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The transmission through three-dimenstional nanocontacts is calculated in the presence of localized scatter-
ing centers and boundary scattering using a coupled-channel recursion method. Simple confining potentials are
used to investigate how robust the observation of quantized conductance is with respect to the scattering. We
find that the quantum features are quite stable: the scattering by a localized scatterer will selectively smear and
downshift certain quantum steps depending on the position of the scatterer, but the remaining steps will still be
at integer positions. The effect of scattering by surface corrugation depends on the length scale of the corru-
gation. In some cases a significant downshift of the steps without accompanying smearing is observed. In
general, we find that even in the cases where scattering shifts the quantum steps the quantization of the motion
perpendicular to the contacts remains intact. Non-integer steps can therefore also be a signature of quantized
conductance.@S0163-1829~97!05804-9#

I. INTRODUCTION

The electrical and mechanical properties of nanostructures
have been studied intensely over the past decade due to the
possibility of new quantum properties appearing at the small
scale. One class of nanostructures consists of the nanocon-
tacts or quantum point contacts in which the transport be-
tween two leads or reservoirs are controlled at the nanoscale.
These have been synthesized by lithographic techniques on
semiconductor structures, e.g., GaAs-AlxGa12xAs, where
electrons are confined to move in two dimensions.1,2 In three
dimensions atomic scale metal contacts connecting two met-
als have been investigated. Apart from the fundamental in-
terest in new quantum effects the understanding of these
atomic sized contacts between two materials underlies the
understanding of the macroscopic contact phenomena such
as friction, wear, and adhesion. The experimental techniques
have in the past few years progressed substantially towards
measuring the electrical and mechanical properties of metal-
lic nanoscale contacts. Two closely related experimental set-
ups have been used in these studies. In one setup a scanning
tunneling microscope~STM! is used to study contact
formation/breaking between a tip and a sample metal
surface.3–15 The other technique16–21 is the so-called me-
chanically controllable break junction~MCB! technique,
where a thin metal wire is broken by piezocontrolled bending
and subsequently brought back into contact.

Both the STM and the MCB studies give information
about the electrical conductance through the contacts. In
some recent STM experiments12,13 the forces acting between
the electrodes have also been measured along with the con-

ductance. In a typical experiment the contact formation is
initiated by a rapid increase in the conductance seen in both
STM ~Refs. 3,4,6,22,23! and MCB ~Refs. 16,20! experi-
ments. This increase can be caused by a mechanical instabil-
ity ~‘‘jump to contact’’!24 or at higher temperatures by a
cascade of diffusion processes~‘‘diffusion to contact’’!.25 As
the contact is established the electron transport goes from the
tunneling regime to the so-called ballistic regime, where the
conductance is determined by the elastic quantum transmis-
sion properties of the contact. The initial rapid contact for-
mation may be followed by a further increase in the contact
area because of diffusion processes or because of continued
indentation. By reversing the motion of the electrodes the
contact can be pulled apart in a process where the contact
gets thinner and more elongated.

The most striking feature in the measured conductance vs
retraction distance is a profound step structure. This has been
seen using the STM type of experiment at liquid Helium
temperature for Au~Refs. 7,14!, at room temperature for Cu,
Pt, Ni ~Ref. 8!, and Au ~Refs. 10,14,15!, and in ultrahigh
vacuum at liquid nitrogen temperature for Au~Ref. 14!. It
has also been reported for Au in atmospheric pressure and
room temperature.6,9,13 In Fig. 1 we show the conductance
measured during the retraction of the STM tip. With the
MCB technique step structure in the conductance has been
observed for a range of systems covering the metals Al, Cu,
Pt ~Ref. 16! and Na~Ref. 18! at liquid helium temperatures,
as well as the semimetallic Sb~Ref. 17!. Also room-
temperature measurements19 have been performed in vacuum
on Cu and Au where a step structure was observed. Recently,
steps in the conductance during the breaking of a contact
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have also been seen in a much simpler type of experiment:26

Two pieces of ordinary macroscopic wires~Au, Cu, Pt, and
metallic glass! are brought in loose contact with each other
and by tapping the table top the contact between the wires is
broken. The measured conductance between the wires shows
a step structure during the last stages of contact, where only
one single nanocontact is likely to be present. Now tech-
niques derived form this method are emerging~pin-plate27,
relay28!.

The origin of the conductance steps has been debated
vividly.29,30 On the one hand it can easily be estimated that
the size of the neck/wire structure in the last stages before it
eventually breaks is at the very atomic scale with just a few
atoms in the contact area. In this regime quantum phenom-
ena can be expected at room temperature or even higher just
as the quantum size phenomena seen in the stability of small
metal clusters.31 If the contacts posses reasonably well-
defined quantum modes perpendicular to the direction of
transport the conductance can be expected to change in steps
of the quantum unit of conductance,G052e2/h „1/(12.9
kV)…. This is in analogy to the experiments1,2 where a
smooth constriction separating a two-dimensional~2D! elec-
tron gas is varied in diameter and the conductance through
the system is quantized. Thus the origin of the steps could be
a true quantum size effect.

On the other hand there are also indications that mechani-
cal instabilities of the atomic structure of the tip play an
active role during the breaking of a contact. It is clear both
from computer simulations32–35,10and from recent STM ex-
periments with force measurements13 that the atomic neck
which constitutes the contact undergoes abrupt structural
changes during the breaking and the area of the cross section
of the contact will therefore change in a stepwise manner. It
has therefore also been suggested34 that the discontinuous
change in contact area and atomic structure could be the
main underlying reason for the observed steps in the conduc-
tance curves.

At the present time there is rather clear experimental evi-
dence that for some systems the conductance just before the
breaking of the contact is truly quantized. It is clear that in
indentation/retraction experiments the detailed atomic struc-
ture will change from one indentation/retraction to another
and the behavior of the conductance vs stretch of the contact

is therefore not reproducible. The positions of the steps will,
in general, also fluctuate. However, for a range of metals the
measured conductances have been seen to group around in-
teger values timesG0. This is most clearly seen if a histo-
gram of measured conductances during pulloff of many con-
tacts (;100 or more! is constructed. Peaks at 1, 2, and 3
timesG0 or even higher have been seen in the case of Au
~Refs. 10,26,19,14!, Pt ~Refs. 30,26!, and Cu~Refs. 26,19! at
room temperature. In Fig. 2 we show the histogram based on
227 indentations on a Au~110! surface~see Ref. 10 for fur-
ther details!. For Na, peaks in the histogram have been seen
at 1, 3, and less clear peaks at 5 and 6 timesG0 at low
temperature.18 These latter findings can be explained based
on the degeneracy of the quantum modes if the neck in the
case of Na is preferentially cylindrical.

