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One-dimensional map lattices: Synchronization, bifurcations, and chaotic structures
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The paper presents a qualitative analysis of coupled map latt@éld&s) for the case of arbitrary nonlin-
earity of the local map and with space-shift as well as diffusion coupling. The effect of synchronization where,
independently of the initial conditions, all elements of a CML acquire uniform dynamics is investigated and
stable chaotic time behaviors, steady structures, and traveling waves are described. Finally, the bifurcations
occurring under the transition from spatiotemporal chaos to chaotic synchronization and the peculiarities of
CMLs with specific symmetries are discussg8l1063-651X96)05309-3

PACS numbdps): 05.45+b, 05.90+m, 87.10+€

I. INTRODUCTION probabilities of different durations of the laminar phases
along the chain. Near the forced site, this probability was
As simplified models of spatially extended systems undefound to decay exponentially. For sites further away, how-
nonequilibrium conditions, the dynamics of coupled map lat-ever, the exponential decay was replaced by a power law
tices (CMLs), i.e., of systems with discrete time, discrete with an exponent of-3/2.
space, and a continuous state, has attracted a rapidly growing In order to examine their thermodynamic properties,
interest in recent yearsl—6]. Computer simulations have Bourzutschky and Cros$6] have considered the long-
revealed a variety of behaviors from the very simple to thewavelength limit of the behavior of simple CMLs. Using a
very complex and the core problem of the transition fromgeneralization of the fluctuation-dissipation theorem, they
one-dimensional chaos associated with the temporal behatave tried to define a temperature that could be useful in the
ior of the local element to multidimensional spatiotemporaldescription of spatially extended, nonequilibrium systems.
chaos in the coupled map lattice has been elucidated for difSuch a temperature could provide constraints, for example,
ferent maps and different types of coupling. on the effective noise term in the corresponding Langevin
In particular, Kanekd1] has investigated the develop- equation.
ment of spatiotemporal intermittency in the form of a lami- The purpose of the present paper is to proceed with a
nar motion interrupted by bursts. This study was performednore analytic approach to the description of coupled map
with a class of coupled map lattices for which the individuallattices. Previous contributions in this direction are due, for
map was close to a transition to temporal intermittency andnstance, to Afraimovich and Nekork|i], who analyzed the
the observed geometric structures in space-time resembletiability of chaotic waves propagating in a discrete chain of
the structures found in cellular automata. As the couplingdiffusively coupled maps, and to Kuznetdd}, who applied
was increased, the number of positive Lyapunov exponentenormalization-group theory to study universality and scal-
also increased and a kind of fully developed turbulence aping in CML dynamics. The scaling behavior of coupled map
peared. Under certain conditions, localized chaos was oHattices has also been studied by Kook, Ling, and Schmidt
served, i.e., the burst regions were confined to specific are49], by Kaspar and Shustgd 0], and by Bohr and Chris-
and could not propagate throughout the whole space. Kanekensen11].
[2] has also studied the information flow in coupled map Amritkar et al.[12] have investigated the stability of spa-
lattices and has introduced the concept of comovingially and temporally periodic orbits in one- and two-
Lyapunov exponents to characterize convective instabilitieglimensional coupled map lattices. Using the fact that the
in open flow systems. More recently, Kandl has studied stability matrices for such solutions are block circulant and
the dynamics of globally coupled maps and developed &ence can be brought onto a block diagonal form through a
mean-field description of the fluctuations in such systems. unitary transformation, they derive conditions for the stabil-
Willeboordsg[ 4] has studied the problem of pattern selec-ity of periodic solutions in terms of the criteria for smaller
tion in chains of diffusively coupled logistic maps. Besidesorbits. Druzhinin and Mikhailoy13] have considered a par-
globally incoherent patterns in the form of frozen randomticular type of CML where the coupling affects only the bi-
lattices or spatiotemporal intermittency, slowly moving co-furcation parameter of the local maps. In the continuum limit
herent structures were observed and Willeboordse proposestas corresponds to a reaction-diffusion equation for which
scheme to encode standing as well as traveling waves intihe diffusion coefficient depends on the state of the system.
the CML dynamics. Xie, Hu, and QIb] have investigated They show that the formation of stable solitonlike patterns is
so-called on-off intermittency for a coupled map lattice op-possible and, assuming the local map to be logistic, they
erating near a spatiotemporal period-2 solution. When applyebtain an expression for the solution close to the period-
ing noise at a single site, they have determined the relativdoubling bifurcation where the fixed point turns unstable. In
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a detailed numerical study of bounded one- and twostable chaotic time behaviors, steady structures, and traveling
dimensional CML with diffusively coupled logistic maps, waves are studied by applying the detailed rigorous analysis
Giberti and Vernia[14] have followed the change in the of an associated two-dimensional map proposed by Belykh
steady states as the coupling parameter is increased. Ascrigt al. [17]. In contrast to Afraimovich and Nekorkirv], we

