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ABSTRACT

We propose the Time Frequency Gradient Method (TFGM)
which forms a framework for optimization of mod-
els that are constrained in the time domain while hav-
ing efficient representations in the frequency domain.
Since the constraints in the time domain in general
are not transparent in a frequency representation we
demonstrate how the class of objective functions that
are separable in either time or frequency instances al-
low the gradient in the time or frequency domain to be
converted to the opposing domain. We further demon-
strate the usefulness of this framework for three dif-
ferent models; Shifted Non-negative Matrix Factoriza-
tion, Convolutive Sparse Coding as well as Smooth
and Sparse Matrix Factorization. Matlab implementa-
tion of the proposed algorithms are available for down-
load at
www.erpwavelab.org.

1. INTRODUCTION

Factor analysis [1] is widely used to reconstruct multi-
ple latent effects from mixtures based on the model

xm,n ≈ ∑
d

am,dsd,n. (1)

However, the decomposition is not unique since Â = AQ
and Ŝ = Q−1S yield the same approximation as A, S.
Consequently, constraints have been imposed such as
Varimax rotation for Principal Component Analysis
(PCA) [2], statistical independence of the sources S as
in Independent Component Analysis (ICA) [3, 4]. A
related strategy is sparse coding where the objective
of minimizing the error is combined with a term en-
forcing sparsity of S [5].

Factor analysis in the setting of ICA is often illus-
trated by the so-called cocktail party problem. Here
mixtures of several speakers are recorded in a number
of microphones forming the measured signal X. The
task is to recover the original speech signals S. Harsh-
man and Hong [6] proposed a generalization of the
factor model in which the source signals may be de-
layed on arrival at the the sensors. The model is called
shifted factor analysis (SFA), and reads

xm,n ≈ ∑
d

am,dsd,n−τm,d
. (2)

equivalent models have been proposed in [4, 7, 8]. In
real acoustic environments we expect echoes due to
multiple signal propagation paths, that arise from re-
flections off surfaces. To account for general delayed
mixing, factor analysis models have been further gen-
eralized to convolutive mixtures, see e.g., [9, 10, 11, 12,
13]

xm,n ≈ ∑
τ,d

aτ
m,dsd,n−τ . (3)

Here Aτ is a filter that accounts for the presence of
each source in the sensors at time delay τ. The shifted
factor model, thus is a special case of the convolutive
model where the filter coefficients aτ

m,d = am,d if τm,d =
τ otherwise aτ

m,d = 0. A very comprehensive survey
of methods for convolutive ICA is found in [14].

It is well known that the frequency representation
of time series data provides an efficient framework
to account for models with shifts, convolutions and
smoothness due to the following basic observations

• Shift and convolution in the time domain cor-
responds to multiplication in the frequency do-
main.



• Smoothness of signals in the time domain cor-
respond to low frequency representations in the
frequency domain.

The presence of efficient FFT algorithms for transfor-
mation between the time and frequency domain has
a limited computational cost (O(n log n)). Unfortu-
nately, models are often constrained in the time do-
main in a way that is not transparent in a frequency
representation and this may hamper optimization in
the frequency domain. To improve component identi-
fiability we impose constraints such sparseness, non-
negativity, or smoothness. While shifts and convolu-
tion are efficiently implemented in the frequency do-
main constraints in the form of non-negativity, sparse-
ness and smoothness are typically defined in the time
domain without an explicit representation in the fre-
quency domain.

We will here propose a gradient based technique
that facilitates taking advantage of a frequency repre-
sentation while accounting for constraints in the time-
domain. We will demonstrate the usefulness of this
approach on the following models

• Shifted Non-negative Matrix Factorization, the
data and model parameters are constrained non-
negative in the time domain while temporal shifts
are represented efficiently through the frequency
domain representation.

• Convolutive Sparse Coding, here convolution
is efficiently implemented through multiplication
in the frequency domain while the filter length
in the time domain constrains regions of Aτ to
zero. Furthermore, the sparseness imposed on S
resides in the time domain.

• Sparse and Smooth Matrix Factorization, while
smoothness constraints can efficiently be imple-
mented in the frequency domain, sparseness con-
straint resides in the time domain.