The appearance of integer multiples of the conductance
unit G0 strongly suggests the concept of well-defined quan-
tum modes in the contacts as a starting point. However, the
abrupt atomic rearrangements definitely also play a role.
Combined force and conductance measurements during the
tip pulloff shows that the drop in adhesive force is correlated
with a drop in conductance.13 These observations are in
quantitative agreement with the prediction in Ref. 10. The
picture that emerges is one in which the quantized conduc-
tance at integer values ofG0 is determined by the quantum
modes but the jumpbetweenthe different values are caused
by the abrupt atomic rearrangements. However, there are
also exceptions to this scenario. In a situation where the
cross sectional area of a contact is varied smoothly the quan-
tum modes could still give rise to quantized conductance but
the transition between the different steps could be expected
to be less abrupt. A more smooth transition between steps is
sometimes seen at a low temperature using the high stability
MCB setup, as shown in the first curve for Cu and the last
curve for Na in Fig. 3. At higher temperatures and in air the
steps for Au observed with STM are abrupt and accompanied
by large steps in the force.13 A special behavior is seen for
the semimetallic antimony~Sb!. With its low conduction
electron density, the Fermi wavelength is about an order of
magnitude larger than for the other metals studied
(lF'110 bohr!. During the pull of an Sb contact steps are

FIG. 1. The measured conductance of the contact between a
STM tip and a Au surface during the tip retraction~Ref. 10!.

FIG. 2. A continuous conductance histogram based on 227 in-
dentations of a STM tip on a Au~110! surface. Peaks at 1, 2, and
3 times the quantum unit of conductance (G052e2/h) are seen.
The results are taken from Ref. 10!.
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observed17 which are a small fraction ofG0. These steps can
only result from atomic rearrangements in the contact. For
bigger Sb contacts the conductance is not found to be quan-
tized possibly because these big contacts do not have an
elongated shape, especially at cryogenic temperatures.20

In the present paper we report an exact calculation of the
electronic transport through idealized small contacts in the
presence of elastic scattering. We investigate the stability of
the quantum conductance steps when the neck structure de-
viates from an ideal one with well-defined quantum modes.
Especially, we will see how different scattering sources,
point scatterers located inside the neck and boundary corru-
gation, will influence the conductance. We will use a jelli-
umlike model which is known to describe metals like Na or
the noble metals quite well, as has been seen in the case of
models for small metal clusters.31 We find that a localized
scatterer will smear and downshift the quantum steps selec-
tively depending on its location. In the case of boundary
corrugation steps can be substantially downshifted without
suffering from severe smearing depending on the length
scale of the corrugation. We find that the quantum mode
picture, in general, is quite stable and that the shifted con-
ductance steps still can be assigned to a particular quantum
mode.

The paper is organized as follows. In the first section we
will shortly review results obtained from simulations of neck
structures to get an atomistic picture of the structures in-
volved. Then the concepts of mesoscopic transport theory are
introduced and in this framework the quantized conductance
is discussed. This is followed in Sec. III by a short discussion
of models used for calculations of transmission through 3D
constrictions and an outline of the recursion method used for
the computations in this paper. In Sec. IV the results of the
computations are presented and discussed.

II. ATOMIC SCALE METAL CONTACTS
AND CONDUCTANCE QUANTIZATION

A. Simulations of contacts

Atomistic molecular dynamics~MD! simulations of the
dynamics of the contact breaking process has been carried
out for many different metals: Ni tip and Au surface,32 Pb tip
on a Pb surface with or without a Ir layer and a Ni tip on a
Ag substrate,33 Ir tip and surface,34 Ni tip and surface,35 Cu
tip and surface,10 and also for Au nanowires.10,27The forma-
tion of a ‘‘neck’’ ~see Fig. 4! is seen in all the simulations
and the evolution of the neck during the stretch of the contact
is quite similar for the contacts. The cross-sectional area de-
creases slowly, while the adhesive force is built up by elastic
deformation. This goes on until a sudden restructuring of the
neck occurs. During the restructuring, the cross-sectional
area changes along with a rapid drop in the adhesive force
resulting in a thinner and longer neck. In the simulations the
starting point has been crystalline tip structures with well
defined atomic layers. The restructuring in the first part of
the stretch is accomplished by emission of dislocations while
in the later part the restructuring goes on via a highly disor-
dered stage where the layers in the vicinity of the narrowest
part of the contact cannot be distinguished. Landmanet al.27

have simulated the process of elongation followed by com-
pression of a nanowire and compared with experiments.
They find that the process to a large extend is reversible for
the considered size of wires~conductances higher than about
10G0). It has been pointed out by Bratkovsky, Sutton and
Todorov35 that the temperature critically influences the reor-
dering processes because these depend on the available ki-
netic energy to initiate atomic rearrangements.

A severe problem is that only a short time is available in
the MD simulations (;0.1 ns! compared to the typical ex-
perimental time scale (;1 ms!. This means that the very
temperature sensitive diffusion processes cannot be included
in the MD simulations. In experiments on Cu~Ref. 19! the
conductance quantization is only prominent at high tempera-
tures, whereas in the case of Au~Ref. 14! no significant
dependence of temperature is seen.

B. Conductance quantization

In the simulations it is, in general, seen that the contacts
have their main variation in shape on a length scale of sev-
eral atomic interlayer distances due to elastic deformation,
see Fig. 4. The one-electron potential therefore has an enve-
lope with a curvature on this length scale superimposed by a

FIG. 3. Conductance curves obtained using the MCB technique
at helium temperatures~Ref. 20!.

FIG. 4. Snapshot from computer simulation of neck formation.
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smaller atomic corrugation from the surface atoms. On top of
this comes internal potential variations, especially in the case
of internal disorder with large variations in interatomic bond
lengths, and locally big variations in the boundary corruga-
tion due to a single or a few atoms in unfavorable positions.

The starting point for the understanding of the conduc-
tance quantization in the atomic scale metal contacts is the
smooth potential with an envelope varying on the length
scale of several interlayer distances. With this as the starting
point the quantized conductance can be understood in terms
of the Landauer’s36–38formula of quantum ballistic transport
combined with theadiabatic39,40 principle.

The Landauer formula is based on the assumptions37,38

that the system can be viewed as a scattering region where
solely elastic scattering takes place, connected to two perfect
leads ~no scattering! which define incoming and outgoing
states. These are then connected to two electron reservoirs at
infinitesimally different chemical potentials. This setup is de-
picted in Fig. 5. The effect of the reservoirs is to fill the
states in the perfect leads to the chemical potential of the
reservoir, according to the Fermi-Dirac distribution. It is as-
sumed that electrons entering the reservoirs from the perfect
leads are not reflected at the joining, and that the electrons

entering the reservoirs are not influencing the reservoir popu-
lations. The conductance,G, is then determined by the elas-
tic amplitudes,t i j , for transmission from the propagating
incoming statei in the first perfect lead to the propagating
outgoing statej in the second lead at the Fermi energy,

G5
2e2

h (
i j

ut i j ~EF!u2. ~1!

