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Abstract

Abstract

This paper presents a column generation algorithm for the Capacitated Vehicle Routing
Problem (CVRP) and the Vehicle Routing Problem with Time Windows (VRPTW).Tra-
ditionally, column generation models of the CVRP and VRPTW have consisted ofa Set
Partitioning master problem with each column representing a route. Elementary routes (no
customer visited more than once) have shown superior results for both CVRP and VRPTW.
However, the pricing problems do not scale well when the number of feasible routes in-
creases. We suggest to relax that ‘each column is a route’ into ‘each column is a part of the
giant tour’; a so-called partial path, i.e., not necessarily starting and ending in the depot.
This way, the length of the partial path can be bounded and a better controlof the size of
the solution space for the pricing problem can be obtained.

Keywords: Vehicle Routing Problem, Column Generation, Elementary Shortest Path Prob-
lem with Resource Constraints

1 Introduction

The CVRP can be described as follows: A set of customers, each with a demand, needs to be
serviced by a number of vehicles all starting and ending at a central depot. Each customer must
be visited exactly once and the capacity of the vehicles may not be exceeded. The objective
is to service all customers traveling the least possible distance. In this paper we consider a
homogeneous fleet, i.e., all vehicles are identical. The VRPTW extends the CVRP by imposing
that each customer must be visited within a given time window. The overlap of the CVRP and
the VRPTW will in the following be refered to as the VRP.
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The standard Dantzig-Wolfe decomposition of the arc flow formulation of the VRP is to
split the problem into a master problem (a Set Partitioning Problem) and a pricing problem
(an Elementary Shortest Path Problem with Resource Constraints (ESPPRC), where capacity
(and time) are the constrained resources). A restricted master problem can be solved with de-
layed column generation and embedded in a branch-and-boundframework to ensure integrality.
Applying cutting planes either in the master or the pricing problem leads to a Branch-and-Cut-
and-Price algorithm (BCP). Kohl et al. [24] implemented a successful BCP algorithm for the
VRPTW by applyingsub-tour eliminationconstraints andtwo-pathcuts, Cook and Rich [10]
generalized thetwo-pathcuts to thek-path cuts, and Fukasawa et al. [18] applied a range of
valid inequalities for the CVRP based on the branch and cut algorithm of Lysgaard et al. [27].
Common for these BCP algorithms is that all applied cuts are valid inequalities for the VRPTW
respectfully the CVRP with regard to theoriginal arc flow formulation, and have a structure
which makes it possible to handle values of the dual variables in the pricing problem without
increasing the complexity of the problem. Fukasawa et al. [18] refer to this as arobust ap-
proach in their paper. The topic of column generation and BCP algorithms has been surveyed
by Barnhart et al. [4] and Lubbecke and Desrosiers [25]. Recently the BCP framework was
extended to include valid inequalities for the master problem, more specifically by applying the
subset row (SR) inequalities to the Set Partitioning master problem in Jepsen et al. [22] and
later by applying Chv́atal-Gomory Rank-1 (CG1) inequalities in Petersen et al. [28]. Using
an approach where columns with potentially negative reduced cost is enumerated after good
upper and lower bounds are found, Baldacci et al. [2] improvesthe lower bound by adding
strengthened capacity inequalities and clique inequalities. Dror [15] showed that the ESPPRC

(with time and capacity) is stronglyNP-hard, hence a relaxation of the ESPPRC was used as
the pricing problem in earlier BCP approaches for the VRPTW. Therelaxed pricing problem
where non-elementary paths are allowed is denoted the Shortest Path Problem with Resource
Constraints (SPPRC) and can be solved in pseudo-polynomial time using for instance a labeling
algorithm, see Desrochers [14]. For the problem with a single capacity resource Christofides
et al. [9] suggested to remove 2-cycles from the paths, whichhas also been done by Desrochers
et al. [12] for the variant with time windows. Eliminating cycles has been extended by Irnich
and Villeneuve [21] tok-cycle elimination (k-cyc-SPPRC) where cycles containingk or less
edges are not permitted.

