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1. Abstract
In electromagnetic optimization problems involving metallic microwave devices, such as resonators for
wireless energy transfer, the volumetric distribution of good conductors, e.g. copper, have been known
to cause numerical bottlenecks. In finite element analysis the limiting factor is the so-called skin depth,
which calls for highly refined meshing to capture the physics. This has until now prohibited the appli-
cation of topology optimization to such problems. In this paper we present a design parametrization
that remedies this numerical bottleneck by interpolating between Maxwell’s equations and an element
impedance condition. The proposed design parametrization is confirmed by numerical examples.
2. Keywords: topology optimization, conductor design, finite elements, Maxwell’s equations.

3. Introduction
The motivation for this work originates from the ever increasing usage of small handheld, or autonomous,
electrical devices. Such devices, apart from their distinct functionality, share some general design issues.
The devices used for communication relies heavily on an efficient antenna, confined within the geometric
specifications of the device. A typical antenna is a metallic device connected to a transmission line [1].
However, common for all small electrical devices is that they consume energy. This ultimately means that
the devices are no better than their power supplies allow them to be. The solution to the power problem
took a new turn in 2007, where a MIT group lead by Prof. M.Soljacic demonstrated that one could obtain
efficient mid-range wireless energy transfer (WiTricity) using magnetically resonant coupled copper coils
[2]. The design of antennas and the design of transmitters/receivers for WiTricity, are therefore obvious
candidates for the topology optimization method.

Topology optimization has proven to be a very successful design tool for general mechanical problems
[3, 4]. Also in electromagnetic (EM) problems involving distribution of dielectric materials, e.g. dielectric
antennas [7] and photonic crystals [5], the method has been applied with success. This work contributes
with knowledge on how to obtain a numerically efficient topology optimization method for EM problems
involving the distribution of a good conductor, such as copper, in the radio frequency (RF) range, i.e. 3
Hz to 300 GHz.

Previous work conducted on the subject is sparse due to the aforementioned numerical bottleneck,
and the fact that until very recently, standard antenna designs and power supplies were adequate for
almost all applications. However, in [8] the authors demonstrates the possibilities of applying gradient
based topology optimization to the design of conformal electrically small antennas [1]. Though successful,
the authors addresses the skin depth problem as a limiting factor, which should be remedied. Others,
such as [9], have used generic algorithms (GA) for the volumetric distribution of copper in antenna design
problems. Also here the authors obtain good designs, but are limited by the combinatoric approach used
in GA.

3.1. Paper Outline
The remainder of this paper is organized as follows. First the governing equations and conductor modeling
relevant for the development of the design parametrization is introduced. Next the finite element equations
are discussed. The design parametrization is then introduced based on ideas from EM modeling in relation
with the weak form. The proposed design parametrization is then confirmed by numerical examples.
Finally the findings are summarized.

4. Physical & Numerical Model
In this section the governing equations necessary for the development of the design parametrization will
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be introduced. This includes Maxwell’s vector wave equation, the associated weak form along with the
impedance condition.

4.1. Maxwell’s Equations
Maxwell’s equations for a linear, isotropic medium with no free charges, can be cast in the frequency
domain assuming time-harmonic waves using the time convention u(x, t) = R

[

u(x)ejωt
]

, where ω is the
frequency, j represents the imaginary unit and R(·) is the real part [10]. By trivial manipulations, the set
of first order partial differential equations (PDEs), can be recast as a single second order PDE in either
the electric field, E, or the magnetic field, H . For the electric field it can be stated as

∇×
[

µr(r)−1∇× E
]

− k2
0ǫc(r)E = 0 (1)

where r is the position, k0 = ω
√

ǫ0µ0 is the free space wave number, ǫ0 is the free space permittivity
and µ0 the free space permeability. The material specific parameters µr(r) and ǫc(r) are the relative
permeability and relative complex permittivity respectively. The complex permittivity is given by

ǫc(r) = ǫr(r) − j
σ(r)

ωǫ0
(2)

where ǫr(r) is the dielectric function and σ(r) is the electric conductivity. With respect to the topology
optimization problem, the position dependent material parameters, µr(r), ǫr(r) and σ(r) are the unknown
functions to be determined.