The paper is structured as follows. We will first de-
scribe the proposed Time Frequency Gradient Method
(TFGM) that combines time and frequency domain op-
timization. Based on this approach we derive efficient
algorithms for the three models above and demon-
strate their use on simulated as well as real data. We
have previously used the TFGM for Shifted Non-negative
Matrix in [17], here the aim is to formalize the ap-
proach as well as generalize to broader classes of mod-
els.

2. NOTATION

In the following u and U will denote a vector and ma-
trix in the time domain, while ũ and Ũ denotes the
corresponding vector and matrix in the frequency do-
main. Furthermore, ŨH denotes the conjugate trans-
pose of Ũ while U •V denotes the direct product, i.e.

element-wise multiplication. Ũ( f ) = U • e−i2π
f−1
N τ

where e−i2π
f−1
N τ denotes element wise raising the el-

ements, i.e.(e−i2π
f−1
N τ)n,d = e−i2π

f−1
N τn,d . Also, let ud

denote the dth column and un,d a given element of U.

Finally, let ‖U‖F =
√

∑m,n |um,n|2 be the Frobenius-

norm and F and F−1 denote the discrete Fourier and
inverse Fourier transform, i.e.

F (s) : s̃k =
N−1

∑
n=0

sne−i 2πk
N n

F−1(s̃) : sn =
1
N

N−1

∑
k=0

s̃kei 2πk
N n.

3. METHODS AND RESULTS

We will presently consider objective functions, C, of
the form

C = ∑
t

ft(xt) +
1
N ∑

f
g f (x̃ f ), (4)

where ft and g f are real valued functions of the real
and complex variables xt and x̃ f such that x̃ = F (x).
Thus, we require the objective functions to be separa-
ble in either the time or frequency domain. The gra-
dient with respect to xt and x̃ f of objective functions
satisfying (4) can be written as

∂C
∂xt

= f ′t (xt) +
1
N ∑

f
g′f (x̃ f )ei2π f t

= f ′t (xt) +F−1(g′)t

∂C
∂x̃ f

= ∑
t

f ′(xt)e−i2π f t + g′f (x̃ f )

= F (f′) f + g′f (x̃ f )

Thus, the gradient of the objectives can be converted
arbitrarily between the time and frequency domain en-
abling what we will denote the Time-Frequency Gra-
dient Method (TFGM). The crux of this property fol-
lows from the separability into sums over time or fre-
quency instances (t or f ). We note, that from Parse-
val’s identity we can arbitrarily state the least square



objective in a form satisfying (4) both in the time and
frequency domain, i.e.,

∑
n
‖xn‖2

F =
1
N ∑

f
‖x f ‖2

F. (5)

We note that a variable whichx is updated in the fre-
quency domain has to remain real when applying the
inverse DFT. For F−1(g) to be real valued the follow-
ing has to hold

gN− f +1 = g∗f ,

where ∗ denotes the complex conjugate. This con-
straint is enforced by only considering the first bN/2c+
1 frequencies, i.e. up to the Nyquist frequency, while
setting the functions of the remaining frequencies ac-
cording to (??).

3.1. Shifted Non-negative Matrix Factorization

A popular approach for enforcing non-negativity is
the use of multiplicative updates as introduced in [15,
16]. Given a cost function C(S) over the non-negative
variables S, define ∂C(S)+

∂sd,n
and ∂C(S)−

∂sd,n
as the positive

and negative part of the derivative with respect to Sd,m.
Then the multiplicative update has the following form

sd,n ← sd,n




∂C(S)−
∂sd,n

∂C(S)+
∂sd,n




α

.

A small constant ε = 10−9 is added to the numerator
and denominator to avoid division by zero or forcing
sd,n to zero. If the gradient is positive ∂C(S)+

∂sd,n
> ∂C(S)−

∂sd,n
,

hence, sd,n will decrease and vice versa if the gradi-
ent is negative. Thus, there is a one-to-one relation
between fixed points and points where the gradient
is zero. The attractive property of multiplicative up-
dates is that they automatically ensure non-negativity
as the updates are based on multiplication, division,
and raising to the power of purely non-negative vari-
ables. α is a "step size" parameter that potentially can
be tuned. Notice, when α → 0 only very small steps in
the negative gradient direction are taken. In [16] it was
proven that for the least squares error α = 1 is guaran-
teed to monotonically decrease the cost function.