Beasley and Christofides [5] proposed to solve the ESPPRC using Lagrangian relaxation.
However, labeling algorithms have recently become the mostpopular approach to solve the
ESPPRC, see e.g. Dumitrescu [16] and Feillet et al. [17]. When solving the ESPPRC with a
labeling algorithm a binary resource for each node is added which increases the complexity of
the algorithm compared to solving the SPPRC or thek-cyc-SPPRC. Righini and Salani [29] de-
veloped a labeling algorithm using the idea of Dijkstra’s bi-directional shortest path algorithm
that expands both forward and backward from the depot and connects routes in the middle,
thereby potentially reducing the running time of the algorithm. Furthermore Righini and Salani
[30] and Boland et al. [6] proposed a decremental state space algorithm that iteratively solves a
SPPRC and by applying resources forces nodes to be visited at most once. Recently Chabrier
[7], Danna and Pape [11], and Salani [32] successfully solved several previously unsolved in-
stances of the VRPTW from the benchmarks of Solomon [33] usinga labeling algorithm for
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the ESPPRC. However, these algorithms have some weaknesses when dealing with very long
(in the number of visited nodes) paths when resource constraints are not tight. Not so recently
Christofides and Eilon [8] introduced the giant-tour representation in which all the routes are
represented by one singlegiant tour, i.e., all the routes are concatenated into a single tour.

We propose a decomposition approach based on the generationof partial paths and the
concatenation of these. In the bounded partial path decomposition approach the main idea is to
limit the solution space of the pricing problem by bounding some resource, e.g., the number of
nodes on a path or the capacity on it. The master problem combines a known number of these
bounded partial paths to ensure all customers are visited.

The paper is organized as follows: In Section 2 we describe how to use the giant tour formu-
lation of VRP to obtain the partial path formulation. Section3 introduces a mathematical model
based on partial paths and Section 4 shows how the model is decomposed using the Dantzig-
Wolfe decomposition principle and describes how to calculate the reduced cost of columns
when delayed column generation is used. Section 5 describeshow to use the load resource to
divide the solution space, Section 6 presents computational results and brief descriptions of the
applied cutting planes, and Section 7 concludes the paper.

2 Bounded partial paths

The VRP can formally be stated as: Given a graphG(V,A) with nodesV and arcsA, a setR
of resourcesR = {load (and time)} where each resourcer ∈ R has a lower boundar

i and an
upper boundbr

i for all i ∈ V and a positive consumptionτ r
ij when using arc(i, j) ∈ A : i ∈ C,

find a set of routes starting and ending at the depot node0 ∈ V satisfying all resource limits,
such that the cost is minimized and all customersC = V \ {0} are visited.

A solution to the VRPTW:v0 → c1
1 → . . . → c1

k1
→ v0, v0 → c2

1 → . . . → c2
k2

→
v0, . . . , v0 → cn

1 → . . . → cn
kn

→ v0 can be represented by the giant-tour representation of
Christofides and Eilon [8]:

v0 → c1
1 → . . . → c1

k1
→ v0 → c2

1 → . . . → c2
k2

→ v0 → . . . → v0 → cn
1 → . . . → cn

kn
→ v0

which is one long path visiting all customers once and the depot several times. The consumption
of resourcesr ∈ R is reset each time the depot node is encountered.

The idea is to partition the problem so that the solution space of each part is smaller than
the original problem. This is done by splitting the giant-tour into smaller segments by imposing
an upper limit on some resource, e.g., bounding the path length in the number of nodes. In the
following the number of visited customers is considered thebounding resource, i.e., the number
of visits to the non-depot node setC. Each segment represents a partial path of the giant-tour.
With a fixed number of customers on each partial path, sayL, a fixed number of partial paths,
sayK, is needed to ensure that all customers are visited, i.e.,L ·K ≥ |C|. The partial paths can
start and end in any node inV and can visit the depot several times. Example of a partial path:

c1 → c2 → v0 → c3 → v0 → c4
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Consider the graphG′(V ′, A′) consisting of a set of layersK = {1, . . . , |K|}, each one
representingG for a partial path. LetGk be the sub graph ofG′ representing layerk with node
setV k = {(i, k) : i ∈ V } for all k ∈ K and arc setAk = {(i, j, k) : (i, j) ∈ A} for all k ∈ K.
Let A∗ = {(i, i, k) : (i, k) ∈ V k ∧ (i, k + 1) ∈ V k+1 ∧ k ∈ K} be the set of interconnecting
arcs, i.e., the arcs connecting a layerk with the layer abovek namely layerk + 1 for all k ∈ K
and all nodesi ∈ V (layer|K|+1 is defined to be layer1 ∈ K and layer 0 is defined to be layer
|K| ∈ K). Let V ′ =

⋃

k∈K V k and letA′ =
⋃

k∈K Ak ∪ A∗. An illustration ofG′ can be seen
on Figure 1. Note, that arc(i, i, k) does not exist inAk and that arc(i, j, k) with i 6= j does
exist inA∗, so all arcs(i, j, k) ∈ A′ can be uniquely indexed. With the length of a path defined
as the number of customers on it, the problem is now to find partial paths of length at mostL
in |K| layers withL · |K| ≥ |C| > L · (|K| − 1), so that each partial pathp ending in node
i ∈ V is met by another partial pathp′ starting ini. All partial paths are combined while not
visiting any customers more than once and satisfying all resource windows. A customerc ∈ C
is considered to be on a partial pathp if c is visited onp and is not the end node ofp.