4.2. Impedance Condition
Before presenting the weak form, or finite element form, of the vector wave equation the notion of
skin depth is introduced. In EM wave propagation the skin depth, δ, is a measure for the distance
through which the amplitude of a traveling plane wave decreases by a factor e−1 in a conductor [1]. An
approximation can be obtained through the following formula

δ =
1√

πσµω
(3)

The skin depth is important since most microwave devices have sizes in the order of mm, while the skin
depth typically is in the µm range, i.e. three orders of magnitude smaller. To put skin depth into the
context of finite elements and topology optimization, let us consider an example in which we wish to use
a small cube of 2×2×2cm for design domain. The target frequency is set to 300 MHz and the conductor
is chosen to be copper with σ = 5.998 ·107S/m. In that case the skin depth becomes δ = 3.8 ·10−6m. For
topology optimization each element in the mesh is possibly metallic, and thus the whole domain must
be meshed such that the skin depth can be resolved. Using simple first order finite elements one should
have at least two elements per skin depth to capture the rapid decay. This leads to approximately 10.000
elements in each spatial direction, i.e. a total of 1012 elements in 3D. Such numbers of elements implies
that direct interpolation, as done in most other topology optimization problems [4], is insufficient for the
microwave problem.

Due to the skin depth issue most numerical modeling of metallic devices utilizes boundary conditions
to represent the conducting regions. For perfect electric conductors (PEC), i.e. σ = ∞, the skin depth
is zero, and the metal can be modeled by a homogenous Dirichlet condition for the electric field and a
homogenous Neumann condition for the magnetic field. For finite conductivity an approximate relation
between the electric and magnetic fields can be used, which can be stated as a mixed boundary condition
on the same form for both fields [11]. Below the approximate condition is stated for the electric field

n ×
(

[µd
r ]

−1∇× E
)

+ jk0

√

ǫm
c

µm
r

n × (n × E) = 0 (4)

where n is normal vector pointing into the conductive region, (·)d and (·)m refer to the dielectric and
the metal respectively. Note that an equivalent formulation can be derived for the magnetic field form
of Maxwell’s equations. The condition in Eq.(4) is called an impedance conditions, and it forms the
backbone for the material interpolation scheme to be presented in the upcoming chapter.

4.3. Weak Formulation
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Figure 1: Illustration of a general EM topology optimization prob-
lem which can be used for the design of microwave antennas, mag-
netic resonators, etc.

In this section the numerical solution to Maxwell’s vector wave equation is addressed. Numerical methods,
such as integral methods, finite elements and finite differences, could all be used for the Maxwell problem,
but due to geometric freedom and sparsity of system matrices the finite element method is preferred and
used in the work presented here.

The finite element formulation, or weak form, can for obvious reasons not determine the solution to
Maxwell’s equations in infinite space. Therefore the domain of interest is truncated and some approxi-
mation to the Sommerfeld radiation condition [10] is applied at this boundary. The most frequently used
numerical techniques for truncation includes absorbing boundary conditions (ABC), perfectly matched
layers (PML) and finite element boundary integral (FE-BI) methods [11]. A general sketch of an analysis
problem including optimization can be seen in figure 1. Let Ω be the total computational domain, and Γ
the truncation boundary. For e.g. the electric field the problem becomes to find W ∈ H0(curl, Ω)

∫

Ω

[

(∇× W ) · µ−1
r · (∇× E) − k2

0W · ǫc · E
]

dΩ

−
∫

Γ

W ·
[

n ×
(

µ−1
r · ∇ × E

)]

dΓ = 0 (5)

∀E ∈ H(curl, Ω)

where W is a vector test function. For more details on the vector, or edge, based finite elements associated
with the function space H(curl, Ω) the reader is referred to e.g. [11, 12]. The surface integral in Eq. (5)
means that the discrete form, or FE equations, depends on the specific boundary condition applied on
Γ. Therefore, and not to loose generality, the discrete form will not be specified until the presentation of
a numerical example.

5. Design Parametrization
The design parametrization presented next follows the standard topology optimization approach in which
each element in the finite element mesh is associated with a continuous design variable, or density,
0 ≤ ρe ≤ 1. The design variable is used to interpolate between candidate materials which in this setting
is a conductor, (·)m, and a dielectric (·)d. Intermediate values of the design variables are unwanted
since these are difficult to interpret physically and thus makes the optimized designs hard to fabricate.
Therefore the interpolation functions must be chosen such that regions of intermediate densities are
minimized.

