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Abstract—Multi-way modeling has become an important tool
in the analysis of large scale multi-modal data. An important
class of multi-way models is given by the Tucker model which
decomposes the data into components pertaining to each modality
as well as a core array indicating how the components of the
various modalities interact. Unfortunately, the Tucker model
is not unique. Furthermore, establishing the adequate model
order is difficult as the number of components are specified
for each mode separately. Previously, rotation criteria such as
VARIMAX has been used to resolve the non-uniqueness of the
Tucker representation [7]. Furthermore, all potential models have
been exhaustively evaluated to estimate the adequate number of
components of each mode. We demonstrate how sparse coding
can prune excess components and resolve the non-uniqueness of
the Tucker model while Automatic Relevance Determination in
Bayesian learning form a framework to learn the adequate degree
of sparsity imposed. On a wide range of multi-way data sets the
proposed method is demonstrated to successfully prune excess
components thereby establishing the model order. Furthermore,
the non-uniqueness of the Tucker model is resolved since among
potential models the models giving the sparsest representation
as measured by the sparse coding regularization is attained. The
approach readily generalizes to regular sparse coding as well
as the CandeComp/PARAFAC model as both models are special
cases of the Tucker model.

I. INTRODUCTION

Tensor decompositions are in frequent use today in a variety
of fields including psychometric, image analysis, web data
mining, bio-informatics, neuroimaging and signal processing
[8]. While the analysis of tensors have been somewhat re-
stricted due to memory and computational limitations growing
attention has lately been given to the analysis of data with ten-
sorial structure fueled by the increased memory capacity and
computational power of modern computers. Tensors, i.e., X ∈
<I1×I2×...×IN , also called multi-way arrays, multidimensional
matrices or hypermatrices are generalizations of vectors (first
order tensors) and matrices (second order tensors). The two
most commonly used decompositions of tensors are the Tucker
model [20] and the more restricted CandeComp/PARAFAC
(CP) model [5].

The Tucker model reads

Xi1,i2,...,iN = Ri1,i2,...,iN + Ei1,i2,...,iN
=

∑
j1j2...jN

Gj1,j2,...,jNa
(1)
i1,j1

a
(2)
i2,j2
· ... · a(N)

iN ,jN
+ Ei1,i2,...,iN .

where G ∈ RJ1×J2×...×JN and A(n) ∈ RIn×Jn while E is the
approximation error. To indicate how many vectors pertain
to each modality it is customary also to denote the model a
Tucker(J1, J2, . . . , JN ). Using the n-mode matrizicing opera-
tion [8] the model can also be expressed as

X(n) = A(n)Z(n) +E(n),

where

Z(n) = G(n)(A
(1)⊗ . . .⊗A(n−1)⊗A(n+1)⊗ . . .⊗A(N))>.

Furthermore, using the n-mode tensor product ×n [10] given
by

(Q×n P)i1,i2,...,jn,...iN =
∑
in

Qi1,i2,...,in,...iN Pjn,in ,

the model is stated as

X = G ×1 A(1) ×2 A(2) ×3 ...×N A(N).

Thus, the Tucker model represents the data spanning the nth

modality by the vectors (loadings) given by the Jn columns
of A(n) such that the vectors of each modality interact with
the vectors of all remaining modalities with strengths given
by a so-called core tensor G. As a result, the Tucker model
encompasses all possible linear interactions between vectors
pertaining to the various modalities of the data. The CP
model is a special case of the Tucker model where the
size of each modality of the core array G is the same, i.e.,
J1 = J2 = · · · = JN while interaction is only between
columns of same indices such that the only non-zero elements
are found along the diagonal of the core, i.e., Gj1,j2,...,jN 6= 0
iff j1 = j2 = ... = jN . Thus, the CP model can by
appropriate scaling of each component be expressed as a
Tucker model with unit diagonal core, i.e. GCP = I. As such,
the regular sparse coding model based on a factor analysis type
representation can be formulated as a 2-way Tucker model
with diagonal core. Notice, in the Tucker model a rotation of
a given loading matrix A(n) can be compensated by a counter
rotation of the core G [8]. For the CP model it is not possible in
general to rotate the loadings and still keep the core diagonal.
Thus, the CP model is unique up to scale and permutation [9].