ing to the single map a bifurcation parameter slightly aboveprove that the coordinates of traveling chaotic waves need
the Feigenbaum accumulation point, the dynamics of the unaot be confined to some particular states of the lattice ele-
coupled lattice is totally chaotic. As the coupling parametements. For weak coupling, the ability of the m&pto pro-

is increased, more and more periodic orbits of peribdtart  duce an extremely complex dynamics as a result of the cha-
to arise, with the orbits with longer periods appearing first.otic time behavior of the local maps is discussed in Sec. Ill.

Above a certain coupling strength, almost all randomly cho-There we also state Theorem 5 on the bifurcation set corre-
sen initial conditions lead to a stable period orbit. By meansponding to the disappearance of a complex limiting set un-
of continuation techniques, Giberti and Vernia4] also  der the transition to synchronization. Finally, we discuss the

show how the stable periodic orbits develop from the un-symmetric solutions to the map in the case of pure diffu-

stable periodic orbits of the uncoupled system. sive coupling.
Giacomelli, Lepri, and Politf15] have examined the sta-
tistical properties of the bidimensional patterns generated Il. SYNCHRONIZATION
from delayed and extended maps and Losson and Mackey IN COUPLED ONE-DIMENSIONAL MAPS

[16] have considered coupled map lattices as models of de-
terministic and stochastic differential-delay equations. By ro- Consider the diffusively coupled 1D map arrdygiven
tating the time-space reference frame, a delayed map can B (1) with x;=x;(j). As before,jeZ" is a discrete time
transformed into a CML with asymmetric coupling. The coordinatef(x;) € C* (k=1) is a nonlinear mapping function,
equivalence between these systems is formal, however, ardndi € [1,N] or i €7 is a discrete space coordinateand y
different causality conditions apply to the two cases. Somére non-negative coupling parameters to be referred to as
future events in the delayed map are past events in the CMgiffusion and shift coefficients. For finite arrays we shall
representation and vice versa. As a result, certain statisticgPnsiderzero-flux
properties are the same for the two representations, while
others are nof15]. In several cases of interest, the Hopf Xo=X1, XN=XN+1 (33
equation describing the evolution of the ensemble density in -
phase space for a delayed differential equation may be af' Periodic
proximated by a Perron-Frobenius equatioftthfor a CML
system. This can be used to explain the statistical cycles
observed numerically in delayed differential equations in
terms of stable density limit cycld46].

In the present paper we consider tRedimensional(or
infinite-dimensional map

Xo=XN,» XN+1=X1 (3b)

boundary conditions. The single m&x— f(x) is assumed

to have an attractive intervdl,CR'. The purpose of the
present section is to discuss some general properties of the
mapT relating to its stable and regular behaviors. Let us first

T: xi—f(x)+e[Xs1— (1+ )X+ Y% _1], (1) determine the attracting domain of the mpHere we may
state the following.
wherex;2x;(j) eRl. jeZ" is a discrete time anide [1,N] Theorem 1.(a) Let the mapS,: x—a+f(x) have an

or i eZ, depending on the boundary conditions, is a discretattracting domain , for |a|<ay and letl* = (xj <sx<x3) be
space coordinate. Obviously, with(x) =f(x) —x, one can an interval such that for anye|* and anyae[—ag,ap],
derive (1) from the partial differential equation S, 1*Cl1*. (b) If there exists a value satisfying the condi-
5 tions —r<xj <x3 <r, er<ay2(1+a), then the magl has
%zg(x)ﬂl— ) ox I (2  @nattracting domaiP ={|x;|<r,i=1,.2,...N}. The proof of
at Y s as? this theorem can be found in the Appendix.
Let us now consider the possibility of synchronization of
by approximating the time and space derivatives with differthe individual maps into an overall uniform behavior. The

ences and by rescaling the nonlinearity. This relates ougoupled mapT has a one-dimensional invariant manifold
model to the dynamics of extended, nonequilibrium media(diagona) D={x;=x,=:-=Xy_1=Xy}. Indeed, if

