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Technical University of Denmark

October 21, 2009

1 Introduction

This is a report of our first experiments in the field of iso geometric analysis.
The idea was simply to get acquainted with B-splines, finite element analy-
sis, and optimisation. It turned out that already a simple one dimensional
example shows that the accuracy of the method is highly dependent of the
parametrisation. So we find it worthwhile to report the results.

We consider the simple one dimensional eigenvalue problem of finding
the frequencies of longitudinal vibration of a rod, se Figure 1. The governing
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Figure 1: Rod.
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Figure 1: We consider longitudinal vibration of a rod.

equation is Helmholtz’s equation with Dirichlet boundary conditions

4u =
d2u

dx2
= −λu, u(0) = u(1) = 0. (1)

The solution is of course well known. The eigenvalues and eigenfunctions
are

λn = ω2
n un(x) = sin(ωnx) ωn = nπ. (2)
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If we multiply (1) with a test function v and integrate, then we obtain
the weak form of the equations∫ 1

0
λu v dx = −

∫ 1

0

d2u

dx2
v dx = −

[
d2u

dx2
v

]1

0

+
∫ 1

0

du
dx

dv
dx

dx =
∫ 1

0

du
dx

dv
dx

dx.

That is ∫ 1

0

du
dx

dv
dx

dx = λ

∫ 1

0
u v dx. (3)

We now write u as a finite linear combination of basis functions φi, i =
1, . . . , N ,

u(x) =
N∑
i=1

uiφi(x) (4)

and let v run through the set of basis functions. We obtain a system of
linear equations

N∑
i=1

ui

∫ 1

0
φ′i(x)φ′j(x) dx = λ

N∑
i=1

ui

∫ 1

0
φi(x)φj(x) dx for all j = 1, . . . , N.

(5)
They can be written in matrix form

Ku = λMu, (6)

where

u =

u1
...
uN

 , (7)

K is the stiffness matrix

K =

 〈φ
′
1, φ
′
1〉 . . . 〈φ′1, φ′N 〉

...
...

〈φ′N , φ′1〉 . . . 〈φ′N , φ′N 〉

 , (8)

M is the mass matrix

M =

 〈φ1, φ1〉 . . . 〈φ1, φN 〉
...

...
〈φN , φ1〉 . . . 〈φN , φN 〉

 , (9)

and the inner product between two functions is

〈φ, ψ〉 =
∫ 1

0
φ(t)ψ(t) dt. (10)
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Figure 2: The basis functions in traditional finite element analysis. To the
left linear and to the right quadratic.

In traditional finite element analysis the basis functions φi are chosen
as piecewise polynomials that join together in a piecewise C0 fashion, see
Figure 2. The result of using traditional finite element analysis on a uniform
grid is shown in Figure 3.
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Figure 3: The normalised spectra resulting from finite element analysis with
shape functions of degree 1, 2, and 3.

2 Iso Geometric Analysis

In iso geometric analysis the, normally complicated, physical domain Ω is
parametrised by a map F : Ω̂ → Ω, where the parameter domain Ω̂ is
supposed to be simple and easy to discretize. In the present case we have
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Ω = Ω̂ = [0, 1]. The parametrisation is of the form

F (t) =
N∑
i=1

xiN
p
i (t), (11)

where Np
i are B-splines of degree p on some knot vector t, see Figure 4. The
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Figure 4: B-splines of degree 1, 2, 3, and 5 on a uniform knot vector.

basis functions are of the form

φi = Np
i ◦ F

−1, i = 1, . . . , N. (12)

The left hand side of (3) becomes∫ 1

0

du
dx

dv
dx

dx =
∫ 1

0

du
dt

dt
dx

dv
dt

dt
dx

dx
dt

dt =
∫ 1

0

1
F ′(t)

du
dt

dv
dt

dt (13)

and the right hand side becomes

λ

∫ 1

0
u v dx = λ

∫ 1

0
u(t) v(t)F ′(t) dt (14)

where

u(t) =
N∑
i=1

uiN
p(t). (15)
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Once more the equation can be written matrix form (6), where the entries
of the stiffness and mass matrix now becomes

Kij =
∫ 1

0

Np
i
′(t)Np

j
′(t)

F ′(t)
dt, (16)

Mij =
∫ 1

0
Np
i (t)Np

j (t)F ′(t) dt. (17)

We use Gaussian quadrature to evaluate the integrals. Observe that (17) can
be evaluated exactly if we use at least p+1+dp/2e points in the quadrature.

In our example we use a uniform knot vector except for the boundary
knots which have full multiplicity. We try four different choice of parametri-
sation (11) which of course is given by the control points x = (xi)i=1...N .

1. The control points are chosen such that F is the identity map, i.e.,
x = F (t) = t. The control points are the Greville abscissas, xi =
(ti+1 + · · ·+ ti+p)/p.

2. The control points are chosen uniformly, i.e., xi = i−1
N−1 .

3. The control points are chosen such that the error of a single eigenvalue
λk is minimal, i.e. we solve the following optimisation problem

minimise
(ωn
nπ
− 1
)2
. (18)

The eigenvalue λn = ω2
n is chosen as the one with the maximal error

in 2.

4. The control points are chosen such that the maximal relative error of
the eigenvalues is minimised. We formulate it as the following con-
strained optimisation problem.

minimiseS

such that
(ωn
nπ
− 1
)2

< S for all n = 1, . . . , N .
(19)

All calculations are done in Matlab with the optimisation toolbox. The
results can be seen in Figures 5–8.

We have not spend much time on the optimisation and it is very likely
that better parametrisations can be obtained by changing the optimisation
algorithm. This, however, is not the main point in this report. We simply
want to point out that the result of iso geometric analysis can be very
sensitive to the parametrisation.
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Figure 5: The results of iso geometric analysis using B-splines of degree 1
and four different parametrisations. On the top the normalised spectra, in
the middle a zoom near the line ωn

nπ = 1, and below the differences between
the parametrisations F and the identity.
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Figure 6: The results of iso geometric analysis using B-splines of degree 2
and four different parametrisations. On the top the normalised spectra, in
the middle a zoom near the line ωn

nπ = 1, and below the differences between
the parametrisations F and the identity.
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Figure 7: The results of iso geometric analysis using B-splines of degree 3
and four different parametrisations. On the top the normalised spectra, in
the middle a zoom near the line ωn

nπ = 1, and below the differences between
the parametrisations F and the identity.
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Figure 8: The results of iso geometric analysis using B-splines of degree 5
and four different parametrisations. On the top the normalised spectra, in
the middle a zoom near the line ωn

nπ = 1, and below the differences between
the parametrisations F and the identity.
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3 Conclusion

In [1] it was found that using B-splines as basis functions gave considerable
better accuracy and robustness than traditional finite elements. We have
confirmed these findings, but have also found that in an iso geometric setting
the performance is very much dependent on the parametrisation.
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