5.1. Design Dependence in Maxwell’s Equations
In order to circumvent the limitations induced by the skin depth problem, the design parametrization is
based on a mixture of Maxwell’s equations and an element impedance condition. This is to be understood
as if each element of conducting material is replaced by an impedance condition. For a single design
element this can be stated generally without specifying the interpolation functions as

∇× (Ã∇× u) − k2
0B̃u = 0, in Ωe

n × (A∇× u) − f(ρe)jk0

√
ABn × (n × u) = 0, on Γe

(6)
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Table 1: Field dependent parameters for the design parametrization used for conduc-
tor/dielectric based topology optimization, Eqs.(6). The superscripts (·)d refer to the di-
electric and (·)m to the metal. The functions µr(ρ

e), ǫr(ρ
e) and σ(ρe) is given in Eq. (7).

u A B Ã B̃

E (µm
r )−1 ǫm

r − j σm

ωǫ0
µr(ρ

e)−1 ǫr(ρ
e) − j σ(ρe)

ωǫ0

H
(

ǫm
r − j σm

ωǫ0

)−1

µm
r

(

ǫr(ρ
e) − j σ(ρe)

ωǫ0

)−1

µr(ρ
e)

where Ωe and Γe refer to the element volume and boundary respectively, and n is an outward normal for
element e. The dependent field u and its associated parameters A, B, Ã, B̃ are given in table 1. Note
that the sign in the impedance condition has changed, since the normal now points into the element. The
function f(ρe) is included to control the presence of the element impedance condition. When f(ρe) = 0
only the first term of the element boundary condition in Eq. (6) remains and is equated to zero. With
respect to the weak form this means that the boundary integral in Eq. (5) disappears and therefore that
the standard wave equation is obtained. For f(ρe) = 1 the impedance condition is present and the wave
equation is suppressed, hence the skin depth is resolved.

Note that this approach does not allow for direct interpolation of the conductivity in the element
impedance condition, since for σ = 0 we have that ǫc = ǫr which means that the element boundary con-
dition does not vanish for ρe = 0. Also the physical interpretation of intermediate densities is uncertain,
though one might be able to link them to materials with varying conductivities. However, if the final
design has ρ = 0 or ρ = 1 in all design elements, the physical performance of the optimized design has
been analyzed with a correct physical model. Thus, if the design parametrization is devised such that
the final design is black and white, there is no problem in allowing the optimizer to pass through inter-
mediate densities during the iterative optimization process. This is a commonly used trick in topology
optimization [4] and will also be used in the work presented here.

5.1. Interpolation Functions
The last step is to determine the interpolation functions identified in Eq.(6) and Table 1. The functions
should be chosen such that the following requirements are met best possibly. The interpolation functions
must be valid for both the electric and magnetic field formulation of Maxwell’s equations. Furthermore,
the functions have to be monotonically varying and have the property that a small change in ρe should
lead to a small change in system response. Finally the interpolation functions should, if possible, result
in designs free from intermediate values of ρe. In some topology optimization problems a penalization
parameter is required to obtain black and white designs, as done in e.g. in the Solid Isotropic Material with
Penalization (SIMP) scheme, where the stiffness is penalized to make intermediate densities uneconomical
[13, 4] for the optimizer. However, as will be explained in the following section the EM optimization
problem does not require any type of penalization to ensure black and white designs.

The functions presented below are determined based on numerical studies.

µr(ρ
e) = µd

r + ρe(µm
r − µd

r) σ(ρ) = 10(log10
(σd)+ρe[log

10
(σm)−log

10
(σd)])

ǫr(ρ
e) = ǫd

r + ρe(ǫm
r − ǫd

r) f(ρe) = ρpBC
e

pBC ≈ 13 for E pBC ≈ 1 for H

(7)

The linear interpolation of the permittivity and permeability is successfully adopted from e.g. [5], while
the interpolation function f(ρe) and σ(ρe) needs special attention. Interpolation of the conductivity is
made difficult due to the following two reasons. Firstly, the numerical range is huge, i.e. σ = 0 for
free space and σ = 107S/m for a typical good conductor [10]. Secondly, the conductivity is a damping
parameter for the EM fields. This means that even numerically small conductivities can lead to large
changes in field response, and furthermore that conductivities above a certain threshold limit will only
have a small influence on the response. Due to these issues it was found that the interpolation of σ was
best performed in the logarithmic scale, and then converted back to the physical scale using a power
function [14]. Finally note that σd must always be larger than zero, even for lossless dielectrics due to
the logarithmic interpolation. For lossless dielectrics we suggest to use σd = 10−4 based on the numerical
experiments.
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Figure 2: Sketch of the design problem for TE polarized waves.
The measures are rd = 1.0m, ro = 0.15m and rf = 2.5m. The tar-
get frequency is 300MHz and the materials are a good conductor
e.g. copper and air.