Our aim is to study some global aspects of the dynamics of.(0)e®, i=1,2,...N, thenx;(j) e® for jeZ", such that
the mapT such as the relation between the dynamics of thel'|®|=8. To analyze the stability 0P let us introduce the
single mapS: x—f(x) and of the coupled map lattice for yariables

different values of the coupling parametgrand the general

features of the bifurcations that take placesds increased. vilh=x()—x%+1()), i=12,...n, nEN-1 (4
We first consider the sufficient conditions for the mapo

have an attractive domai(Theorem 1 This allows us to and the differences

estimate the limits of variation for the state variables. In

Theorem 2, one of the main properties of the riiap stated, FOGO)) =T 1= (€)X 1(DYi(h), (B
namely, its ability to generate simple behavior as a result of

synchronization when all elements of the CML, indepen-where ée(X;,X; ). According to the mean value theorem,
dently of the initial conditions, acquire a uniform behavior f'(¢) is a piecewise smooth function &f andx;, ;. Let us
determined by the local one-dimensiondlD) map. The denote Bi(j)=f"(&Xi(j).%+1(i))—ey, where y=1,
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¥.=7 and y=1+1v, i=2,3,...n—1, and let us introduce
the vector Y(j)=column (y.(j).y2(j).-...¥n(j)) and the
nxXn matrix Q(B;(j)), where

B1 & O 0 0 0
ey B, ¢ 0 0 0
0 ey Bs 0 0 0
Qe
0O 0 O Bn-o &€ 0
0O 0 O ey PBn-1 €
0 O 0 ey Bn

(6)

By subtracting from each equation ii) the subsequent
equation, we get the map
L(i);

Y(j+1)=QBi(1)Y(), @)

where the dependence piis determined by the original map
D).

Theorem 2Let the mapr have an attractive doma. If
the matrixQ(B;(j)) for x;(j) e D, j € Z" has the eigenvalues
s(j), k=1,2,...n, inside the unit circle in the complex
plane[|s,(j)|<1], then the manifoldD is absolutely asymp-
totically stable.

Indeed, as each iterate of the m@ is contracting, the
composition of map&,=L(j+1)L(j+1—1)---L(j) is con-
tracting as well. The asymptotic stability of the manifad
implies the global synchronization of the mdp Hence,

when j—oo, each cell acquires a uniform behavior with re-

spect to the ma®s, independently of the initial conditions
[17].

In order to calculate the eigenvalues@(g;(j)) one can
estimate the trace elemeng(j) relating the derivatives
f'(6) to the attracting domai and use the recurrent for-
mula for A,2detQ(j),

Av=Bd -1~ ve?Ay o 8
with the initial conditionsA_;=0 andAy,=1. A similar ap-
proach was used by Afraimovich and Nekorkifi to exam-

ine the stability of the steady states. If one is to use the nor

of a matrix P=(py), ||P|=Zy,|pw|, another criterion of
synchronization ig Q| <1. From this criterion follows the
inequality

2e(1+ y)(N=2)+(N—1)[maxf’|]<1.

xeD

9
Hence the sufficient condition for the manifald to be ab-

solutely stable is

1—2&(1+ y)(N—2)
N-1

maxf’|<
xeD

(10

Example 1.ConsiderN=2 (n=1). The mapL(j) in (7)
takes the forny(j+1)=[f'—&e(1+ y)]y(j), which is stable
if —1+e(1+y)<f'<l+e(l+7), xeD.

