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In a highly doped GaAs semiconductor with superconducting contacts of Al, clear conductance peaks
are observed at zero voltage bias and atV  62Dye, 6Dye. The subharmonic energy gap structure
originates from Andreev scattering with diffusive, but energy conserving, transport in the GaAs. The
zero bias excess conductance is due to phase-coherent transport. Both effects are suppressed when
the distance between the superconducting electrodes exceeds the inelastic diffusion length in the GaAs
normal channel. [S0031-9007(96)02273-9]

PACS numbers: 74.50.+r, 73.40.–c, 74.80.Fp

The electronic coupling between two superconductors
separated by a mesoscopic normal conductor can manifest
itself as a Josephson pair current and/or as a purely
resistive correction to the conductance. This latter type of
coupling is a recently discovered phenomenon associated
with corrections to the well-known proximity effect in
normal metals in contact with superconductors, and it
has gained considerable interest over the past five years
[1–7]. On a microscopic level the proximity effect can
be described in terms of Andreev reflections at the S-
N interface. The Andreev reflection is a second order
process by which an electronlike particle incident on the
superconductor with a quasiparticle excitation energyE
above the electrochemical potential may be transmitted as
part of a Cooper pair if a holelike particle with energy2E
is retroreflected along the path of the incoming particle
(see top of Fig. 1) [8]. If the excitation energyE is
small, the electron and the hole wave packets will be
phase coherent but shifted in phase relative to each other
by the macroscopic phase of the superconductorf1 (or
f2). The resistive type of coherent coupling between two
superconductors separated by a normal conductor relies
strongly on the phase coherence of the time reversed
paths of the Andreev retroreflected electron-hole pairs
[9,10]. For such a system after a propagation timet the
accumulated phase difference between the electron and
the hole wave packets is

df 
2E
h̄

t 1
2e
h̄

F 1 f1 2 f2 , (1)

which also includes phase winding by the magnetic flux
F enclosed by the path. In the timet the particles will, on
the average, diffuse a distanceL 

p
Dt in the conductor.

HereD  1
3 nF,0 is the diffusion constant for diffusion in

three dimensions in a conductor with mean free path,0

and Fermi velocitynF . This defines the relevant energy
scale for complete dephasing of the electron-hole pair:
Ec  hDy2L2. Twice this energy2Ec is also referred
to as the Thouless energy, which defines a length scale
Lc 

p
hDy2Ec. For small excitation energiesLc may,

by far, exceed both the induced coherence lengthjN in
the normal conductor and the size of the normal region.
In diffusive normal conductors,jN 

p
h̄Dy2pkBT is

the decay length for the pair amplitude. Inelastic (phase-
breaking) scattering or finite sample size will, however,
provide a cutoff for the electron-hole coherence. At low
temperature the inelastic scattering events in GaAs are
dominated by electron-electron interaction with,f ¿ jN

[11]. Here,f 
p

Dtf is the inelastic diffusion length
and tf is the inelastic scattering time. The resistive ef-
fect may, therefore, show up on a much longer length
scale than the well-known proximity induced Josephson
coupling. In contrast to the static proximity effect, this

FIG. 1. Differential resistance vs dc bias voltage (solid curve)
and I-V characteristic (dashed curve) atT  0.3 K. Beyond
a certain voltage (ø61.6 mV), Joule heating drives the super-
conducting electrodes normal. The structure discussed in the
text is seen forjV j , 0.4 mV. The measurement shown here
was taken for a sample withL ø 1.1 mm. The figures on top
show a graphical representation of an Andreev reflection at an
NS boundary and the geometry of the SSmS structure.
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new effect is a dynamic (nonequilibrium) phenomenon,
which is caused by the perturbation of the electric fields
in the normal conductor in close proximity to the super-
conductor, when a current is passed through the junction
[9,10]. There is, however, some debate about the inter-
pretation of observations in terms of either the resistive
proximity effect mentioned above or a so-called interfer-
ence model, in which the Andreev reflections only play a
role in phase shifting the reflected quasiparticles. In the
interference model, resistance osculations with amplitude
DR0 ø R2

0e2yh are expected due to interfering Feynmann
paths [3]. HereR0 is the resistance per square ande2yh
is the quantum conductance. In some experiments the ob-
served resistance oscillations are, however, up to 2 orders
of magnitude larger in amplitude than the theoretical pre-
dictions based on the interference model [5,7].