Layer: 1

v0

c1 c2

c3

2

v0

c1 c2

c3

. . .

. . .

|K|

v0

c1 c2

c3

Figure 1: Illustration ofG′ with |C| = 3, |K| = 3, and|L| = 1. Edges (full-drawn) represent
two arcs; one in each direction. Dashed lines are the interconnecting arcsA∗.

Let L be the upper bound on the length of each partial path, and let|C| be the length of the
combined path (the giant-tour). Now, exactly|K| = ⌈|C|/L⌉ partial paths are needed to make
the combined path, sinceL ⌈|C|/L⌉ ≥ |C| > L (⌈|C|/L⌉ − 1). Note that given a|K|, L can be
reduced toL = ⌈|C|/|K|⌉.

In section 5 we will go into detail on how to use the load resource to divide the giant tour.

3 The Vehicle Routing Problem

A formal model was given in Section 2 and here several mathematical models are presented.

2-index formulation of the VRP In the following letcij be the cost of arc(i, j) ∈ A, xij

be the binary variable indicating the use of arc(i, j) ∈ A, andT r
ij (the resource stamp) be the
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consumption of resourcer ∈ R at the beginning of arc(i, j) ∈ A. Let δ+(i) andδ−(i) be the set
of outgoing respectively ingoing arcs of nodei ∈ V . The mathematical model of VRP adapted
from Bard et al. [3] and Ascheuer et al. [1]:

min
∑

(i,j)∈A

cijxij (1)

s.t.
∑

(i,j)∈δ+(i)

xij = 1 ∀i ∈ C (2)

∑

(j,i)∈δ−(i)

xji =
∑

(i,j)∈δ+(i)

xij ∀i ∈ V (3)

∑

(j,i)∈δ−(i)

(T r
ji + τ r

jixji) ≤
∑

(i,j)∈δ+(i)

T r
ij ∀r ∈ R, ∀i ∈ C (4)

aixij ≤ T r
ij ≤ bixij ∀r ∈ R, ∀(i, j) ∈ A (5)

T r
ij ≥ 0 ∀r ∈ R, ∀(i, j) ∈ A (6)

xij ∈ {0, 1} ∀(i, j) ∈ A (7)

The objective (1) sums up the cost of the used arcs. Constraints (2) ensure that each customer
is visited exactly once, and (3) are the flow conservation constraints. Constraints (4) and (5)
ensure the resource windows are satisfied. It is assumed thatthe bounds on the depot are always
satisfied. Note, no sub-tours can be present since only one resource stamp per arc exists and the
arc weights are positive for all(i, j) ∈ A : i ∈ C.

For a one dimensional resource such as load the capacity constrains x(δ+(S)) ≥ r(S),
wherer(S) is a lower bound on the number of vehicles needed to service the setS, can be used
instead of equations (4) to (6).

3-index formulation of the VRP Let xk
ij be the variable indicating the use of arc(i, j, k) ∈

A′. Problem (1)–(7) is rewritten:

min
∑

k∈K

∑

(i,j)∈A

cijx
k
ij (8)

s.t.
∑

k∈K

∑

(i,j)∈δ+(i)

xk
ij = 1 ∀i ∈ C (9)

∑

(i,j)∈δ+(i)

xk
ij ≤ 1 ∀k ∈ K, ∀i ∈ C (10)

∑

k∈K



xk−1
ii +

∑

(j,i)∈δ−(i)

xk
ji



 =
∑

k∈K



xk
ii +

∑

(i,j)∈δ+(i)

xk
ij



 ∀i ∈ V (11)

xk−1
ii +

∑

(j,i)∈δ−(i)

xk
ji = xk

ii +
∑

(i,j)∈δ+(i)

xk
ij ∀k ∈ K, ∀i ∈ V (12)

∑

k∈K

∑

i∈V

xk
ii = K (13)
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∑

i∈C

∑

(i,j)∈A

xk
ij ≤ L ∀k ∈ K (14)

∑

k∈K

∑

(j,i)∈δ−(i)

(

T rk
ji + τ r

jix
k
ji

)

≤
∑

k∈K

∑

(i,j)∈δ+(i)

T rk
ij ∀r ∈ R, ∀i ∈ C (15)

∑

(j,i)∈δ−(i)

(

T rk
ji + τ r

jix
k
ji

)