VLADIMIR N. BELYKH AND ERIK MOSEKILDE

lll. STEADY STATES AND STABLY TRAVELING
CHAOTIC WAVES

Let us hereafter study the problem of the existence and
stability of the steady states of the mapThe fixed points of
T are defined by the conditions

X(j+1)=x(j)=x, i=12,...

N (113

g(Xi) T e[Xj+1— (1+¥)X+ yX;-1]=0, (11b
where as beforg(x)£ f(x) — x. Equation(11b) may be con-
sidered as a spatial map and the steady state$ foise as
the solutions to this map satisfying the boundary conditions
(3) or, in the case of unbounded array, without boundary
conditions.

Introducing the new variables
(12

U=y(Xi—Xi—1), Uj41=v(Xit1—Xi),

we obtain the two-dimensional mdp
Xi+1=X+Ui—e 1g(X),

U= YUui—e 'g(x)], i=12,..N orieZ (13
This map has the Jacobida=y>0 and hencé- is a one-to-
one map. Moreover, in the case wherel and the function
g(x) is periodic, the magF reduces to the standard map
[18,19. Depending on the boundary conditions, the trajecto-
ries of F, representing the steady states of the mMapre as
follows. In the case of zero-flux boundary conditions, each
fixed point of T is a trajectory ofF satisfying the condition
U]_:O, UN+1:0. (14)

In the case of periodic boundary conditions, each fixed point
of T is a periodN cycle of the mag-, i.e.,

u=FNu,

Uil7&Ui2, ilvze[l,N"Fl].

(15

U1=Un+1,

In the limit N—o, each bounded trajectory of13)
M, u,) = T¥(xg,Uo), keZ, corresponds to a steady state of
the mapT.

The trajectories of the mdp were studied by Belykf20]
for an arbitrary nonlinear functiog(x) havingl zeros and
| —1 extrema alternating between one another. In particular,
the case of an odd sinelike periodic function was considered.
The fixed points of are alternatingly of saddle type and of
elliptical (or reverse saddletype. Applying these results to
the present case, we obtain the following.

Theorem 3.(a) For any N=2 there exist values of the
parameterg,y such that the map has a trajectory satisfy-
ing the boundary condition§l4) or (15). (b) The mapF
displays the bifurcation curvely=y*(e" Y}, *(0)=1,

v* (s;l) =0 at which the homoclinic orbit is in the tangency
of the stable and unstable manifolds of a saddle point. For
the range of parameter§={ye(y,1], y=v* for e>¢,,
¥=0 for e<g,}, the mapF has a structurally stable ho-
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moclinic orbit in the neighborhood of which the trajectories 1 : . : : ; ;
of F are topologically conjugated to the Bernoulli shift over a

p=2 symbols.
Example 2At y=0 the coupled map lattic€l) is unidi- o8 r

rectional and the map is reduced to the one-dimensional
mapping x—Xx—¢&1g(x), which becomes the short map
Xx— u—Xx—x2 for e 1g(x)=— (u—2x—x3). For this func-

tion, under the coordinate transformation
(,u)—[(1+ ) YAx+1),(1+x) Y], the mapF for el
v>0 takes the form

X=x+u—y1+u(1—x?), u=y[u—Vi+u(l-x3], 02l
(16)

i.e., the form(13) with ¢ 1= 1+ u andg(x)=1—x2. Here
an overbar is used to denote the next iterate. Figye 1 ' ‘ Iz
illustrates the homoclinic orbit bifurcation curvey
=y*(y/1+ u) for the map(16) and Figs. 1b) and Xc) show X b
the stable and unstable manifolds of the saddle point for the

valuesu=0.3, y=0.6 in the regiorf) after tangency and for
the valuesu=0.5, y=0.1 before tangency, respectively.
Note that the bifurcation curve fou>0 follows the rough
approximationy* =(15—12u)/20.