As the CP model corresponds to the Tucker model with
diagonal core – Tucker decompositions in which only some off
diagonal elements are non-zero can be considered a representa-
tional interpolation between the Tucker and CP decomposition.
Regularizing the core and loadings of the Tucker model by
sparse priors using a sparse coding approach it becomes
possible to simplify the core and turn of excess components.
Furthermore, such restrictions on the core can potentially
eliminate the rotation degeneracy of a Tucker decomposition.
Thus, by adequately controlling the degree of pruning we can
select the model order and simplify the core at the cost of
estimating a conventional multi-way model.

We will use a standard approach in Bayesian inference
referred to as Automatic Relevance Determination (ARD) [1],
[17]. Traditionally, ARD has been based on Gaussian priors
yielding a ridge regression type of selection. Here, we will
derive an ARD approach based on the Laplace prior. Contrary
to Gaussian priors, the Laplace prior favors sparse represen-
tations. Optimizing for sparse representation is related to the
classic rotation criteria such as VARIMAX [6] and maximum
Likelihood independent component analysis (ICA) based on
sparse priors [13]. However, rather than rotating an estimated
solution, the estimation process is directly posed as a tradeoff
between simplicity of the representation and fitting the data.
Thus, a sparse representation is strongly related to the principle
of parsimony, i.e., among all possible accounts the simplest
is considered the best [13]. If no formal prior information
is given parsimony can be considered a reasonable guiding
principle to avoid overfitting, see also [13] and references
therein. In the present paper we describe the ARD approach
based on sparse priors on the Tucker model. For a full analysis
of the presented framework with comparison to existing model
order heuristics as well as comparison between sparse and
Gaussian priors see [?].

II. SPARSE CODING AND AUTOMATIC RELEVANCE
DETERMINATION FOR MULTI-WAY MODELS

Automatic Relevance Determination is a hierarchical
Bayesian approach widely used for model selection [1], [17].
In ARD hyperparameters explicitly represents the relevance
of different features by defining the range of variation for
these features, usually by modeling the width of a zero-mean
Gaussian prior imposed on the model parameters. If the width
becomes zero, the corresponding feature cannot have any
effect on the predictions. Hence, ARD optimizes these hyper-
parameters to discover which features are relevant. While ARD
based on Gaussian priors can prune excess components Gaus-
sian priors do not in general admit sparse representation within
the active components hence does not necessarily favor simple
parsimonious representations. However, the Laplace prior is
known to admit sparse representation as it corresponds to a l1
regularization thus is the closest convex proxy to minimizing
for the number of non-zero elements in the model [4]. There-
fore, we consider Laplace priors on the model parameter θd,
i.e. PLaplace(θd|αd) =

∏
j
αd

2 exp[−αd|θj,d|]. In a Bayesian
framework, the least squares objective SSE = ‖X −R‖2F =

∑
i1,i2,...,in

(Xi1,i2,...,in − Ri1,i2,...,in)2, corresponds to mini-
mizing the negative log-likelihood assuming the entries in X
are independent, identically distributed (i.i.d.) with Gaussian
noise, i.e. P (X|R, σ2) = (2πσ2)−

I1I2···IN
2 exp[−‖X−R‖

2
F

2σ2 ].
Assigning Laplace priors for the loadings and core the

posterior likelihood can be written as

L = P (G,A(1), . . . ,A(N)|X , σ2,αG ,α(1), . . . ,α(n))
∝ P (X|R, σ2)P (G|αG)P (A(1)|α(1)) · · ·P (AN |α(N)).