The adiabatic principle is applied in the same sense as in
a molecule where the Schro¨dinger equation separates into
one part for the electrons and one for the positions of the
ions which only appear as parameters in the electronic part.
Here the fast transverse quantized motion acts as the elec-
trons while the slow variation of the contact shape acts as the
ions. In the adiabatic case the transverse modes will not mix,
and the corresponding quantum numbers will be conserved
all the way from the first perfect lead to the second. This
conductance channel will experience an effective potential
due to the energy tied up in the transverse motion along the
way, see Fig. 5.

As an example, we could consider a constriction with
rotational symmetry around the axis in the direction of
propagation~this will be z in the following! and with a hard-
wall boundary at radiusR(z) in the xy direction. The wave
functions are expanded~for eachz) in terms of the transverse
modesFnmz(r ,w),

C~z,r ,w!5 (
~nm!

cnm~z!Fnmz~r ,w!, ~2!

Fnmz~z,w!5
1

Jm11~anm!
JmS anm

r

R~z! Deimw, ~3!

whereJm is themth Bessel function withnth rootanm . The
Schrödinger equation expressed in this basis is

F2
\2

2m

]2

]z2
1«nm~z!2EGcnm~z!,

1 (
~n8m8!

Unm,n8m8~z!cn8m8~z!50, ~4!

where

«nm~z!5
\2

2m S anm

R~z! D
2

. ~5!

Here U depends ondR/dz and d2R/dz2 and couples the
different ‘‘channels’’/modes with quantum numbers (n,m).
In the adiabatic approximation this coupling is neglected and
the electron transport takes place in each ‘‘channel’’ in par-
allel. Each mode encounter an effective 1D potential barrier,
«nm(z), which in the strict adiabatic case will be much
broader thanlF and therefore either completely reflect or
transmit, so the Landauer two-terminal formula is in that
case simply

G5
2e2

h (
~nm!

Tnm~EF!, ~6!

whereTnm is the corresponding transmission probability~ei-
ther 0 or 1). This is the origin of the quantum step structure,

FIG. 5. Upper: The setup where the Landauer formula for bal-
listic quantum transport applies. Only elastic scattering processes
are assumed to occur in the scattering region~all inelastic processes
take place in the reservoirs!, no scattering takes place in the perfect
conductors and between the perfect conductors and the reservoirs.
Middle: In the case of slowly varying confining potential the adia-
batic principle applies. Lower: To each adiabatic transverse mode
corresponds a potential barrier in the longitudinal direction due to
the energy taken up by the transverse motion. The finite number of
modes with a barrier less thanEF contributes each with the conduc-
tance quantum 2e2/h.
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because as the height of the effective barrier~the width of the
constriction! is reduced, channels will close, changing the
conductance by the quantum unit times the degeneracy of the
closing channel. We have taken the limit of vanishing tem-
perature since the energy scales involved in the transmission
~differences between transverse modes;1 eV! are much
larger thankT in the 3D metal contact experiments.

The general criterion39,40 for adiabatic transport is
dR/dz!1/Na(z), Na(z) being the local number of available
transverse modes above the barrier. Real potentials will, in
general, display nonadiabaticity: The width usually grows
faster towards the end of the constriction potential, while the
local number of transverse modes is growing. However, the
adiabatic condition does not have to be satisfied globally.
Yacoby and Imry have shown40 that the reflections due to a
sudden opening is highly suppressed if there is a small adia-
batic widening preceding it. The local reflection amplitudes
scale with„1/Na(z)…dR/dz explaining the strongly reduced
backscattering whenNa grows towards the opening of the
constriction. They have also shown that the corrections to the
adiabatic picture is of the same order as the scattering by the
1D effective potential, i.e., the tunneling and reflection above
the barrier. This was used in Ref. 10 to estimate the scatter-
ing from the boundary neglecting interchannel scattering. It
has been shown in the 2D case by Maao” et al.41 that the
neglect of the coupling terms between channelsunderesti-
matesthe degree of quantization.

III. CONDUCTANCE CALCULATIONS

We shall first briefly review some earlier works on trans-
mission through restricted geometries in 3D. Then the com-
putational method used in this paper is introduced.

A. Constriction models and transmission

Exact analytical expressions for the 3D transmission has
been obtained for simplified geometries. Bogacheket al.42

discussed the case of a hard-wall cone-type rotational sym-
metric modelpotential. Extending a hyperbolic hard-wall
constriction used by Yosefin and Kaveh43 in 2D to the cor-
responding 3D case with cylindrical symmetry, Torres
et al.44 calculated exactly the transmission as a function of
width for different opening angles. They show how the con-
ductance steps get more smeared when the opening angle is
made larger, approaching the semiclassical limit,

G`5G0S kF2A4p
2
kFP

4p D . ~7!

This is the Sharvin45 formula for ballistic transport with a
perimeter (P) correction. For a square hard-wall confining
potential with the transverse modes sin(nxxp/
L)sin(nyyp/Ly), this correction subtracts the modes where
nx or ny are zero. Scherbakovet al.46 have investigated the
quantum step structure in a free electronlike model in the
presence of a magnetic field. They describe the neck poten-
tial by a harmonic saddle point (}2kzz

21kxx
21

kyy
2), for which the transmission is exactly known as a func-

tion of EF , which is the quantity varied in the paper. In this
model the degeneracy of the quantized steps due to the de-
generacy of transverse modes may be lifted by choosingkx

Þky . However, the shapes of the necks will, in general, be
elongated, which is known to improve the conductance quan-
tization. Many numerical investigations has been carried out.
Torres and Sa´enz47,48 have modeled the elongated structures
by stacking cylindrical layers with a thickness of the atomic
interlayer spacing and varying radii. The electrons were con-
fined in these by a hard-wall potential. The transmissions
were calculated using a generalized scattering-matrix tech-
nique to match the modes between layers. Kasaiet al.49 have
modeled the 3D constriction using a tight-binding model
varying the on-site energies.