=3

A corollary of Theorem 3 is that the coupled ma@phas
fixed points in the form of a regular stationary space distri- =7
bution of coordinates for bounded arrays and in the form of L))
chaotic distributions for unbounded arrays. Note that in the
degenerate case=0 when the mapl becomes unidirec-
tional and the stationary distributions of coordinatészed

pointy are determined by the one-dimensional map u
x—x—eg 'g(x), one also has the possibility of observing .
complex behavior of. x

Following Afraimovich and Nekorkif7], let us now con-
sider solutions to the coupled map latti® in the form of
waves traveling at a constant speed and with unchanged

shapex;(j)=V¥(i+]j). The equations for such solutions be-
come /

Xir1=F(X) e[ Xer1— (1+ ¥IXe+ ¥X-1], (A7)

wherek=i+] is atraveling coordinateand thex notation
x,="T (k) has been preserved. Introducing in analogy with
(12) the new coordinates

U= (X —X; _1) 4 (18) FIG. 1. Homoclinic orbit bifurcation for a two-dimensional map
! P g corresponding to two diffusively coupled short maf®. Bifurca-
tion diagram.(b) Stable and unstable manifolds after bifurcation
we obtain a 2D mapping (u=0.3, y=0.6). (c) Phase picture before bifurcatiou=0.5,
v=0.1).
xiogmxtu+ S EY u+gu0)
e T T e T earities. Let us consider small values of the coupling param-

(19  etere. The stability of a fixed pointX} ,x5,....x%) of T
. with respect to a perturbatiofi;=x; — X} is defined by the
of the same form agl3). By virtue of Theorem 3, the map  |inear map
generates traveling waves of chaotic profile for parameters
corresponding to the homoclinic orbits and, consequently,
Smales horseshoes exist for each previously defined sine-
wave type of functiorg(x) having not less than two zeros.

The stability analysis of the steady states and travelingvhereZ(j) is the column matriXZ;(j),Z5(j).....Zx(j)). A
waves performed by Afraimovich and NekorKiri| for cubic  is the Jacobian off at (X} ,X3 ,....X§) with the boundary
functions g(x) in the finite as well as the infinite- conditions(3). For zero-flux boundary conditions, the Jaco-
dimensional case may now be extended to arbitrary nonlinbian matrix become#=Q(a;), where

Z(j+1)=AZj), (20)
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=10-en, meL W : |
a=t')—ev, n=1 W=7 I @(1)a(2)+e2y"-9)=0, (26)
=1

vi=1+y fori=23,...N—1. (21
where{y}=(7,2y.....2y,7) anda(j) =1 (<} (j))— 2.

It is easy to verify that for functiong(x) that are propor-
tional to ¢, the condition of stability fo26) may be fulfilled
in the same way as in Example 3. Using the property of the
matrix (25) that all its elements outside the trace arédof),
- the stability conditions for anyk-cycle with k>2 can be
=1 (x)—ev, obtained in a similar way as for the 2-cycle.

For practical calculations of the stability conditions the fol-
lowing formula for Ay2detA turns out to be useful

Ay=ayhy_1—ye®A2, A_1=0, Ag=1,

k=12,..N, 7=1 mw=7 IV. NONWANDERING SET

1+ for k=2 N—1 OF THE WEAKLY COUPLED MAP
Yk= Y =2,...N—1.

Consider now the dynamics of the m&@igor small values
In the limit of weak coupling, when terms @(s%) may be  of . Let Q) be a limiting set of a single maB and let us
neglected, we obtain associate this set with each cell of the uncoupled map lattice
T such thatQ;=Q,, i=1,2,...N. Obviously, for the
coupled map lattice, the limiting set itN has a topological

Aj=a;, Ay=ayAq,..., Apy= ]Jl a. 22 Jimit
N
Hence the characteristic equation can be written in the form "moms):mo):i—ll Q. (27)
N
kl;[l (ax—s)=0 which is the topological product of the limiting sef for

each cell in the array. Recall thAt,= U ¢y riwy(0), Where
wx(o)zlimkﬂmf"(x(O)) depends onx(0), unless (), is a
unique fixed point off. Hence, allowing for the dependence
on the initial conditions, the limiting set of the uncoupled
map can be expressed as

and the eigenvalues are given bsgi=f"(X§)—ev,
k=1,2,...N. The condition of stabilitys,|<1, related to the
function g(x), then attains the form