Thus the negative log likelihood based on Laplace priors is
proportional to

− logL ∝ c +
1

2σ2
‖X −R‖2F +

∑
n

∑
jn

α
(n)
jn
|a(n)
jn
|1 + αG |G|1

+
1
2
I1I2 · · · IN log σ2 −

∑
n

∑
jn

In logα(n)
jn
− J1J2 · · · Jn logαG .

Where c is a constant. Notice, how first line corresponds to the
regular l1-regularized least squares (sparse coding) problem
when alternatingly solving for the loadings of each mode
keeping the remaining loadings fixed. Thus, each alternating
subproblem has the form

arg min
A(n)

1
2
‖X(n) −A(n)Z(n)‖2F + λd

∑
j

|aj,d|.

The normalization constants in the likelihood terms are given
in the second line. It is due to these normalization terms that
it is possible to learn the values of σ2, α(n) and αG .

To solve the sparse coding problem of each alternating
step we used the simple gradient based procedure given in
Algorithm 1. In table IV it is demonstrated that this approach is
very efficient for undercomplete representations, i.e. In ≥ Jn,
which is normally the case for the Tucker decomposition.
The approach readily generalizes to non-negativity constrained
optimization by truncating negative values to zero (i.e. using
projected gradient) [12]. In Algorithm 2 the algorithm for
sparse ARD Tucker is given. For further details consult
the Matlab implementation available for download at www.
mortenmorup.dk. In general the crux of the ARD approach
is that it estimates an optimal tradeoff between optimizing
the likelihood of the data and the likelihood of the model
parameters. Since σ2,α(n) and αG weights the importance
of the likelihood of the data and model parameters in the
objective respectively - good estimates of these parameters
are the crux for the ARD approach to work well. Finally, the
better the noise model as well as component priors fit the
true structure of the data the better the ARD framework will
work. Since estimating σ2 from the data has a tendency of
underestimating the value of σ2 due to over-fitting, i.e. the
models ability to fit noise we used the following more viable
approach described in [?] to set σ2 based on the assumption
that the modelled signal (R) and noise (E) are uncorrelated,

σ2 = ‖X‖2F /(I1I2 · · · In(1 + 10SNR/10)).

where SNR is a user defined signal to noise ratio. In all the
experiments we used a fixed value of SNR = 0dB assuming



Algorithm 1 Gradient Based Sparse Coding (GBSC): A =

GBSC(X,Z,λ), solves arg minA
1
2
‖X −AZ‖2F +

∑
j λj |aj |1

1: repeat
2: Take gradient step according to LS-objective
3: Anew ← Aold − µ(AZ −X)Z>

4: Take gradient step according to l1-regularization
5: if |anewi,j | < µλj then
6: anewi,j = 0
7: else
8: anewi,j = anewi,j − µλj sign(anewi,j )
9: end if

10: Estimate µ by line-search
11: until Convergence

the same degree of signal as noise in the data. In [?] the
sensitivity of this parameter to the obtained decomposition
was investigated and it was found that the parameter had little
impact for conservative choices of SNR.

III. ARD TUCKER ANALYSIS OF MULTI-WAY DATA

In figure 2 is given the estimated cores obtained by the
Sparse ARD Tucker algorithm on the following five datasets:
Synthetic Data: A data set with Tucker(3,4,5) structure was
randomly generated with size 30 × 40 × 50. All the factors
as well as the core array were drawn from a normal N(0,1)-
distribution, i.e. with zero mean and variance 1. Gaussian i.i.d.
noise was added to the data such that SNR = 0dB.
Flow Injection Analysis: This data set is described in [14],
[19] and is given by the absorption spectra over time for three
different chemical analytes measured in 12 samples with dif-
ferent concentrations, i.e. 12(samples)×100(wavelengths)×
89(times), ideally this dataset form a Tucker(3,6,4) model.
Amino Acid Fluorescence: This data set is described in
[3] and contains the excitation and emission spectra of
five samples of different amounts of tyrosine, tryptophane
and phenylalanine forming a 5(samples) × 51(excitation) ×
201(emission) array. Hence the data can be described by a
three component CP model.
Sugar process data: This data set contain emission and
excitation spectra measurements in 265 samples forming a
265(samples) × 571(emissions) × 7(excitations) array [2].
The data was in [2] modeled by a four component CP model
where the number of components were estimated based on an
extensive split half analysis.
Dorrit fluorescence data: This data set contains the emission
and excitation spectra of 27 synthetic samples containing
different concentrations of four chemical analytes forming a
27(samples) × 551(emissions) × 24(ecitations) array [18].
The data is adequately modeled by a four component CP
model.
Since the components of the four chemometrics data sets
are non-negative the estimated models for these data were
constrained to be non-negative.