In a number of studies atomic structures obtained with
molecular dynamics simulations have formed the basis for
simple conductance calculations.34,35,10The conductance cal-
culations have then been carried out in either free-electron-
like models with a hard-wall constriction35,10or using a tight-
binding approximation.34,35We would like here to point out
an important difference between the free-electron-like mod-
els and the tight-binding model if — as is often the case —
a very limited basis set is used in the tight-binding descrip-
tion. The systems we have in mind in this context are, for
example, alkali metals or noble metals where a free-electron-
like model is known to describe the states at the Fermi level
of the bulk metals reasonably well. The difference between
the free-electron model and the tight-binding model can be
seen already by considering the local density of states in a
region of atomic size. In the case of the free-electron gas the
density of states is increasing with energy with a square root
dependence but for a tight-binding model with, say, a single
s state per atom, the density of states will have a high value
around the energy of the orbital and then decrease at higher
energies. The free electron gas can of course be well de-
scribed in a given energy window using an atomic tight-
binding basis, but the energy overlap and the hybridization
between different bands (s, p, d . . . ) will generally be con-
siderable and several bands will be necessary to describe the
states near the Fermi level in an appropriate way. This point
also carries over to the situation of transmission through an
atomic size neck. If we for simplicity consider transmission
through a single atom and only include one state on this atom
we obtain a resonant tunneling description: The transmission
will go through a maximum value near the position of the
state,«a ~properly renormalized by the leads!, and at higher
energies the transmission falls off. The conductance is~see,
e.g., Ref. 50!,

G5G0

4DLDR

~EF2«a!
21~DL1DR!2

, ~8!

where the width of the transmission peak is determined by
the strength of the coupling between the atom and the leads
(L andR) expressed in terms of the coupling weighted den-
sity of states51 of the leads~assumed to be independent of
energy,wide band limit!. This is a description appropriate for
a situation with weak coupling to the leads. However, if this
coupling is sufficiently strong, so that the width of the trans-
mission peak is comparable to the energy difference between
atomic states, the true transmission will not decrease at
higher energies but increase until saturation is reached.

In this one-state case the maximum of 1G0 is reached for
EF5«a andDL5DR . In the case of more sites connecting
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the electrodes and when only hopping can occur between
neighboring atomic layers, the conductance will be limited to
the minimum number of sites/states in a cross section of the
neck timesG0. This indicates that the scattering of a propa-
gating wave in the tight-binding model is much more severe
than in the free-electron model due to the limited basis set.
The sensitivity of the hopping matrix elements on the inter-
atomic distances will be reflected in the conductance, be-
cause inhomogeneities in the hopping will increase scattering
and give deviations from the quantized values. This can be
seen crudely in the one-state case where different bond
lengths to the two electrodes will makeDL different from
DR and the maximum conductance less thanG0.

The weakness of the simple free-electron-like models is
that scattering due to internal and boundary disorder is not
taken into account. These features are naturally accounted
for in the tight-binding models without further complica-
tions, whereas a larger numerical effort is required for the
free-electron models. We will use here a model potential
with free-electron electrodes as our starting point and include
the scattering effects in the neck structure using an exact
numerical computational scheme.

B. Computational method

Now we shall discuss the numerical method which we
have used to calculate the transmission in our jellium like
model where scattering from the individual atomic pseudo-
potentials are neglected. We have employed the recursion-
transfer-matrix method of Hirose and Tsukada.52 This
method is an extension of the 1D continued frac-
tion/recursion method of Lambin and Vigneron53,54to the 3D
multichannel case.

For a numerical calculation of the stationary solutions to
Schrödingers equation with scattering boundary conditions
and getting the transmission, we will have to discretize the
problem. This is done in two steps. The first step is to replace
the single neck-structure along thez direction by a periodi-
cally repeated unit cell in thexy direction each containing
the neck structure. This allow us to use Bloch’s theorem and
the xy part of the problem can be written in terms of the
discrete reciprocal lattice vectors (GW '

j ) corresponding to the
translational symmetry in thexy plane. Thei th stationary
scattering state can then be written as

c i~z,rW'!5eik
W
'•r

W
'(

j
f i j ~z!eiG

W
'
j
•rW', ~9!

wherekW' is the conserved Blochk vector in thexy Brillouin
zone. Since it is conserved we will take it to be implicit in
the rest. TheGW '

j in this basis define the conductance ‘‘chan-
nels.’’ However, the plane-wave basis set is very far from the
adiabatic basis set in the sense that the differentGW '

j channels
will mix strongly inside the neck structure. The advantage is
that they will be decoupled in the free-electron electrodes.
Now, we have obtained discrete channels, however, we still
have an infinite number of them and we will have to truncate
the GW ' set. This is done by including only the set ofGW '

within the energy cutoff sphere:

ukW'1GW '
i u2,~2mEcut/\

2!, ~10!

and the numerical calculations will then have to be con-
verged with respect to the cutoff energy,Ecut.

The next step is to calculate the transmission through one
unit cell which, for a sufficiently big unit cell, will converge
to the transmission in the non-periodic potential. This is done
by a real-space discretization along thez direction. Defining
the coefficient matrixC= ,

„C= ~z!…i j[f i j ~z!, ~11!

the Schro¨dinger equation can be written in matrix form as

2
\2

2m

]2

]z2
C= ~z!1V= ~z!C= ~z!5EC= ~z!, ~12!

with scattering boundary conditions,

„C= ~z!…i j5H t i j eikzj z; z in exit

d i j e
ikz
i z1r i j e

2 ikz
j z; z in entrance ~13!

The matrixV= contains the 2D Fourier transform of the
potential and the kinetic energy in thexy plane,

„V= ~z!…i j5d i j
\2

2m
ukW'1GW '

i u2

1
1

Au.c.
E
u.c.
V~rW' ,z!ei ~G

W
'
j

2GW '
i

!•rW'drW' , ~14!

whereAu.c. is thexy area of the unit cell. The Schro¨dinger
equation is discretized using the Numerov method which is
correct to 4. order in thez grid division,hz :

a= ~zp!C= ~zp11!2b= ~zp!C= ~zp!1c= ~zp!C= ~zp21!5 0,
~15!

where

a= ~zp!5I=2
1

12

2mhz
2

\2 @V= ~zp11!2I=E#, ~16!

b= ~zp!52 I=1
5

6

2mhz
2

\2 @V= ~zp!2I=E#, ~17!

c= ~zp!5a= ~zp22!. ~18!

The trick in the recursion method53 is to consider the ratio
corresponding to the logarithmic derivative of the wave
function, i.e., the phase,

S= ~zp!5C= ~zp11!C= ~zp!
21. ~19!

The reason is thatS= is known on the exit side due to the
boundary conditions~13!, since the unknownt i j cancels out
in S= there ~while r i j will not cancel out in the entrance!.
Taking the potential in the free-electron electrodes to be
zero, we have the solution to Eq.~15! in the electrodes,

S=5K= , ~20!

where
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~K= ! i j5d i j ~g i1 iA12g i
2!, ~21!

with

g i5
11 5

12 hz
2@ ukW'1GW '

i u22~2mE/\2!#

12 1
12 hz

2@ ukW'1GW '
i u22~2mE/\2!#

. ~22!

K= is just the discretization of the phase,

d i j e
ihzA~2mE/\2!2ukW'1GW '

i u2. ~23!

From Eq.~15! a one point recursion relation forS= is ob-
tained,

S= ~zp21!5@b= ~zp!2a= ~zp!S= ~zp!#
21c= ~zp!. ~24!

The recursion can then be started in the exit electrode and
yield S= in the entrance,

S= ~z21!5C= ~z0!C= ~z21!
21. ~25!

Using the boundary condition for the entrance@Eq. ~13!# C=
can be written here as

C= ~zp!5K= p1K= 2pr= . ~26!