—2+e(l+y)<g'<ey, xeD, (23 N

_ | _ Qo= U [limX(HI=I] &ix(0). (28
whereD is the attracting domain dfl). Note that no accu- X(0)e RN i—= i=1

mulation of terms ofd(s?) occurs wherN—. Hence, with- L o o N

out performing a detailed analysis of the transitiénse, we 1 his implies that any combination & initial conditions of
can state that the condition of stabili@3) applies for any the single map interpreted as an initial conditi(0) of the
NeZ". By means of an example we shall show that the magnapT leads to a certain component of the limiting SHD).
(13) has chaotic trajectories under the conditi@3). This  For example, ifw, (o) is thek;-cycle of the mags, then the
proves the existence of stable chaotic stationary distributionsomponent of2(0) corresponding to that initial condition is

of T. the k-cycle with k being the lowest common multiple of
Example 3.For y=1 andg(x)=ea sinx, the map(13) ki,Ky,... Ky . Another important feature of the limiting set
reduces to the standard map Q(0) of the uncoupled maps is that each of ikeycles of T
o has real multipliers.
X=x+u—asinx, u=u-—asinx. (24 In terms of the structural stability theory we may define

the hyperbolic subset 0f)(0),Q,(0), including both the
In this case homoclinic orbits exist for army>0. Moreover, trivial unity of nondegeneraték-cycles (with multipliers
for a~1 the map(24) has no closed invariant curves and |s]|#1, i=1,2,...N) and a nontrivial set with a Bernoulli
arbitrary homoclinic connections exist. On the other handshift over some symbols. In this sense the general theory of

the stability condition23) holds forg=¢a sin x hyperbolic systems is applied for the mépn the neighbor-
The stability of k-cycles of the map is given by20)  hood of (), and the following assertion is valid.
where the matrix Theorem 4There exists such a small value gfthat, for

ee(0,gp), the coupled maf has a structurally stable hyper-

k . S i
) _ bolic componen{),(¢) of a limiting set({)(¢) with the topo-
A=jl:[1 QU (XF (1) =&y (25 Jogical limit

Here (x* (1) x* (2),...x* (K)=x* (1)), i=1,2,...N, are the im &) =2(0).

coordinates of the&-cycle and{y}=(1,1+%,...,24+v,7). In

the particular case of a 2-cycle of the mapfor smalle, = The immediate corollary of this assertion is that all the non-
where terms ofO(¢?) can be neglected except when they degeneraté-cycles of the uncoupled map are preserved
occur in the trace ternjsthe characteristic equation becomesunder a small increase effrom zero. Another conclusion is
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that, magnified by multiplying the dimensions, the most sig- X =f(x)+e(Yis1—2X+Y-1),
nificant features of the 1D maguch as its chaotic dynamics
and the complex bifurcation structgrare preserved for a Vi=f(y)+te(X 11— 2y, +X-1), (29
small range of the coupling parameter
Next we compare the case of largewhere the coupled 1=1,2,...m, Xo=X1, Yo=VYi.

mapT is synchronized and the limiting s€X(¢) lies on the

one-dimensional manifol® (Theorem 2, and the case of If N=2m+1,T may be written in a similar form only with
smalle, where the component 6i(e) outside® is nontrivial ~ the additional equationy,=f(yo) +&(x;—~2yo+x;) and
(Theorem 4. Observing that the map depends continu- Without the restrictione=xy, yo=y; .

ously on the parameterand on the parameters of the single L6t US denoteas the column matrixq Xy, ... Xp), ¥ as
map, we obtain the following. the column matrix y,,Y,,....Ym), h(X,y) as the column ma-