In a superconductor–normal-metal–superconductor
(SNS) structure with high transparency of the interfaces
there is a high probability for multiple Andreev reflections,
where the retroreflected electrons and holes traverse the
N region several times. In thedVydl vs V curves this
effect gives rise to the so-called subharmonic energy
gap structure (SGS) at dc bias voltagesV  62Dyne,
with n  1, 2, 3 . . ., which is the condition for maximum
electron transfer given the number of traversals [12]. The
SGS has mostly been observed in Josephson point contacts
and microbridges [13] and in very thin semiconductor
membranes [14]. The SGS requires conservation of
energy for the carriers during traversals of the normal
region. Apart from the effect of an applied magnetic
field, inelastic scattering provides the only mechanism to
randomize the phase and phase-coherent phenomena are
thus expected to coexist with the SGS. We have mea-
sured the differential resistance in SSmS (Sm: degenerate
semiconductor) structures with diffusive Sm channels
and observed SGS for long structures withL ¿ jN , ,0.
Even at the lowest accessible temperature,T  300 mK
in the present experiment, our samples were completely
resistive. However, an excess conductance corresponding
to a dip in the differential resistance was observed at
zero voltage bias. From independent weak localization
measurements in the GaAs we have determined,f. By
varying L we find for the first time direct evidence that
both this zero bias dip and the SGS are quenched when the
distance between the superconducting electrodes exceeds
,f. These phenomena are thus true mesoscopic in the
sense that they are observed on a length scaleL obeying
,0 ø L # ,f. Moreover, the SGS and the zero bias dip
exhibit the same temperature dependence, indicating that
the two phenomena are related.

Our samples consisted of a 200 nm heavily doped
(degenerate) GaAs layer grown by molecular beam epitaxy
(MBE) on an insulating substrate. The GaAs is capped
in situ (without breaking the vacuum) with 200 nm Al.
The in situ Al deposition gives a very smooth and clean
interface, which may be crucial for the observation of the

SGS. In order to increase the transparency of the AlyGaAs
interface fived-doped layers were incorporated into the
GaAs under the Al cap layer. A 17mm wide Hall bar mesa
pattern was etched in the AlyGaAs structure. Between the
voltage probes of the Hall bar a narrow line was drawn
across the mesa by electron beam lithography, and the Al
film was etched away in a stripe of widthL. The resulting
geometry of the SSmS region is shown in Fig. 1(top).
The distance between the voltage probes (not shown in
the figure) wasø100 mm. The fabrication details are
given in Ref. [15]. On other samples cut from the same
MBE grown wafer the Al film was removed for the
assessment of the GaAs conductive layer and for the weak
localization measurements. The low temperature mobility
of the GaAs conductive layer wasm  0.13 m2yV s. The
carrier density wasne  4.8 3 1024 m23, corresponding
to a mean free path of,0 ø 50 nm and a diffusion constant
D  0.016 m2ys. The Al film had a critical temperature
close to the bulk valueTc  1.2 K, and the bulk value for
the superconducting energy gapDs0dye ø 175 mV was
used. By using the transmission line method [16], we
determined the specific contact resistivity in the normal
state to berN  53 3 10212 Vm2. At each AlyGaAs
interface the current will flow from the highly conductive
Al film to the more resistive GaAs over a decay length
,N 

p
drN yrGaAs ø 0.9 mm, whered and rGaAs are

the thickness and the resistivity of the conductive GaAs
layer, respectively. An estimate of the barrier transmission
coefficientT based on the excess current at high bias gave
Tn ø 0.5, corresponding to aZ factor of order 1. TheZ
factor is the normalized interface barrier height as defined
in Ref. 17.

The measurements were carried out with the use of
a phase sensitive detection technique that allowed us to
measure the dcI-V characteristics and the differential re-
sistancedVydl vs V simultaneously. In the differential
measurement the ac voltage level was kept well below the
thermal energyedVrms ø kBT in order to avoid smear-
ing of the structure observed in the differential resistance.
Most of the measurements were performed in a conven-
tional pumped3He cryostat with a base temperature of
about 300 mK. In Fig. 1 we show an example of the mea-
surements. TheI-V characteristic (shown as the dashed
line) exhibits only weak structure, although, in principle,
it contains the same information as the differential resis-
tance (solid line). At a certain sample dependent voltage
Vc(ø61.6 mV in Fig. 1) Joule heating caused a break-
down of superconductivity in the Al electrodes and drove
the resistance to the normal state level superimposed by ir-
regular structure. The high peaks at6Vc are caused by
a breakdown of a small excess current observed in the
superconducting state.Vc has a temperature dependence
given by

p
Tc 2 T corresponding to an energy balance con-

dition, where the dissipated powerP  V 2yR is propor-
tional to the temperature shift [15]. Well belowVc we
observed a pronounced and fully symmetric structure in
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FIG. 2. Temperature dependence of the differential resistance
vs dc bias voltage for a typical sample withL ø 2.8 mm.
Above Tc ø 1.2 K the structure disappears.