From the last two equations, the unknown reflection ampli-
tude matrix can be eliminated, and we can obtain the coeffi-
cient matrix in the entrance,

C= ~z0!5S= ~z21!@K= S= ~z21!2I=#21@K= 2K= 21#, ~27!

and from this the transmission amplitude matrix,t=, can be
calculated:

t=5C= ~zN!5 )
p50

p5N

S= ~zp!C= ~z0!. ~28!

The transmission amplitude matrix that we have obtained
gives us the amplitude for entering in ‘‘channel’’i , i.e., in a
plane wave with a transverse wave vectorGW '

i (1kW'), and
exiting in ‘‘channel’’ j in a plane wave with a transverse
wavevectorGW '

j (1kW'). To get the flux-normalizedt i j enter-
ing the Landauer formula, we will have to multiply our ob-
tainedt i j by Akzj /kzi .

The recursion calculation of the transmission must be per-
formed for a sufficiently large set ofkW' vectors and the av-
erage of conductances must be taken in thexy Brillouin
zone. For a sufficiently largexy-unit cell it will be sufficient
to use onlykW'50. In the numerical calculations the comput-
ing time is mainly spend on 2D Fourier transforms and ma-
trix inversions which can be performed efficiently by stan-
dard computer library routines.

IV. RESULTS

In this section we present the results of our calculations
using the recursion method. We consider electrons with
EF55.5 eV and a soft-wall confining potential of height
23EF , as a simplified version of a Au-jellium model. In all
calculations we have used a unit cell of 60 bohr in thex and
y directions. Thexy grid used in the numerical Fourier trans-
forms have 60360 points and we use a recursion step length

in the z direction of 1 bohr. The conductance curves are
converged for a plane-wave cutoff of 20.5 eV corresponding
to 408 channels.

A. Smooth 3D contacts

We have here chosen to consider the simplest possible
shapes even though the method is capable of treating general
shapes. The reason for this is that we want to focus primarily
on the effects originating from the scattering which is not
intrinsic to the smooth envelope. Also for simplicity we shall
not take into account the change of shape of the neck during
the elongation but just consider the width of the neck as the
only variable.

We define our neck shapes in the following way:

V~r ,z!5V0H For r.R1gW/2:u~R1z!u~R2z!

otherwise

u$R2Az21@r1~R1g•W/2!#2%
~29!

where

r5gA~x/a!21~ay!2. ~30!

For g51, R is the radius of curvature of the circular neck
envelope in therz plane andW is the ‘‘width’’ of the neck at
the thinnest point. We can deform this shape from circular
(g51) to elliptical (g.1). The cross section can be de-
formed from a circle (a51) to an ellipse with axis lengths
r x5aW andr y5W/a. Instead of step functions (u) we use
Fermi functions with a width of 0.5 bohr.

In Fig. 6 we show the conductance curves resulting from
necks with circular cross sections (a51) and circular enve-
lopes (g51). The curves correspond to four different radii
of curvature of the envelope,R. It is seen how the smearing
of the steps gets stronger with decreasingR. This is illus-
trated in Fig. 7, where we plot the contours in thexz plane
~cut through the middle of the neck in the direction of the
current! of thez component of the current density,j z . In the
left panel we see the current pattern forR55 bohr ~upper!

FIG. 6. Conductance curves for circular shaped envelopes with
different radii of curvature (R). The cross section is chosen to be
circular. In the inset the 1G02 3G0 step~solid! is plotted together
with the approximate expression~dashed!.
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andR515 Bohr~lower! for a width corresponding to a con-
ductance of 1G0. The more symmetric pattern in the latter
case indicates less backscattering. In the upper right panel we
show the pattern forR55 and a width corresponding to a
conductance of 2.9G0. Here two maxima in the current den-
sity are seen inside the constriction. In the 2D calculations
with flat constriction sides it has been pointed out55 that an
accurate quantization persist even for constrictions with
lengths much shorter than the width.

Let us consider the step shape of the opening of a single
conductance step corresponding to a conductance ofG5
NG0 and with degeneracyndeg, as a function of the neck
width (W). If we approximate this by a Fermi function,

dG~W!'G0ndeg
1

11e2g~W!/D , ~31!

g~W!5S kF2W2

16
2
kFW

4 D 2N, ~32!

the smearing of the steps is within the adiabatic picture ap-
proximately given by10

D;
1

2p2

~pW2/4!0.75kF

A2Reff

. ~33!

HereReff is the effective local curvature at the thinnest point.
In the inset of Fig. 6 this formula is compared with the nu-

merical exact result for the 123G0 double step using
Reff5R. It is seen that the simple formula describes the scal-
ing of the step withR reasonably well.

Now we change the neck shape from a circular (g51) to
an elliptical envelope (g.1). The conductance curves are
displayed in Fig. 8. We keepR fixed at 15 bohr, i.e., the
length of the neck is fixed at 2R530 bohr. In this calculation
we have chosen the cross section to be elliptical with
a50.75. This splits the degenerate modes corresponding to
theG53G0 andG55G0 steps and steps at 2G0 and 4G0
appears instead~we will return to this point later!. An in-
crease in the quality of the quantization is clearly seen when
the flatness (g) of the neck side is increased. In the lower
panel of Fig. 7 we compare the current pattern of the circular
~left! with the g52 elliptical ~right! shaped envelope. The
more flatg52 gives a more focused current which is quite
symmetric in exit and entrance, while theg51 spreads the
current and backscatters more into the entrance giving rise to
the asymmetry. Within the adiabatic mode picture the more
sharp transition between steps forg52 compared tog51 is
understood in terms of less tunneling through and reflection
above the effective barrier for the modes in theg52 case. In
the case ofg5`, corresponding to a cylindric hole with no
gradual opening, resonance structure is seen in the conduc-
tance curve. This is due to backscattering at the exit and
entrance of the structure also seen in the 2D
calculations.55–57,41 In the 3D case the flat sides with no
gradual opening is quite unrealistic as seen from molecular
dynamics simulations. Next we will turn to the effects of a
single scatterer located inside an otherwise smooth constric-
tion.

B. Scattering center inside a smooth 3D contact

Localized scattering centers inside confined structures
have been studied theoretically for the 2D systems. A
d-function scatterer has been included in a constriction
geometry55 in a tight-binding calculation. Tekman and

FIG. 7. Top panel: Contours of current density inz direction,
j z , and the direction of current for a highly curved constriction,
R55 bohr, for widths of 8 bohr~left! and 12 bohr~right!. The left
contours values are multiplied by 0.5 compared to right. The corre-
sponding conductances are 1.01G0 and 2.92G0, respectively. The
constricting potential is shown by dashed contour lines~contours:
EF60.25EF). Note the peak structure inside the neck. Lower panel:
The contours for a less curved constrictions withR515 bohr,
sphericalg51 ~left! and ellipticalg52 ~right! shapes. The conduc-
tance is in both cases 1.0G0.