i trix  (Y2=2X1+Y0,Y3= 2%+ Y1, Yms 1™ 2Xm T Ym-1),
Theprem SLet the single map have a p.arameaeas a andF(x) as the column matrixf (x;),f(xy),...,f(Xy). The
multiplier S: x—af(x), such that fora>a, it has a non- system(29) then takes the form
trivial limiting set (5 and let the invariant manifol@® of the
coupled maprl(e,a) be absolutely stable for some region of X=F(x)+eh(x,y), y=F(y)+eh(y,x). (30)
parameterg§a<a,, e>¢;). Then the mapl has an infinite
number of bifurcations corresponding to the disappearanc8ystems of this type, exhibiting the symmetxyy() < (y,X),
of the setQ(e)\[Q(e)ND] under a transition in parameter were considered in a recent paper by Reick and Mosekilde
space from the regiofe<1, a>a,) to the region(e>e;,  [21]. In this section we present some different properties of
a<ay). such symmetrically coupled systems with reference to maps
In the general case, the only knowledge we have aboubf the form (29). We first observe that the general system
these bifurcations is that they are bifurcations of periodic(30) has anm-dimensional invariant manifol®(™ ={x=y}
orbits and of homo- or heteroclinic orbits. As previously with the map on it,
noted, Giberti and Vernif14] have conducted a numerical
study of the mechanisms by which stable periodic orbits X=F(x)+eh(x,x), xeR™ (39
arise in CMLs as the coupling between the local maps is o
increased. Considering a lattice of nine diffusively coupled!n the case 029), h(x,x)=0 and the may31) splits intom
logistic maps with periodic boundary conditions and with theSingle mapsS: x;=f(x;). . . _
local map operating slightly above the Feigenbaum accumu- Theorem 6The map(29) has a two-dimensional manifold
lation point, they find that the stable periodic orbits typically )ty v o
emerge in inverse period-doubling bifurcations to subse- DF={=Xp=""=Xm:  Y1=Yo=""" =Yl
quently disappear in saddle-node bifurcations as they collide . .
with unstable orbits. Secondary bifurcations in which peri-vmh the map on it
odic orbits are stabilized or destabilize_d \_Nhile a pair of ei- X=f(x)+2s(y—x), y=f(y)+2s(x—y), x,yeR.
genvalues simultaneously pass the unit circle throttghor (32)
—1 may also occur. Giberti and Verria4] also point to the
role played by the formation of normally attracting, one- This assertion follows in a straightforward manner from Eq.
dimensional manifolds connectind\2weakly hyperbolic or-  (29) by subtractingx,(0)=x, y,(0)=y, |=1,2,...m. Note
bits, N being the number of lattice sites. Half of these peri-that the map(32) is the same as the initial map for two
odic orbits are stable and the other half are unstablecoupled maps with the substitutios-2¢ and with zero-flux
Relaxation of the trajectory towards such an invariant maniboundary conditions. We also note that a symmetric period-2
fold is usually found to occur relatively fast. Once on theorbit of the map(32) (x),y™M)— (y® x)y represents a
manifold, however, the dynamics becomes very slow, chartraveling wave of wavelength 2 moving along the arfagt
acterized, as it may be, by eigenvalues that deviate from 1 bynit velocity. In general, each periddeorbit may be inter-
as little as 102 These one-dimensional manifolds may bepreted as a stationary wave and as a generalization of Theo-
involved in various global bifurcations in which, at the samerem 6 we state the following.
time, the stability of the manifold and of the periodic orbits  Theorem 7For N being a multiple ofp (for any p when
are affected. In particular, Giberti and Vernia describe a speN—~) each space periodic solution of the systd)
cial type of bifurcation that may occur in CMLs and in which x;(j)=y(i,j), y(i+p,j)=y(i,j), y(i,j)=y(—i,j) with
a one-dimensional manifold of the type described above coleven periodp lies on ap-dimensional manifolddP with a
lapses with an unstable cycle of half the period. dynamics on it of the forn§29) with m=p.
Indeed, denotingp(21—1,j)=x,(j) and ¢(21,j)=v,(j),
instead of(1) we obtain Egs(32) with m=p. Here ;,y,),
V. COUPLED MAPS WITH SYMMETRY |=1,2,...p are the coordinates oD such that from

x(0),y;(0)e®® it follows that (x(j),y;(j))e®®,
Consider the diffusively coupled mag$) for y=1 and J(EI(T) N CalDn(ine

N=2m and assume that we have periodic boundary condi- Next, under the linear transformation

tions (m—o when the array is unboundedUsing a new

notationy for the variablex; with odd (or even i and a new X=u+v, y=u—v (33
numeration, we obtain an alternative form of K for the

mapT: the map(30) is transformed into the ma@:
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u=3[F(u+v)+F(u—v)+e(h(u+v,u—v) (u+1)/6 for u<j

