ~49!

Q~k!5
1

2z~3!F31 lnS 1k2D G1O~k2!, s53, ~50!

and finally, for 2<s,3,

Q~k!52
p

G~s!z~s!cosS ps

2 D ukus231O~k0!. ~51!

It is seen from Eq.~49! that for s.3 the effective mass is
constant and Eq.~46! takes a common form characteristic of
the NLS models with a short-range dispersive interaction:

i
]c

]t
1

1

2m

]2

]x2
c1ucu2sc50, ~52!

wherem5z(s)/z(s22). Whens53 the dipole-dipole dis-
persive interaction makes the mass nonlocal, but this nonlo-
cality is rather weak since the inverse-mass functionQ(k)
given by Eq.~50! is a smooth~logarithmic! function ofk. In
contrast to this, for 2<s,3 the long-range effects make the
dispersion essentially nonlocal and, e.g., in the limiting case
s52 when, according to Eq.~51!, L.(6/p)uku the integro-
differential equation~46! can be rewritten as

i
]c

]t
1
6

p
HH ]c

]x J 1ucu2sc50, ~53!

where the notationH$ f (x)% denotes the Hilbert transform of
f (x) given by

H$ f ~x!%[PE
2`

`

dy
f ~y!

y2x
, ~54!

where the integral is a Cauchy principal value. Thus the dy-
namics of self-interacting particles in the systems where the
dispersive interaction decrease as 1/r 2 is governed by Eq.
~53!, which can be called aNLS-Hilbert equation. At this
point it is worth mentioning the formal similarity of Eq.~54!

and the perturbed NLS equation that arises from the descrip-
tion of Landau damping in a plasma~see, e.g., Ref.@39#!.

Now we want to discuss the stability of the ground states
of Eq. ~46! with the inverse mass given by Eq.~51!. The
stationary solutions in the form

c~x,t !5f~x!eiLt ~55!

of Eq. ~46! are stationary points of the Hamiltonian
H5T1Us for the fixed excitation numberN,

df~H2LN!50, ~56!

wheredf denotes functional variation with respect tof and

N5E
2`

`

dxuc~x,t !u2 ~57!

is the continuum analog of Eq.~5!. Letf(x,L) be a solution
of Eq. ~56! and use the scaling transformation

fp~x,L!5p1/2f~px,L! ~58!

with the scaling factorp. The transformation~58! conserves
N. For this transformation the functionalH becomes a func-
tion of the parameterp, so that the functional variation
changes into a variation ofp. The functionH(p) has an
extremum atp51 and we must determine whether it corre-
sponds to a maximum or a minimum. Inserting the function
~58! into Eqs.~43! and ~48! we get

Us~p![2
1

s11E2`

`

ufp~x,L!u2~s11!dx5psUs~p51!,

~59!

T~p![E
2`

`

dxE
2`

`

dy@]xfp~x!#q~x2y!]yfp~y!

5ps21T~p51!. ~60!

Note that (s21)T(p51)52sUs(p51) since dH(p)/
dpup5150 and

d2H~p!

dp2 U
p51

5~s21!~s2s21!T~p51!. ~61!

Since the quantityT(p51) is always positive, we may con-
clude from Eq.~61! that for

s,s11 ~62!

the functionH(p) at p51 has a maximum and the ground
statef(x,L) is unstable. In particular, the continuum NLS
models with the degree of nonlinearitys51 and dispersive
interactions that decrease slower than 1/r 2 have unstable
ground states.

As it was discussed above, the ground state of the NLS
model with the degree of nonlinearitys>1 ands52 is un-
stable, while it is stable whens,1 @40#. Therefore, we may
conclude that for the degree of nonlinearitys51 the low-
frequency~continuumlike! stationary states of the NLS mod-
els are exponential-like fors.2 and only fors,2 they have
algebraic tails~see Sec. II!.
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V. CONCLUSION

In summary, we have proposed a nonlocal discrete non-
linear Schro¨dinger model for self-interacting excitations with
power dependence on the distancer2s of the matrix element
of the excitation transfer. We have shown that the behavior
of all NLS models with a dispersion interaction decreasing
faster thanr2scr is qualitatively the same as the NLS model
with a nearest-neighbor excitation transfer. In contrast to this
there is an excitation number interval of bistability in the
NLS models with a long-range dispersive interaction
s,scr . In this interval two stable stationary states exist at
each excitation numberN. One of these states is a continu-
umlike soliton and the other one is an intrinsically localized
mode. The existence of the bistability phenomenon in the
NLS models with a nonlocal dispersion is a result of the
competition of two length scales that exist in the system: the
scale related to the competition between nonlinearity and
dispersion, and the scale related to the dispersion interaction.

We have considered two types of stationary states: on-site
and intersite states. We found that the critical value of the
dispersion parameterscr for the intersite standing state is
slightly above 2, while for the on-site stationary state it ex-
ceeds 3. This means that the bistable behavior may occur in
the case of self-interacting excitations with the dipole-dipole
excitation transfer.

We have shown that the long-distance behavior of intrin-
sically localized states in discrete NLS models with a nonlo-

cal dispersion depends drastically on the value of the disper-
sive parameters. The excitation wave functions decay
exponentially only for short-range dispersions. The nonlinear
excitations have algebraic tails in the systems where the ma-
trix element of excitation transfer depends on the distance
slower than 1/r 3.

We have also presented the quasicontinuum version of
our model. The dynamics of self-interacting excitations in
the continuum approximation is described by a nonlocal
NLS equation. In the case of the inverse square dependence
(r22) of the matrix element of the excitation transfer this
equation reduces to an equation that is a close analog of the
Benjamin-Ono equation in the theory of deep water waves
and may be referred to as the Hilbert-NLS equation. Finally,
the stability condition for the ground state of this equation
was derived.
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