FIG. 8. The conductance curves for different elliptical shapes
~inset! denoted byg. HereR515 bohr and the cross section is taken
to havea50.75 eccentricity. Now stepsG52G0 andG54G0 are
seen, butG53G0 has disappeared. In the case of a cylindrical hole
connecting the electrodes (g5`) a resonance structure is seen. The
curves have been shifted (0,1,2,3 bohr! horizontally for clarity.
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Ciraci57 also considered a scatterer (d function inz and finite
extension in the transverse direction! in a 2D constriction
geometry. Scatterers in infinite wires have been dealt with by
Bagwell58 who stresses the importance of the evanescent
~tunneling! modes (En.EF) in the confined scattering prob-
lem. Recently Lang59 has calculated the conductance through
three Al atoms in a line connected to jellium electrodes using
a self-consistent scheme. Substituting one of the Al atom by
a electro-negative sulfur atoms increases the resistance.

In these calculations we assume the following simple
form for the change in the effective one-electron potential
due to the presence of a scatterer located atr 0W :

Vs~rW !5Sexp~2urW2r 0W u2/d2!. ~34!

We will refer toS as the strength andd as the decay length
of the scatterer.

We choose a smooth elliptical constriction with shape
g52, R515, and circularxy-cross section. The scattering
potential is taken to be rather strongly repulsive with strength
S52EF and a decay length ofd52 bohr. In the upper panel
of Fig. 9 conductance curves are shown for the scatterer
placed in the middle of the neck at differentz positions. It is
seen that, as expected, the effect is largest for the scatterer
placed atz50. It is also seen that step 1 and step 6 are
almost completely ‘‘closed’’ in contrast to step 3, which re-

covers quite fast, when moving the scatterer towards the
neck opening. When the scatterer is placed close to the
middle of the neck the electrons will have to tunnel and this
gives an exponential dependence of the transmission on the
width (z50 bohr!. Moving the scatterer towards the channel
exit this goes into a more linear regime (z55 bohr! and
eventually a step less than 1G0 appears (z57.5 bohr! which
is followed by a slow increase towards 1G0. We note that a
resonance appears forz510 for step 1 and is less clear for
step 6. This is presumably due to the reflections of the wave
between the scatterer and the middle of the neck. We obtain
the same results when the scatterer is placed symmetrically
in the entrance (z→2z) due to the symmetric neck potential
~the total transmission is always independent of the side of
incidence!.

The reason for the different influence of the scatterer on
the different steps can be understood in a perturbation picture
using the adiabatic states as a starting point. The change in
conductance due to the extra backscattering can be estimated
using the first Born approximation. Born approximation60

~and neglecting contributions from evanescent modes and the
z variation of the adiabatic wave functions within the range
of the scattering potentialVs),

dG52
2e2

h (
nl

S m\2D 2 1

knkl

3F E
2`

`

dzei ~kn1kl !zE
2`

`

dxE
2`

`

dy

3F l~x,y!Vs~x,y,z!Fn~x,y!G2, ~35!

wherekn(z)5$2m@EF2«n(z)#%
1/2/\ is the wave vector for

the nth adiabatic mode. Here it is clear that for themth
quantum conductance step, the dominant contributions to
dG comes from the modes with the smallestk, i.e., from the
backscattering within themth adiabatic channel. These are
simply the modes with the least energy left for propagation.
Thus an adiabatic mode with a node whereVs has its main
weight will suffer less scattering. If we assume that the
modes inside the neck resembles the modes in a hard-wall
cylinder ~see inset in Fig. 10!, we see that the first and the
sixth modes do not have a node in the middle like the other
modes which have quantum numbermÞ0. It is also seen
that modes 5 and 6 lie close in energy which explains why
step 5 is smeared, because as 5 opens 6 will already begin to
contribute to the conductance by tunneling.

To substantiate this point a little further, we have fixed the
width of the neck at a given quantum step, 1, 3, or 6, and
calculated the deviation from the step as the scatterer is
moved from the middle of the neck to the side~along thex
axis!. This is shown in Fig. 10. It is seen that the deviation as
a function of scatterer displacement towards the side of the
neck follows the structure of the cylinder wave functions for
modes 1, 3, and 6~see inset!. If we now for simplicity as-
sume ad scattering potential,

Vs~x,y,z!5Sd3d~x2x0!d~y!d~z!, ~36!

and use the hard-wall potential wave functions in Eq.~35!,
we obtain

FIG. 9. Upper panel: The scatterer located in the middle of the
neck (R515 bohr,g52) and moved along thez axis towards the
exit ~entrance!. It is seen that step 1 and step 6 are most affected.
Lower panel: The scatterer located on the neck side. The step struc-
ture is maintained but smeared. The effect is reduced fast when
moving the scatterer towards the exit~entrance! due to the curvature
of the neck.
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dG~x0!52
2e2

h
S 2md2

\2 SD 2S d
R
D 2

3F(
nm

1

A2mR2

\2 EF2anm
2 S JmS anm

x0

R
D

Jm11~anm! D 2G 2.
~37!

This expression is plotted in Fig. 10 as a function ofx0 for
widths (52R) corresponding to steps 1, 3, and 6.

Now, consider the situation where the scatterer is located
close to the side of the neck, see lower panel in Fig. 9. In this
case the step structure is maintained somewhat more com-
pared to the situation with the scatterer in the middle of the
neck. We see that the steps gets smeared which can be
thought of as a decreased effective radius of neck curvature,
Reff . The effect reduces quickly as the scatterer is moved
towards the exit~entrance! due to the curvature of the neck.
This confirms what could be expected, namely, that it is
mainly disorder close to the middle of the neck which mat-
ters due to the suppression of the wave function near the
boundary.

We have calculated thej z contours and the electron den-
sity contours in thexz plane for the incoming scattering
states atEF , with and without scatterer, for widths of 8 and
12 Bohr corresponding to step 1 and 3, respectively. These
are presented in Figs. 11 and 12. The node structure with one
central peak in the case ofG51G0 and two separated peaks
for G53G0 is clearly reflected in both figures. It is seen that
the node structure persists in both cases of scatterer position.
This must mean that the intrachannel scattering plays a
dominant role, since otherwise the structure would be
smeared. The interference pattern between incoming and re-
flected waves in the entrance is seen in the density figure
while the diffraction effect is seen in the current density fig-
ure in the case where the scatterer is located on the neck side.