The interpolation function f(ρ) for the element impedance condition must take the difference in field
formulation into account. For the electric field the impedance condition is proportional to ǫc, while it is
proportional to the inverse, i.e. ǫ−1

c , for the magnetic field. From numerical experiments it was found that
f(ρ) for the electric field should be similar to a logarithmic function, while f(ρ) should be close to linear
for the magnetic field. Since we wish to use the same function for both field formulations, a polynomial
with varying exponent is a simple choice, i.e. f(ρ) = ρpBC . The exponent pBC , which should not be
seen as a penalization parameter c.f. the SIMP scheme [13], yields good results when using pBC ≈ 1 for
the magnetic field and pBC ≈ 13 for the electric field. The reason why a penalization parameter is not
needed for the EM problem is due to damping nature of the conducting material. By this is meant that
regions of intermediate conductivities slowly damps, or absorbs, the energy from the EM fields, while a
high conductivity means fast damping and thus that less energy is dissipated.

As already stated one can think of the design of electrically conducting devices as the distribution of
highly damping material. Due to numerical precision this means that σm larger than some value, σm

cutoff ,
does not change the system response much. With respect to the optimization a numerically large σm will
then lead to designs with intermediate design variables, since the optimizer won’t benefit from letting
σ(ρ) → σm. Therefore a study to determine the threshold values of σm has been conducted. For the
electric field the limit was found to coincide with the conductivity of copper, i.e. σm

Ecuttoff
≈ 107S/m,

while for the magnetic field it was lower, i.e. σm
Hcuttoff

≈ 106S/m. Hence, the design parametrization
should not be used to distinguish between good conductors such as copper and silver, but should merely
be used to model a good conductor.

6. Optimization Problem
In this chapter the optimization problem is to be introduced along with its numerical solution. The
problem to be considered is the design of a 2D magnetic resonator. This can be seen as a highly
simplified model for designing a device for energy harvesting from an incoming EM field. The objective is
to maximize the magnetic energy, Φ(ρ, H) =

∫

Ωobj µ|H |2dΩ, in an a priori specified part of the modeling

domain, Ωobj , for a target frequency of 300MHz. The design problem is illustrated in figure 2. The model
problem assumes transverse electric (TE) polarization, that is

H = Hz(x, y)ez

E = Ex(x, y)ex + Ey(x, y)ey

(8)

which leads to either the scalar Helmholtz equation for the Hz field, or a vector curl-curl equation for the
electric field in the plane. To demonstrate that the design parametrization works equally well for both
the electric and magnetic formulation, the design problem is solved using both formulations, i.e. nodal
elements for Hz and edge elements for Ex and Ey [11]. The modeling domain is truncated with a first
order absorbing boundary condition (ABC) located 1.5λ from the design domain. The complete discrete
formulation can now be stated as

(S(ρ) + A) u = f (9)
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Figure 3: Optimized designs for the problem in figure 2 for three different mesh
resolutions with fixed density filter. The number of design elements are (a) 15950
edge elements, (b) 15950 nodal elements, (c) 25292 nodal elements and (d) 41560
nodal elements. Convergence was reached in 120 to 350 iterations.

where S(ρ) refers to the design element contributions, A contains free space, fixed domains and domain
truncation contributions and f contains the system load. The system matrix for the design elements can
be computed for the electric field formulation as

S(ρ) =
N
∑

e=1

(

Ke(Ã) − Me(B̃) − Be(f(ρ), A, B)
)

Ke(B̃) =
∫

Ωe(∇× N) · Ã · (∇× N)dΩ

Me(Ã) =
∫

Ωe k2
0N · B̃ · NdΩ

Be(f(ρ), A, B) = f(ρe)jk0

∫

Γe(n × N) ·
√

AB · (n × N)dΓ

(10)

where N denotes the shape function. The contributions due to the ABC, free space and incident wave
can be computed as described in e.g. [15]. Using the shape functions the objective function can be
evaluated by

Φ(H , ρ) = H̄T QH , with Q =

Nobj
∑

e=1

µeN
T
e Ne (11)

where the overbar denotes complex conjugate and Nobj are the number of elements in Ωobj . The
optimization problem can be stated on standard form as

max
ρ∈R

N
log10(H̄

T QH)

s.t., (S(ρ) + A)u = f
∑ N

e
ρeVe

V f∗
− 1 < 0

0 ≤ ρe ≤ 1, e = 1, N

(12)
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Figure 4: Plot of the magnetic energy (a), the magnetic field (b) and convergence
history (c) associated with the optimized design in figure 3 (c).

where the second constraint is a restriction on the available material used to limit the amount of conductor
used for the design problem. The logarithm for the objective is included for proper numerical scaling
and the density filter, see [16, 17, 18], is applied to introduce a minimum length scale to the design
problem. Since the density filter introduces a region of undesirable intermediate design variables, it is
applied in conjunction with a continuation scheme such that the filter radius, Rmin, gradually approaches
zero as the optimization process progresses. The optimization problem is implemented in Matlab using
triangular nodal and edge based finite elements. The optimization problem is solved using gradient based
optimization algorithm the method of moving asymptotes (MMA) courtesy of K.Svanberg [19]. The
sensitivities are obtained using the adjoint method, see [5] for details.