≤
∑

(i,j)∈δ+(i)

T rk
ij ∀r ∈ R, ∀k ∈ K, ∀i ∈ C (16)

ai

∑

k∈K

xk
ij ≤

∑

k∈K

T rk
ij ≤ bi

∑

k∈K

xk
ij ∀r ∈ R, ∀(i, j) ∈ A (17)

aix
k
ij ≤ T rk

ij ≤ bix
k
ij ∀r ∈ R, ∀k ∈ K, ∀(i, j) ∈ A (18)

T rk
ij ≥ 0 ∀r ∈ R, ∀k ∈ K, ∀(i, j) ∈ A (19)

xk
ij ∈ {0, 1} ∀k ∈ K, ∀(i, j) ∈ A (20)

The objective (8) sums up the cost of the used edges. Constraints (9) ensure that all cus-
tomers are visited exactly once, while the redundant constraints (10) ensure that no customer is
visited more than once. Constraints (11) maintain flow conservation between the original nodes
V , and can be rewritten as

∑

k∈K

∑

(j,i)∈δ−(i)

xk
ji =

∑

k∈K

∑

(i,j)∈δ+(i)

xk
ij ∀i ∈ V

since
∑

k∈K xk−1
ii =

∑

k∈K xk
ii. Constraints (12) maintain flow conservation within a layer.

Constraint (13) ensures thatK partial paths are selected and constraints (14) that the length
of the partial path in each layer is at mostL. Constraints (15) connect the resource variables
on a global level and constraints (16) connect the resource variables within each single layer,
note that since there is no (15) and (16) for the depot it is notconstrained by resources. Con-
straints (17) globally enforce the resource windows and theredundant constraints (18) enforce
the resource windows within each layer.

4 Dantzig-Wolfe decomposition

The 3-index formulation of the VRP (8)–(20) is Dantzig-Wolfedecomposed whereby a master
and a pricing problem is obtained.

4.1 Master problem

Let λp be the variable indicating the use of partial pathp. Using Dantzig-Wolfe decomposition
where the constraints (9), (11), (13), (15), and (17) are kept in the master problem the following
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master problem is obtained:

min
∑

p∈P

cpλp (21)

s.t.
∑

p∈P

∑

(i,j)∈δ+(i)

αp
ijλp = 1 ∀i ∈ C (22)

∑

p∈P :ep=i

λp =
∑

p∈P :sp=i

λp ∀i ∈ V (23)

∑

p∈P

λp = K (24)

∑

(j,i)∈δ−(i)

(

T r
ji +

∑

p∈P

τ r
jiα

p
jiλp

)

≤
∑

(i,j)∈δ+(i)

T r
ij ∀r ∈ R, ∀i ∈ C (25)

ai

∑

p∈P

αp
ijλp ≤ T r

ij ≤ bi

∑

p∈P

αp
ijλp ∀r ∈ R, ∀(i, j) ∈ A (26)

T r
ij ≥ 0 ∀r ∈ R, ∀(i, j) ∈ A (27)

λp ∈ {0, 1} ∀p ∈ P (28)

Whereαp
ij is the number of times arc(i, j) ∈ A is used on pathp ∈ P andsp andep indicates the

start respectively the end node of partial pathp ∈ P . Constraints (22) ensure that each customer
is visited exactly once. Constraints (23) link the partial paths together by flow conservation.
Constraint (24) is the convexity constraint ensuring thatK partial paths are selected. Constraints
(25) and (26) enforce the resource windows.

Note, equality is not needed in constraint (22) and (24) due to the minimizing objective and
positive edge cost.

Bounds: Before we turn our attention to solving the pricing problem weconsider the bounds
obtained by the decomposition.

Theorem 1. Let zlp be an LP-relaxed solution to(1)–(7) and letzpp be an LP-relaxed solution
to (21)–(28) thenZlp ≤ Zpp for all instances of VRP andZlp < Zpp for some instances of VRP.

Proof. Zlp ≤ Zpp since all solutions to (21)–(28) map to solutions to (1)–(7). An instance with
Zlp < Zpp is obtained with four customers each with a demand of resource r of half the global
maximumbr of r, the distance from the customers to the depot larger than thedistance between
the customers, andL = 4. The solution to (21)–(28) would use the expensive edges four times,
whereas the solution to (1)–(7) only would use them twice.