The shifted non-negative matrix factorization model
proposed in [17] is given by

xm,n ≈ ∑
d

am,dsd,n−τm,d
,

where X,A and S are non-negative. While shifts cor-
respond to simple multiplication of a complex phase,

the non-negativity constraint is not transparent in the
frequency domain. Thus, a method combining the ap-
parent representation of non-negativity in the time do-
main with the efficient implementation of shifts in the
frequency domain is desired. The least squares objec-
tive can be written as

CLS(A, S) =
1

2N ∑
f
‖x̃ f − Ã( f ) s̃ f ‖2

F.

Thus, in the frequency domain the objective becomes
separable over frequencies, however the non-negativity
constraint resides in the time domain. The model can
be estimated alternatingly solving for A, S and τ as
described in [17]. Here, the TFGM is applied for up-
date of the variable S. The gradient of the least squares
cost function in the frequency domain is [18]

G̃ f =
∂CLS

∂H̃ f
= − 1

N
Ã( f )H

(x̃ f − Ã( f ) s̃ f ).

By applying the inverse DFT of the gradient in the
frequency domain the corresponding gradient in the
time domain is obtained. Splitting the gradient in the
frequency domain into what constitutes the positive
and negative part of the corresponding gradient in the
time-domain gives

G̃+
f =

1
N

Ã( f )H
Ã( f ) s̃ f ,

G̃−
f =

1
N

Ã( f )H
x̃ f .

Consequently, by applying the inverse DFT to G̃+
f and

G̃−
f the corresponding positive and negative parts of

the gradient in the time-domain are found. As a result,
S can be updated using multiplicative updates in the
time domain, hence, enforcing non-negativity through
the update

sd,n = sd,n

(
g−d,n

g+
d,n

)α

.

In Figure 1 we demonstrate the usefulness of the
ShifNMF over regular instantaneous NMF when shifts
are present in the data.

3.2. Convolutive Sparse Coding

The Convolutive Sparse Coding model is given by

xm,n ≈ ∑
d,τ

aτ
m,dsd,n−τ .



(a) True components (b) Estimated components NMF (c) Estimated components ShiftNMF

Fig. 1. Left panel: The true factors forming the synthetic data (X ∈ <9×1400). To the left, the strength of the
mixing A of each source is indicated in gray color scale. In the middle, the three sources are shown and to the
right is given the time delays of each source to each channel. Middle panel: Results obtained by conventional
instantaneous NMF for the synthetic data given in figure 3. Clearly, the model can not account for the shifts in the
data hence the sources are incorrectly estimated. Notice, only 68 % of the variance of the data can be accounted for.
Right panel: The estimated factors obtained by a ShiftNMF analysis. Clearly, the model with shifts has correctly
recovered the components of the synthetic data hence accounts for all the variance in the data.

Where S is sparse. The model is separable in the fre-
quency domain and can be optimized using the fol-
lowing objective of the form given in (4)

C =
1

2N ∑
f
‖x̃ f − Ã f s̃ f ‖2

F − λ ∑
n

log(sp(sn))

Where the first term is the reconstruction error and
second term the sparsity penalty imposed with strength
λ given by the sparse prior distribution sp. We will
presently consider the Laplace prior given by sp(sn) =
e−|sn | forming a l1-norm regularization penalty. As
for non-negativity constraints, the sparsity in the time
domain as well as regions where the filter Aτ is zero
is not transparent in a frequency domain representa-
tion. However, the convolutive model is efficiently es-
timated in a frequency domain representation. Thus,
again the TFGM admits the benefits of the represen-
tations in the two domains. The gradient of the least
squares error in the frequency domain is given by

∇LS
ãm,d, f

= − 1
N

(x̃m, f −∑
d

ã∗m,d, f s̃d, f )s̃∗d, f

∇LS
s̃d, f

= − 1
N ∑

m
x̃m,d, f (x̃m, f −∑

d
ã∗m,d, f s̃d, f )