6.1. Optimized Designs
The optimization problem is solved using σm = 106S/m and σd = 10−4S/m as candidate materials,
i.e. a good conductor in free space. The allowed volume fraction is set to 50% of the design domain
and the move limit for MMA is set to 0.3. The initial design is a uniform distribution of material in
the design domain with ρinit = 0.1 unless else is stated. The optimized designs shown in figure 3 are
obtained using a two step continuation approach for the density filer. First the radius is set to 0.08m
and upon convergence it is changed to zero and the optimization is continued. The optimized designs in
figure 3(a) and (b) are obtained using the same discretization but different formulations of the Maxwell
problem. In figure 3(a) the problem is solved for the electric field using edge finite elements, while the
problem in figure 3(b) is solved with nodal elements for the scalar magnetic field. The designs are seen
to be quantitatively the same with equivalent objectives, though the area to the right of the parabola
have different layouts. For the refined meshes the designs are still qualitatively equivalent to the ones
determined on the coarse mesh, but with improved objectives. The difference in objective is most likely
due to extra freedom associated with the higher number of design variables for the refined meshes. It
should be noted that since the incident field propagates from left to right, the influence of the structure
behind the parabola is minimal to the performance of the design. A plot of the magnetic field and energy
associated with the optimized design in figure 3(c) is shown in figure 4 along with the iteration history.
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Figure 5: Post processing results based on the optimized design of figure 3 (b). The
cut off is chosen as ρe > 0.3 → 1 and zero for all other elements. The frequency sweep
of the post processed design displays a maximum at 308 MHz with Φ = 0.42, while
the optimized design has maximum at 301 MHZ with Φ = 0.45.

From the plot of the magnetic energy, c.f. figure 4(a), it is clear that the energy on the left side of
the parabola is close to zero due to shielding effect of the conductor. From the convergence plot in figure
4(c) it is noticed that the convergence is monotone and smooth.

To validate the optimized designs and their performance, the optimized design in figure 3(c) is rendered
fully 0-1 by setting all ρe > 0.3 to one and all others to zero. The now well defined interface between
conductor and free space is then modeled by a PEC condition and analyzed by a frequency sweep. The
post processed design and plot of the frequency sweep can be seen in figure 5. Here it is noticed that the
magnetic energy has a maximum of Φ = 0.42 at 308MHz, while the optimized design shows a maximum
at 301MHz of Φ = 0.45. Both objectives are slightly better than the one predicted at 300MHz by the
optimized design, but it is especially interesting to see that the target frequency is shifted by 2.7% for
the post processed design. This shift in frequency is most likely due to the intermediate design variables
in the optimized design. By this is meant that the optimizer can utilize the grey elements to tune the
performance of the optimized design to the specified target frequency. When the intermediate design
variables are removed during post processing, it then leads to a shift in target frequency and to a small
change in objective value. Thus, to circumvent this issue a better filter and/or a combined approach in
which the topology optimization is followed by shape optimization should be applied.

7. Conclusion
In this paper we have developed a novel design parametrization, based on the interpolation between
Maxwell’s wave equation and an element impedance condition, which allows for numerically efficient
topology optimization of EM metallic microwave devices.

The design parametrization is shown to yield field independent designs meaning that equivalent designs
are obtained with the electric and magnetic field formulations of Maxwell’s equations. However, due to the
numerically large values of a good conductor it was found that the method cannot be used for distributing
specific conductors, e.g. silver or copper, but should merely to be used for modeling conductor and no
conductor. good conductor designs. The validity of the optimized design was confirmed by the post
evaluation in which the optimized design is rendered completely black and white. The now well-defined
interface between conductor and dielectric was then modeled by a PEC condition. This analysis showed
good agreement with the optimization results, though a shift in peak frequency was observed. The shift is
contributed to presence of intermediate design elements in the optimized design. This means that either
a better filtering technique should be applied, or the topology optimization should be followed by a few
iterations of a shape optimization scheme.

A more elaborate paper on this work, including several other examples, has been submitted as a
journal article.
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