the differential resistance. This structure consists of dips
at V  62Dye, 6Dye, and a “saddle” shaped structure
around zero bias. As seen in Fig. 2 all this structure had
a strong temperature dependence and disappeared com-
pletely when the temperature exceeded the critical temp-
erature. The precise shape of the structure, in particular,
the saddle shaped rise in differential resistance, is not un-
derstood and calls for further theoretical investigation. The
dip in the middle of the saddle is the so-called excess con-
ductance also observed by others [1,2]. It is known to be a
signature of the phase-coherent resistive coupling between
the two superconducting electrodes. In Ref. [18] an effec-
tive suppression voltage for the excess conductance peak
is estimated to equal some fraction ofdVc ø hnFy2e,0.
For our sample parametersdVc ø 39 mV which seems to
be in rather poor agreement with the present experiment.
The FWHM of this dip appears to match the thermal en-
ergy kBTye (22 mV at T  0.3 K) much better. The
dips atV  62Dye, 6Dye are the SGS originating from
Andreev reflections. In order to find the relevant length
scale for the observed structures, we fabricated samples on
the same GaAs wafer with different lengthsL of the Sm re-
gion. The results are seen in Fig. 3, which presents the key
novel observation of this Letter. Here we show the differ-
ential resistance for samples with varyingL. It is evident
that the zero bias dip and the SGS fade out with increas-
ing L and become completely absent forL . 3.5 mm. For
comparison, the theoretical value of the coherence length at
0.3 K is jN  250 nm. We would like to emphasize that

FIG. 3. The differential resistance vs dc bias voltage for
samples with varyingL. All the measurements are taken at
T ø 300 mK. For L $ 3.5 mm both the zero bias dip and the
SGS are suppressed.

the positions in dc bias voltage of the SGS dips are exactly
the same in all well-cooled samples withL # 3.5 mm as
expected for multiple Andreev reflections. In Ref. [15]
this point was masked by the self-heating effect mentioned
earlier. Characteristic features in thedVydl vs V curves
that only depend on decoupled SN interfaces will scale in
bias position with the voltage dropRGaAsI across the nor-
mal region, whereRGaAs is the resistance of the normal
GaAs region of lengthL. When increasingL the saddle
shaped increase in differential resistance near zero bias is
hardly affected. However, it has a strong temperature de-
pendence (see Fig. 3). We thus believe this feature is an
independent property of each S-Sm interface. The ques-
tion now arises if the measured (surprisingly long) decay
length Lmax for the coherent coupling between the two
superconductors can be related to the inelastic diffusion
length,f in the Sm region. In order to check this we pre-
pared samples cut from the same MBE grown wafer but
with the Al top layer removed from the area between the
contacts of a Hall bar. For these samples we measured the
low field magnetoresistance of the GaAs conductive layer
and found the weak localization contribution to the magne-
toresistance. Weak localization is a quantum mechanical
correction to classical conductivity, which arises from the
phase coherence of self-intersecting time reversed trajecto-
ries. This phase coherence is gradually destroyed when a
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magnetic field is applied. This is seen as a definite feature
in the magnetoresistance. In Ref. [19] the weak localiza-
tion magnetoresistance is given as

DRsBd
R

 2
1

R0

e2

2p2h̄

(
C
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1
2

1
B1

B

!
2

3
2

C
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1
2

1
B2

B

!

1
1
2

C

√
1
2

1
B3

B

!)
, (2)

whereCsxd is the digamma function. Neglecting spin-flip
processes, but retaining spin-orbit scattering, the fitting
parameters are given by the characteristic fieldsB1 
B0 1 Bso, B2  4y3Bso 1 Bf, andB3  Bf, with B0 
h̄nFy4eD,0, Bso  h̄y4e,2

so, and Bf  h̄y4e,2
f. ,so is

the spin-orbit diffusion length in analogy with,f. In
the fitting procedure the mean free path,0 is known
from transport measurements. The presence of spin-orbit
scattering in GaAs is due to the spin splitting of the band
structure [20]. ,f is the interesting quantity here and the
only one that has a significant temperature dependence. In
Fig. 4 we show the magnetoresistance with a fit to Eq. (2)
and the determination of the inelastic diffusion length,f.
At 0.3 K ,f ø 2.8 mm, which is in excellent agreement
with the observed decay lengthLmax ø 3.5 mm for the
zero-bias dip and for the SGS in thedVydl vs V curves of
our SSmS samples. As expectedLmax decreases when the
temperature is raised. However, a functional dependence
cannot be extracted from the data.

In conclusion, we have shown that the decay length
for two characteristic features in thedVydl vs V curves

FIG. 4. Weak localization magnetoresistance of GaAs for a
sample where the Al top layer has been removed (T  0.46 K).
The sharp dip at zero field is the positive magnetoresistance
(weak antilocalization) caused by the spin-orbit coupling in
GaAs. The spin-orbit coupling introduces an extra fitting
parameter,so. The dashed curve is a fit to the data using
the expression in Eq. (2). The fitting parameters are shown in
the figure and in the inset as a function of temperature. The
mean free path,0 was obtained independently from transport
measurements.

for planar superconductor-semiconductor-superconductor
junctions is the inelastic diffusion length,f (ø2.8 mm at
0.3 K), which we have determined independently by weak
localization measurements on the diffusive semiconductor
material. The zero bias excess conductance is a signature
of a resistive but phase-coherent correction to the prox-
imity coupling between the two superconductors which
persists over length scales much longer than the coherence
length jN (250 nm at 0.3 K) for the pair amplitude.
This type of coherent coupling is cut off at a distance
given by ,f, which also sets the cutoff length for the
subharmonic energy gap structure (SGS). The similar
length and temperature dependence of the two phenomena
indicate a relation between them which calls for further
studies.
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