4.2 Pricing problem:

The |K| pricing problems corresponding to the master problem (21)–(28) contains constraints
(10), (12), (14), (16), and (18) and can be formulated as a single ESPPRC where the depot is
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allowed to be visited more than once. Lets ande be a super source respectively a super target
node. Arcs(s, i) and(i, e) for all i ∈ V are added toG.

min
∑

(i,j)∈A

cijxij (29)

s.t.
∑

(s,i)∈δ+(s)

xsi = 1 (30)

∑

(i,e)∈δ−(e)

xie = 1 (31)

∑

(i,j)∈A

xij ≤ 1 ∀i ∈ C (32)

∑

(j,i)∈δ−(i)

xji =
∑

(i,j)∈δ+(i)

xij ∀i ∈ V (33)

∑

i∈C

∑

(i,j)∈A

τ rbound

ji xij ≤ L (34)

∑

(j,i)∈δ−(i)

(T r
ji + τ r

jixji) ≤
∑

(i,j)∈δ+(i)

T r
ij ∀r ∈ R, ∀i ∈ C (35)

aixij ≤ T r
ij ≤ bixij ∀r ∈ R, ∀(i, j) ∈ A (36)

xij ∈ {0, 1} ∀(i, j) ∈ A (37)

The objective (29) minimizes the reduced cost of a column. Constraints (30) and (31) ensure that
the path starts ins respectively ends ine. Constraints (32) dictates that no node is visited more
than once, thereby ensuring elementarity and constraints (33) conserve the flow. Constraint
(34) ensures that the partial path does not use more then the allowed amountL of the restricted
resourcerbound. Constraints (35) and (36) ensure the resource windows are satisfied for all
customers. Note, since the depot is missing in (35) each timea path leaves the depot a resource
is only restricted by its lower limitar

0 for all r ∈ R.

Let π (πi ≥ 0 : ∀i ∈ C) be the duals of (22), letπ0 = 0, let µ be the duals of (23), letβ ≤ 0
be the dual of (24), letν (ν ≤ 0 : ∀i ∈ C) be the duals of (25), letν0 = 0, and letω ≤ 0 and
ω ≥ 0 be the dual of (26). The cost of the arcs in this ESPPRC are then given as:

cij = −β +







cij − πi − τijνj − aiωi + biωi ∀(i, j) ∈ A \ (δ+(s) ∪ δ−(e))
µj ∀(s, j) ∈ δ+(s)
µi ∀(i, e) ∈ δ−(e)

and the pricing problem becomes finding the shortest path from s to e.

Solving the pricing problem: ESPPRCs can be solved by labeling algorithms. For details
regarding labeling algorithms we refer to Desaulniers et al. [13], Irnich [19], Irnich and De-
saulniers [20], and Righini and Salani [31].
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Branching: Integrality can be obtained by branching on the original variables, which can be
accomplished by cuts in the master problem (see Vanderbeck [34]), e.g., letXij be the set of
partial paths that utilize arc(i, j) then the branch rulexij = 0 ∨ xij = 1 can be expressed by:

∑

p∈Xij

λp = 0 ∨
∑

p∈Xij

λp = 1.

5 Bounding the Load Resource

Bounding the load resource is a bit more complicated than bounding the number of customers.
The issue is that we have to ensure that any feasible solutionto the original problem is still
feasible. To do this we shall consider a less constrained solution set namely the solutions that
satisfy the bin packing problem within the VRP.

Let the total demand of the customers beQt =
∑

i∈C di. A lower bound for the number of
layers needed is:K = ⌈Qt/L⌉. Assuming that the largest demanddmax = maxi∈C di ≤ L the
upper bound on the number of layers is2K or alternatively we have:

L = 2

⌈

Qt

K

⌉

− 1

We define the excess capacityQe asQe = K × L − Qt. The issue with selectingL in the
above fashion is that the excess capacityQe ≥ Qt − K which can be a very large number. The
high excess capacity can potentially lead to pure bounds.

An alternative to choosingL almost twice the size ofQt is to only let it be the largest
customerdmax bigger thanQt, namelyL =

⌈

Qt

K

⌉

− 1 + dmax. If dmax ≤
⌈

Qt

K

⌉

− 1 there will
be less excess capacity. It is possible to chooseL even better by introducing the concept of
connectors. A connector is a single arc between two nodes which combines two partial paths.
Figure 2 illustrates the idea of the connectors for a single node in layer 1 and layer 2. Each node
i has an connector to a nodej ∈ V wherei 6= j in the next layer. To model the connectors we
introduce new variablesyk

ij for all i, j ∈ V and for allk ∈ K. These variables substitute the
variablesxk

ii by connecting every node(i, k) ∈ V k in each layerk ∈ K with all the other nodes
(j, k + 1) ∈ V k+1 : (j, k + 1) 6= (i, k + 1) in the layer above. Furthermore, constrains (11) are
modified to:

∑

k∈K

∑

(j,i)∈δ−(i)