In Fig. 13 we present the conductance curves for the same
neck just with an elliptical cross section witha50.75 in-
stead of a circular one. This eccentricity splits the degen-
eracy in angular quantum number (m561) of the second
mode corresponding to step 3G0 and the mode correspond-

FIG. 10. The deviation from the integer quantum number is
shown as a function of position of scatterer when this is moved
from the middle to the side of the neck. This is shown for fixed
widths corresponding to stepG51G0, G53G0, andG56G0,,
respectively. Below, result for deviation from integer quantum steps
from Born approximation result using hard-wall cylinder wave
functions@inset: Bessel functions,Jm(amnr /R), R is cylinder radius
and amn the nth root of Jm) as unperturbed transverse adiabatic
states. FIG. 11. The contours of the current density in thez direction,

j z , for widths of 8 ~left! and 12 bohr~right!. In the upper panel no
scatterer is present, in the middle the scatterer is located in the
middle, while the scatterer is located on the side in the lower panel.
The corresponding conductances are 1.0G0, 0.3G0, 0.7G0 for the
width of 8 bohr and 3.0G0, 2.7G0, 2.5G0 for the width of 12 bohr.
The values on the contours are the same except for the middle left
where they are scaled by 0.5.
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ing to step 5G0 (m562). The disappearance of step 3G0 is
due to almost degeneracy of two modes. This can be under-
stood if we take the potential to be harmonic. Then the en-
ergy level grouping is determined by

«nx ,ny}anx1ny /a. ~38!

For a50.75 this factor yield energies 0., 0.75, 1.33,
1.5, 2.08, 2.25, 2.67 giving a step sequence for the first
steps of 1, 1, 2, 2 if we group levels close in energy to
account for the step smearing. Fora51.0 the corresponding
energies are 0., 1., 1., 2., 2., 2., 3. giving a step degen-
eracy sequence of 1,2,3. These degeneracies fit well with the
findings in Fig. 6 and Fig. 13.

When the scatterer is located in the middle~upper panel!
the steps 2 and 4 play the role of step 3 in the case of
circular (g51) cross section and are less affected compared
to step 1. Step 2 is less affected compared to 4 which we can
understand if we think of the transverse modes correspond-
ing to 2G0 and 4G0 having a line of nodes on the short axis

(r x) and on the long axis (r y), respectively. Then step 4 will
have larger overlap with the scattering potential giving a
larger matrix element.

Placing the scatterer on the longx axis ~middle panel! we
see that step 1 survives but is smeared like in the circular
case. Step 2 is destroyed forz50 in this case, but not for the
scatterer on the shorty axis ~lower panel!. Here step 1 be-
haves much like the case where the scatterer is in the middle.
Step 4 is strongly affected in both cases, but it is seen that its
opening is more delayed when the scatterer is placed on the
short y axis ~lower panel! compared to the longx axis
~middle panel!. This we can understand from the node-
picture mentioned before. So in the case of high eccentricity
a scatterer located on the side will selectively affect the steps
in contrast to the low eccentricity case. We will now turn to
the effect of a corrugated neck potential on the transmission.

C. Corrugated 3D contacts

The effect of boundary roughness has recently been ad-
dressed by Bratkovsky and Rashkeev61 for the 3D ~circular

FIG. 12. The contours of the electron density for the incoming
scattering state atEF for the same situation as in the previous fig-
ure. The node structure inside the neck and the interference pattern
between the incoming and reflected waves in the entrance is clearly
seen. The persistence of the nodes when the scatterer is introduced
reflects that intrachannel scattering must play the dominant role.

FIG. 13. Same situation as in Fig. 9, but now for a elliptical
cross section (a50.75). Step 3 disappears and steps 2 and 4 ap-
pears corresponding to the splitting of the degenerate adiabatic
transverse states withm61 andm62. In the upper panel the scat-
terer is located in the middle while it is on the side in the two lower
panels~insets show the neck cross-section contours!.
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cross section! case within the free-electron model in a per-
turbation framework. They include a random noise in the
position of the hard-wall neck boundary to simulate the
roughness. They conclude that the effect of boundary rough-
ness results in either backscattering destroying conductance
quantization or resonant transmission at the opening of new
channels. Tekman and Ciraci57 previously have addressed
the same problem in the 2D case. The tight-binding models
have been widely used to study boundary as well as internal
disorder in 2D.62,63Here the disorder is modeled by random-
izing the on-site energies keeping the nearest neighbor hop-
ping matrix elements constant.

Here we study the effect of boundary corrugation on the
conductance curves by modulating the boundary with a term
(Ac/2)sin(2pz/lc). In Fig. 14 upper panel we show conduc-
tance curves for a corrugated spherically shaped (R515
bohr! neck with a circular cross section. The conductance
curves forlc equal to 6, 7, 8.5, and 10 bohr and for two
different amplitudesAc51.0 bohr andAc52.0 bohr~shifted
by 12G0) are shown. In the case of a short corrugation
wavelengthlc<7.0 bohr ~compared tolF510 bohr! a
downshift of all the steps is seen, and a downshift decreases
with decreasinglc . In the case of strong corrugation
(Ac52 bohr! a resonance starts to build up.

Introducing a scatterer in the middle~lower panel! we see
the same effect as in the case of no corrugation just with the
new step positions as the starting point. Thus the two scat-
tering mechanisms seem to superimpose. When the corruga-

FIG. 15. The electron density~upper! and current density
~lower! for the incoming states atEF in the case of a boundary
corrugation with amplitudeAc52 bohr and wavelengthlc57
bohr. The conductance is 0.6G0 for a width of 8 bohr~left! and
2.45G0 for a width of 12 bohr~right! corresponding to a node
structure with no node and one node, respectively.

FIG. 16. Upper: The histogram obtained from sampling the con-
ductance during a variation of the width for the strongly corrugated
neck (Ac52, lc57 bohr!. Lower: The same situation as the upper
histogram but now including the scatterer in the middle.

FIG. 14. The conductance curves for corrugated boundary. The
upper curves~shifted by12G0) correspond to a corrugation am-
plitudeAc52 bohr, while the lower correspond toAc51 bohr. The
corrugation leads to a downshift of the steps for smalllc which
decreases withlc (lc56, 7 bohr!. For largerlc (lc58.5, 10 bohr!
the steps are smeared corresponding to a smallerReff of the neck.
Introducing a scatterer in the middle~lower panel! gives a ‘‘super-
position’’ of the corrugation effect and the effect of the localized
scatterer seen previously.
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tion wavelength is increased further (lc>7 bohr in upper
panel! the steps are smeared corresponding to a smaller
Reff . In contrast to the effect of the localized scatterer, which
could smear/close single steps selectively, the scattering
from boundary corrugation downshift all the steps.

It is remarkable to observe that the step structure remains
and that the steps are even sharper in the case with high
boundary corrugation and scatterer than in the case with only
the scatterer. Thus we can have a step structure shifted away
from integer positions in a model where the width is varying
continuously, and these steps can still be associated with the
quantum modes in the neck structure. In Fig. 15 we show the
contour plots of the electron density~upper panel! and z
current density~lower panel! for the case of boundary corru-
gation. We can again conclude that the node structure per-
sists and correlates with the number of conductance chan-
nels, even though the conductances are downshifted from the
integer positions, see Fig. 15. One can gain further insights64

of the nature of the modes and the behavior of the conduc-
tance by investigation of the eigenvalves and eigenvectors of
t†t and tt†.