Clearly, regularization has both removed excess components
and reduced the non-zero elements in the core, for a detailed

comparison to existing methods for estimating the Tucker and
CP model order see [?].

IV. TUNING THE PRUNING IN REGULAR SPARSE CODING

The proposed ARD approach readily generalize to the regu-
lar sparse coding model proposed in [16]. Which corresponds
to the Tucker model given by X = A(1)(GA(2))> =
A(1)IS> = A(1)S>. As in sparse coding we will impose
sparsity onA(1) henceforth denotedA while requiring that the
energy of each component ‖sj‖F = 1. Hence, we minimize
the following objective

− logL ∝ c +
1

2σ2
‖X −AS>‖2F +

∑
j

αj |aj |1 +

1
2
I1I2 log σ2 −

∑
j

I1 logαj . s.t. ‖sj‖F = 1,

by alternatingly solving for A, S and α, i.e. such that αj =
I1
|aj |1 with σ2 = ‖X‖2F /(I1I2(1 + 100/10)). For details on
the implementation see the ARDSC.M Matlab implementation
available for download at www.mortenmorup.dk.

The result obtained by analyzing the natural images de-
scribed in [16] is given in figure 3. 20 components have been
extracted that well correspond to the Gabor like simple cell
receptive field properties reported in [16].

V. CONCLUSION:

Model selection is perhaps one of the most challenging
problems in unsupervised learning. We demonstrated how
sparse coding and a simple Bayesian framework based on
Automatic Relevance Determination could be adapted to the
Tucker model. Sparsity enabled to prune excess components
while the ARD framework enabled to learn the adequate
degree of sparsity. Since the CP model and the regular sparse
coding model can be considered the n-way and 2-way case of
the Tucker model with diagonal core the proposed framework
readily generalizes to these model.
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Fig. 1. Illustration of Tucker decomposition of a 3-way tensor given to the left. The Tucker model is given to the left, sparse Tucker model in the middle
and CP model to the right. Whereas the Tucker model encompass all potential interaction between the components of each modality through the core array
G, the CP model only allow for interactions between columns of A(n) with same indices. The sparse Tucker model can be considered a model between the
Tucker and CP model where interactions are present within a few of the components across the various modalities by imposing sparsity on the core. We
will impose sparsity on the core and loadings to prune excess components while estimate the adequate degree of sparsity using a Bayesian approach named
Automatic Relevance Determination (ARD).

Fig. 2. The estimated cores for five different multi-way datasets – a Tucker(3,4,5) synthetic dataset as well as four 3-way chemometrics data sets obtained
from www.models.kvl.dk/research/data/. A Tucker(10,10,10) model was fitted to all datasets but using sparse coding to prune excess components and ARD
to update the l1-regularization strengths on the model parameters the models were reduced to form simpler models. Given are the estimated model orders
and cores (size of boxes indicate interaction strengths such that gray boxes denote positive interactions and white boxes negative interactions). The estimated
model orders relate well to the expected model order based on the number of true chemical compounds in the data.

Fig. 3. Analysis of the regular sparse coding problem using the proposed ARD approach to tune the pruning parameters. 250 components were fitted to
the data however all but 20 components were turned off by the proposed ARD framework. The components correspond well to the Gabor like simple cell
receptive field properties reported in [16].