(

xk
ji + yk

ji

)

=
∑

(i,j)∈δ+(i)

(

xk
ij + yk

ij

)

, ∀i ∈ V

This ensures the global flow by taking the flow of the connectors into account. A similar sub-
stitution is made in constraint (12) and (13). The connectors are also present in the resource
constraints where they are added to any sum bounding the timevariables. (15) is therefore
changed to:

∑

k∈K

∑

(j,i)∈δ−(i)

(

T rk
ji + τ r

ji

(

xk
ji + yk

ji

))

≤
∑

k∈K

∑

(i,j)∈δ+(i)

T rk
ij , ∀r ∈ R,∀i ∈ C

Similar addition is made for constrains (16), (17), and (18). Connectors can be handled
in a labeling algorithm by allowing an additional edge to be taken when capacity is reached.
However, one needs to be carefull when updating reachability.
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Layer: 1

v0

c1 c2

c3

2

v0

c1 c2

c3

. . .

. . .

|K|

v0

c1 c2

c3

Figure 2: Illustration of connector system

6 Computational Results

In this section we present the computational results for thenew model. We have focused on the
strength of the model and is therefore only considering the root bound. The test is divided into a
comparison with algorithms for the CVRP and the VRPTW. We run on the CVRP instances by
Augerat et al. and Christofides and Eilon available at www.branchandcut.org. For the VRPTW
we use the solomon 1 and 2 instances with 100 costumers.

On the CVRP instances we show how our bound compares to the Branch-and-Cut bound
obtained by adding the capacity cuts and the Branch-and-Cut-and-Price bound obtained using
the 2-cyc-SPPRC as the pricing problem. Both bounds have been computeded by Fukasawa
et al. [18]. For the VRPTW instances we compare our bound to theBranch-and-Cut bound
computed by Kallehauge et al. [23] and the elementary boundscomputed by Petersen et al.
[28].

For the partial path model we add the capacity constrains using the separation algorithm by
Lysgaard [26] and do not include the time variables in the model. For the CVRP instances the
size of the partial pathsL are set to half the vehicles capacity. If there exist customers where
di ≥ L − dmin they are removed from the total sum beforeK is calculated. After calculation

of K, L is recalculated based on the modified total sumQ′

t andK e.g. K =
⌈

Q′

t

L

⌉

. For the

VRPTW instances the capacity is varied between1
2

to 1
15

of the vehicles capacity.

6.1 Results for CVRP

In table 1 we compare the lower bound obtained by the partial path to the bounds of Branch-and-
Cut with capacity inequalities (BAC) and the Branch-and-Cut-and-Price algorithm using two
cycle elimination (2-cyc). On the A, B, and E instances the bound of the partial path algorithm
(PAR) is not much better than the bound of the BAC algorithm andis far from the bound of the
2-cyc algorithm. For one single instance A-n53-k7 the boundis worse. For the P instances the
bound is a bit better than the BAC bound but still much worse than the 2-cyc bound. In general
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Instance BAC PAR 2-cyc OPT Instance BAC PAR 2-cyc OPT

A-n53-k7 996.6 996.3 1002.2 1010 B-n50-k7 740.0 741.0 741.0 741
A-n54-k7 1130.7 1133.8 1150.3 1167 B-n50-k8 1279.2 1279.8 1291.8 1312
A-n55-k9 1055.9 1056.1 1066.4 1073 B-n51-k7 1024.6 1024.6 1025.9 1032
A-n60-k9 1316.5 1316.7 1341.6 1354 B-n52-k7 745.0 745.3 746.4 747
A-n61-k9 1004.8 1006.7 1018.8 1034 B-n56-k7 703.4 703.6 704.5 707
A-n62-k8 1244.1 1249.1 1273.2 1288 B-n57-k7 1148.6 1148.6 1150.9 1153
A-n63-k9 1572.2 1578.4 1603.5 1616 B-n57-k9 1586.7 1588.8 1589.2 1598
A-n63-k10 1262.2 1264.4 1294.2 1314 B-n63-k10 1478.9 1479.51484.2 1496
A-n64-k9 1340.1 1345.3 1378.8 1401 B-n64-k9 858.5 859.1 860.2 861
A-n65-k9 1151.1 1152.0 1166.6 1174 B-n66-k9 1295.2 1295.8 1303.6 1316
A-n69-k9 1108.9 1110.9 1138.7 1159 B-n67-k10 1023.8 1024.0 1026.4 1032
P-n50-k8 596.9 600.8 615.7 631 B-n68-k9 1256.8 1257.0 1261.61272
P-n55-k10 646.7 660.3 680.0 604 B-n78-k10 1202.3 1202.4 1212.6 1221
P-n55-k15 895.1 904.6 967.5 989 E-n51-k5 514.5 514.6 519.0 521
P-n60-k10 708.3 715.5 737.2 744 E-n76-k7 661.4 663.1 669.9 682
P-n60-k15 903.3 926.9 961.2 968 E-n76-k8 711.2 714.3 726.0 735
P-n65-k10 756.5 763.7 785.2 792 E-n76-k10 789.5 796.4 816.8830
P-n70-k10 786.9 791.8 813.4 827 E-n76-k14 948.1 964.2 1004.8 1021