Thus, the gradient in the time domain is given by

∇Aτ = F−1(∇LS
Ã

)τ

∇S = F−1(∇LS
S̃

) + λ sign(S)

Hence, by computing the gradient in the time domain
it becomes transparent how Aτ can be estimated such
that only active regions of the filter Aτ are updated.
Furthermore, the update in the time domain of S en-
ables the combination of sparseness constraint in the
time domain with efficient representation in the fre-
quency domain. Aτ and S are updated using line-
search, i.e., by Aτ ← Aτ −µA∇Aτ and S ← S−µS∇S.

In Figure 2 we demonstrate the proposed algorithm
on an EEG-data set described in [19] based on a visual
paradigm. We removed the three frontal electrodes
EOG1, EOG2 and FPz heavily confounded by eye ar-
tifacts prior to the analysis.

3.3. Sparse and Smooth Matrix Factorization

Smoothness constraints in the time domain corresponds
to reduced high frequency content. Hence smoothness
can be imposed by penalizing high frequency regions
of the components, i.e., by considering the following
objective in the form given in (4)

C = ∑
n

1
2
‖xn −Asn‖2

F +
λ2

2N ∑
f

w f ‖s̃f‖2
F.

From the objective above it can be seen that smooth-
ness does not improve the identifiability of the model
since multiplying the sources S by the orthogonal ma-
trix Q result in a representation that is equally smooth,
i.e. ‖s̃f‖F = ‖Qs̃f‖F. Thus, additional constraints
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Fig. 2. Convolutive Sparse Coding analysis of EEG data obtained from a visual paradigm. The size of the data
is X ∈ <29×30504 while Aτ ∈ <29×4 and τ ∈ [1, 2, . . . , 128]. Top panel: Analysis for λ = 0, clearly S given to the
right is not sparse thus the EEG activity is modeled both in the convolutive filter Aτ and in the sources S. The
scalp maps to the left gives the power of the filter coefficients for the electrodes of each component. The explained
variation is 91% Middle panel: Analysis based on λ = 200, clearly S has become sparse while the temporal
structure of the EEG data mainly is coded in the filter Aτ . The explained variation is 66%. Bottom panel: When
increasing the sparsity strength (λ = 700) S becomes even more sparse. The explained variation is 35%. The
activity captured by the models are mainly the powerful alpha activity residing in a frequency band around 8-12
Hz.



are necessary in order to obtain an unambiguous rep-
resentation. We will here improve identifiability of
the model by imposing sparseness on S. Again, spar-
sity is not transparent in a frequency representation.
However, the sparsity and smoothness constraints can
again be combined using the proposed TFGM. Con-
sider the following sparse and smooth matrix factor-
ization

C =
1
2 ∑

n
(‖xn −Asn‖2

F + λ1‖sn‖1) +
λ2

2N ∑
f

w f ‖s̃f‖2
F

Where w f weights frequencies according to the smooth-
ness desired. Clearly, the objective has the form given
in (4). Thus, the gradient of the above objective is
given by

∇A = −(AS− X)ST

∇S = −AT(AS− X) + λ1sign(S) + λ2F−1(S̃′).

where, s′f = w f s f . Again A and S are updated using
line-search, i.e. by A ← A − µA∇A and A ← S −
µS∇S.

In Figure 3 we demonstrate the algorithms ability
to impose smoothness on simulated data while at the
same time obtain better identifiability through sparse-
ness.

4. DISCUSSION AND CONCLUSION

We have proposed the Time Frequency Gradient Method
that takes advantage of mixing representations which
allows us to handle convolutions and shifts efficiently
while imposing time domain constraints. The frame-
work can be used for objective functions that are sep-
arable in time or frequency parts such that variables
can be arbitrarily updated in the time or frequency do-
main. We demonstrated the viability of this simple ap-
proach for models that involve shifts, convolutions, or
smoothness, but we expect the framework to be use-
ful for a wide range of models where the frequency
representation facilitates efficient computation.
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sources given in the top right panel with additive Normal distributed noise. Notice that the signal is heavily con-
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