The quantized conductance is most clearly revealed ex-
perimentally by considering conductance histograms from
big ensembles of contacts. This is necessary because of the
poor reproducibility of the neck structure as discussed ear-
lier. The detailed shapes of the histograms can depend on
several factors including overall neck shape, impurity or
boundary scattering, and also mechanical instabilities but we

shall not go into a discussion of this here. However, we do
want to point out that the impurity and boundary scattering
discussed above may lead to shifted peaks in a conductance
histogram. To illustrate this, we show in the upper panel of
Fig. 16 the conductance histogram obtained from a strongly
corrugated neck (lc57.0 bohr,Ac52 bohr!. In the lower
panel we show the histogram for the scatterer positioned in
the middle of this neck. Since we only sample over the neck
width,W, the histogram is simply inversely proportional to
dG/dW. The histograms clearly exhibit peaks which are
shifted away from the integer positions due to the scattering.
However, as the analysis above shows the peaked structure is
still due to the well-defined quantum modes perpendicular to
the direction of the current.
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4U. Dürig, O. Züger, and D. W. Pohl, Phys. Rev. Lett.65, 349

~1990!.
5L. Kuipers and J. W. M. Frenken, Phys. Rev. Lett.70, 3907

~1993!.
6J. I. Pascual, J. Me´ndez, J. Go´mez-Herrero, A. M. Baro´, N. Gar-
cı́a, and Vu Thien Binh, Phys. Rev. Lett.71, 1852~1993!.

7N. Agraı̈t, J. G. Rodrigo, and S. Vieira, Phys. Rev. B47, 12 345
~1993!.

8L. Olesen, E. Lægsgaard, I. Stensgaard, F. Besenbacher, J.
Schio”tz, P. Stoltze, K. W. Jacobsen, and J. K. No”rskov, Phys.
Rev. Lett.72, 2251~1994!.

9V. V. Dremov, S. Yu. Shapoval, and E. V. Sukhorukov, Phys.
Low-Dim. Struct.11/12, 29 ~1994!.

10M. Brandbyge, J. Schio”tz, M. R. So”rensen, P. Stoltze, K. W.
Jacobsen, J. K. No”rskov, L. Olesen, E. Lægsgaard, I. Stens-
gaard, and F. Besenbacher, Phys. Rev. B52, 8499~1995!.

11J. I. Pascual, J. M. Me´ndez, J. Go´mez-Herrero, A. M. Baro´, N.
Garcı́a, U. Landman, W. D. Luedtke, E. N. Bogachek, and H. P.
Cheng, Science, 267, 24~1995!.

12N. Agraı̈t G. Rubio, and S. Vieira, Phys. Rev. Lett.74, 3995
~1995!.

13G. Rubio, N. Agraı¨t and S. Vieira, Phys. Rev. Lett.76, 2302
~1996!.

14C. Sirvent, J. G. Rodrigo, N. Agraı¨t and S. Vieira, Physica B218,
238 ~1996!.

15Z. Gai, Y. He, H. Yu, and W. S. Yang, Phys. Rev. B53, 1042
~1996!.

16J. M. Krans, C. J. Muller, I. K. Yanson, Th. C. M. Govaert, R.
Hesper, and J. M. van Ruitenbeek, Phys. Rev. B48, 14 721
~1993!.

17J. M. Krans and J. M. van Ruitenbeek, Phys. Rev. B50, 17 659
~1994!.

18J. M. Krans, J. M. van Ruitenbeek, V. V. Fisun, I. K. Yanson, and
L. J. de Jongh, Nature~London! 375, 767 ~1995!.

19C. J. Muller, J. M. Krans, T. N. Todorov, and M. A. Reed, Phys.
Rev. B53, 1022~1996!.

20J. M. Krans, Ph.D. Thesis, Leiden, 1996.
21J. M. Krans, J. M. van Ruitenbeek, and L. J. de Jongh, Physica B

218, 228 ~1996!.
22D. P. E. Smith, Science 269, 21~1995!.
23L. Olesen, M. Brandbyge, M. R. So”rensen, K. W. Jacobsen, E.

Lægsgaard, I. Stensgaard, and F. Besenbacher, Phys. Rev. Lett.
76, 1485~1996!.

24J. B. Pethica and A. P. Sutton, J. Vac. Sci. Technol. A6, 2490
~1988!.

25M. R. So”rensen, H. Jo´nson, and K. W. Jacobsen, Phys. Rev. Lett.
~to be published!.

26J. L. Costa-Kra¨mer, N. Garcı´a, P. Garcı´a-Mochales, and P. A.
Serena, Surf. Sci. Lett.342, L1144~1995!; 349, ~E!L138 ~1996!.

27U. Landman, W. D. Luedtke, B. E. Salisbury, and R. L. Whetten,
Phys. Rev. Lett.77, 1362~1996!

28K. Hansen, E. Lægsgaard, I. Stensgaard, and F. Besenbacher~un-
published!.

55 2649SCATTERING AND CONDUCTANCE QUANTIZATION IN . . .



29J. M. Krans, C. J. Muller, N. van der Post, F. R. Postma, A. P.
Sutton, T. N. Todorov, and J. M. van Ruitenbeek, Phys. Rev.
Lett. 74, 2146~1995!.

30L. Olesen, E. Lægsgaard, I. Stensgaard, F. Besenbacher, J.
Schio”tz, P. Stoltze, K. W. Jacobsen, and J. K. No”rskov, Phys.
Rev. Lett.74, 2147~1995!.

31Walt A. de Heer, Rev. Mod. Phys.65, 611 ~1993!.
32U. Landman, W. D. Luedtke, N. A. Burnham, and R. J. Colton,

Science248, 454 ~1990!.
33A. P. Sutton, J. B. Pethica, H. Rafii-Tabar, and J. A. Nieminen, in

Electron Theory in Alloy Design, edited by D. G. Pettifor and A.
H. Cottrell ~Institute of Materials, London, 1992!, Chap 7.

34T. N. Todorov and A. P. Sutton, Phys. Rev. Lett.70, 2138~1993!.
35A. M. Bratkovsky, A. P. Sutton, and T. N. Todorov, Phys. Rev. B

52, 5036~1995!.
36R. Landauer, IBM J. Res. Dev.1, 223 ~1957!; Phys. Scr.,T42,

110~1992!; Y. Imry, in Directions in Condensed Matter Physics
edited by by G. Grinstein and G. Mazendko~World Scientific,
Singapore, 1986!, p. 101; C. W. J. Beenakker and H. van
Houten, inSolid State Physics: Advances in Research and Ap-
plications, edited by H. Ehrenreich and D. Turnbull~Academic,
New York, 1991!, Vol. 44.

37R. Landauer, J. Phys. C1, 8099~1989!.
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