Table 1: Lower bounds Results for CVRP

we can conclude that it does not appear as a good idea to pursuea Branch-and-Cut-and-Price
algorithm for CVRP based on the Partial Path relaxation idea.

6.2 Results for VRPTW

The results for the VRPTW is devided into two tables. For the type 1 Solomon instances it
has not been able to find a Branch-and-Cut bound in the literature and therefore only report the
lower bound obtained by Branch-and-Cut-and-Price with the ESPPRC as the pricing problem
(ESPPRC). Furthermore, the value ofL can be chosen higher than for the type 2 Solomon
instances since the type 1 Solomon instances have much smaller vehicle capacity. For the type
2 Solomon instances the computed bounds for the partial pathalgorithm with a Branch-and-Cut
(BAC) bound are also compare.

In table 2 the results for the type 1 Solomon instances are shown. As can be seen the bound
does not increased much whens is changed from4 to 3. However, for most of the R and RC
instances the bound changes a bit when changing froms = 3 to s = 2. In general, the best
bound for the partial path algorithm is far from the bound of the ESPPRC algorithm on the R
and RC instances.

In table 3 the bounds computed on the Solomon type 2 instancesare compared. For the
C instances the bound is almost the same as the BAC and ESPPRC bounds. For both R and
RC the bound is often far from the BAC algorithms bound and evenfurther from the ESPPRC
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ESPPRC PAR

Instance Opt. s = 2 s = 3 s = 4

R101 1637.7 1631.2 1624.0 1611.9 1611.9
R102 1466.6 1466.6 1094.4 1071.8 1071.8
R103 1208.7 1206.8 880.1 874.3 874.4
R104 971.5 956.9 812.3 812.0 812.1
R105 1355.3 1346.2 1204.0 1160.1 1159.0
R106 1234.6 1227.0 943.2 937.5 937.7
R107 1064.6 1053.3 829.9 830.0 829.8
R108 932.1 913.6 809.1 808.8 809.0
R109 1146.9 1134.3 884.5 864.1 864.0
R110 1068.0 1055.6 812.9 812.4 812.4
R111 1048.7 1034.8 822.2 822.1 821.9
R112 948.6 926.8 804.3 804.3 804.3

C101 827.3 827.3 827.3 827.3 827.3
C102 827.3 827.3 819.9 819.9 820.0
C103 826.3 826.3 819.9 819.9 820.0
C104 822.9 822.9 818.0 818.0 818.0
C105 827.3 827.3 827.3 827.3 827.3
C106 827.3 827.3 827.3 827.3 827.3
C107 827.3 827.3 827.3 827.3 827.3
C108 827.3 827.3 818.9 818.8 818.9
C109 827.3 827.3 817.8 817.8 817.8

RC101 1619.8 1584.1 1324.4 1286.4 1286.4
RC102 1457.8 1406.3 1030.2 1030.1 1030.1
RC103 1258.0 1225.6 979 978.8 978.9
RC104 1132.3 1101.9 968.8 968.5 968.7
RC105 1513.7 1472.0 1097.9 1092.1 1092.1
RC106 1401.2 1318.8 1036,2 1035.0 1034.7
RC107 1207.8 1183.4 973.8 973.6 973.8
RC108 1114.2 1073.5 964.1 964.0 963.6

Table 2: Lower bound results for the VRPTW for the Solomon type1 instances.s is the fraction
of the original capacity of the vehicle, that isL = Q

s
.
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algorithms bound, however in the case of RC208 the best bound obtained by the partial path
algorithm is better than the bound obtained by the BAC algorithm. For the type 2 Solomon
instances a small increase in the bound of the partial path algorithm is seen asL increases.

ESPPRC BAC PAR

Instance Opt. s = 8 s = 10 s = 15

R201 1143.2 1140.3 1123.6 1055.0 1040.1 1028.2
R202 1029.6 1022.3 888.6 772.3 761.0 758.5
R203 870.8 867.0 748.1 666.3 665.6 665.6
R204 - - 661.9 645.0 645.0 645.0
R205 949.8 939.0 899.7 795.5 785.4 779.3
R206 875.9 866.9 783.6 690.1 685.1 684.7
R207 794.0 790.7 714.8 657.5 657.5 657.5
R208 - - 651.6 644.3 644.3 644.3
R209 854.8 841.5 785.2 693.1 686.3 684.9
R210 900.5 889.4 798.2 693.3 687.5 686.1
R211 - - 645.1 644.3 644.3 644.3

C201 589.1 589.1 589.1 589.1 589.1 589.1
C202 589.1 589.1 589.1 587.9 587.9 587.9
C203 588.7 588.7 584.4 581.7 581.7 581.7
C204 588.1 588.1 583.5 578.6 578.6 578.6
C205 586.4 586.4 586.4 582.7 582.2 582.2
C206 586.0 586.0 586.0 582.2 582.2 582.2
C207 585.8 585.8 585.6 584.5 584.5 584.5
C208 585.8 585.8 585.8 582.2 582.2 582.2

RC201 1261.8 1256.0 1249.2 1121.0 1104.8 1099.4
RC202 1092.3 1088.1 940.1 726.2 721.6 721.6
RC203 923.7 922.6 781.6 664.6 664.1 664.1
RC204 - - 692.7 653.1 653.1 653.1
RC205 1154.0 1147.7 1081.7 827.7 817.1 816.6
RC206 1051.1 1038.6 974.8 816.7 811.0 811.0
RC207 962.9 947.4 832.4 686.4 686.4 686.4
RC208 - - 647.7 651.7 651.7 651.7

Table 3: Lower bound results for the VRPTW for the Solomon type2 instances.s is the fraction
of the original capacity of the vehicle, that isL = Q

s
.
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7 Conclusion

A new decomposition model of the VRP has been presented with the ESPPRC as the pricing
problem. The model facilitates control of the running time of the pricing problem. Due to the
aggregation of the model, LP relaxed bounds of (21)–(28) arebetter than the direct model (1)–
(7). Since (21)–(28) is a relaxation of the traditional Dantzig-Wolfe decomposition model with
elementary routes as columns, the LP relaxed bounds may be weaker yielding a larger branch-
and-bound tree. It has been shown that the bound of the LP relaxation is sometimes better than
that of a standard Branch-and-Cut algorithm, it is unfortunately far from the best obtainable
bounds of Branch-and-Cut-and-Price algorithms. Especiallyfor CVRP the results are very
disappointing since we are not able to produce better bound than the two cycle elimination
based relaxation. For VRPTW the results are a bit more encouraging since the bounds are in
some cases better than that of the Branch-and-Cut algorithm even though the same cuts are not
added. This leaves room for improvement for a Branch-and-Cut-and-Price algorithm based on
partial paths.

Future work: The difference in bound quality can be decreased with the useof special pur-
pose cutting planes, which this paper has not fucused on. Furthermore, effective cuts such as
Subset Row-inequalities by Jepsen et al. [22] and Chvátal-Gomory Rank-1 cuts (see Petersen
et al. [28]) can be applied to the Set Partition master problem to strengthen the bound.

More and better cuts have been added to the VRPTW Branch-and-Cutalgorithm used in
this paper for comparison, but all of these cuts could also beadded to this model obtaining at
least as good a bound.

Considering the approach of Baldacci et al. [2] where columns are enumerated dependent on
strong upper and lower bounds, it should be clear that the partial path approach should contain
fewer enumerated columns due to the smaller solution space of the pricing problem. Combining
the relatively strong bound with the small solution space a powerful strategy should be obtained.
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studi di Milano, 2004.

[30] G. Righini and M. Salani. New dynamic programming algorithms for the resource con-
strained shortest path problem. Technical Report 69, Note del Polo - Ricerca, Dipartimento
di Tecnologie dell’Informazione, Universitá degli studi di Milano, 2005.
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This paper presents a column generation algorithm for the Capacitated Vehicle Routing Problem 
(CVRP) and the Vehicle Routing Problem with Time Windows (VRPTW).

Traditionally, column generation models of the CVRP and VRPTW have consisted of a Set Partition-
ing master problem with each column representing a route. Elementary routes (no customer visited 
more than once) have shown superior results for both CVRP and VRPTW. However, the pricing 
problems do not scale well when the number of feasible routes increases. We suggest to relax that 
‘each column is a route’ into ‘each column is a part of the giant tour’; a so-called partial path, i.e., not 
necessarily starting and ending in the depot. This way, the length of the partial path can be bounded 
and a better control of the size of the solution space for the pricing problem can be obtained.
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