D={|x <§, <§ , < .
+h(u—v,u+v))]2U(u,), =z =z} e (5—4u)24 for we($,3)
(38)
v=3[F(u+v)—F(u—v)+e(h(u+v,u—v)
The condition of absolute stability of the invariant manifold

—h(u=v,u+v))]=V(u,v). (39 (x=y) as determined by10) and(38) has the form
Since V(u,0)=0, {v=0} is an invariant manifold of(34). 0<e<(1-3a)/2. (39)
Moreover, the mass is invariant with respect to involution
(u,v)«<(u,—v) due to the obvious equalities Hence, according to Theorem 4, the transition of the param-
eters(e,a) from a region of smalk anda close to 1(param-
U(u,—v)=U(uv), V(u,—v)=-V(uu). eter u is supposed to match Theorem té the region(39)

R _— s . . produces an infinite number of bifurcations.
This implies that the limiting se®® of the trajectories of34) For a=1, the map(37) has a period-2 symmetric orbit

is symmetric with respect to the manifold=0}, i.e., if a ) y@)_, (v y(2)
point (U*,v*)eQ® then U*,—v*)e Q> Note that each Oy ) = (), where

. . s .
symmetric trajectoryl’ie )° is mapped onto itself by an D= o m Y=g+ ut 26—

involution transformatiod’s=3Tg, where the matrix (40)
= ( E O ’ (35) This orbit appears an=M2(s)=—28+szza_1nd remains stable
0 -E for we(uy, mq), Wwhereu,=(1—-5¢)/2+¢° is atorus bifurca-

. . . o . . tion point. This agrees with the result obtained by Reick and
E Pemgs a unit matrix. Similarly, each asymmetric trajectory \;sekilde [21] that the second period-doubling bifurcation
I'aeQ)” is mapped onto its reflection twil'z, i.e. {50 =0 (here atu=2) is changed into a torus bifurcation for

) =qr (), et .
a voa . ! £>0. A similar phenomenon was observed in the paper by
Consider now the twin maf, defined by Biragov, Ovsyannikov, and Turad@2].

u=U(u,v), v=-V(uw) (36)

ACKNOWLEDGMENTS
and also displaying the symmetry with respect36). In this
case we have the following.

Theorem 8The limiting setQ? of the twin mapG; as a
topological set coincides with the limiting s&f of the map
G.

Indeed,3Q°=Q° and GQS=Q0°. ThenJIGNS=0°. But APPENDIX
asJG=G,; s0G1°=0°. _ _ Consider the discontinuous map

Corollary. (a) Let the mapG have a symmetric period
k= 2k, ork_nt Fsk_. Then, _|f k1=1 2k, +1 2the map_Gt_ has two xi(j+1)=f())+e(j), jez" (A1)
asymmetric period, orbits ng)l anngk)z, consisting of the
points ofl'g,. If k; = 2k, the mapG, has a symmetric period Where
k=2k, orbit I'}, consisting of the points of g, but with _
another route between thertb) Let the mapG have an ai(])
asymmetric periodk orbit I'}, (and its twinI" ;,); then the

This study was performed with support from the Danish
Research Academy and from the Russian Foundation of Fun-
damental Research under Grant No. 93-013-16253.

map G, has a period-R symmetric orbitI'2¢ consisting of _ | elXiea(D) = (A+yxi()+yxi-a(])] for Ixe(D]<r
the points ofl",. The fixed point ofG, for example, corre- ap for [x(j)|=r, k=i+1j,i-1.
sponds to a period-2 orbit @B, , the period-2 orbit ofG to (A2)

two fixed points ofG,, the period-3 orbit of5 to a period-6 _ _ ) . . .
orbit of G, , the period-4 orbit of5 to a period-4 orbit of5,,  The functiona;(j) for [x(j)|<r satisfies the inequality
etc. _ . .

Example 4o illustrate the above results let us consider € Xi+1(1) = (1+y)xi(D)+¥xi—1(D))<2er(1+7)
two diffusively coupled short maps and by virtue of the conditiorr <ay2(1+«a) we have

vl v 2 _ V= _v—y\2 _
X=a(pmx=x)tely=x), y=alpmy-y)telx (%% ()=, jeZ', i=12,...N. (A3)

where an amplitud@>0 is introduced as a multiplier. The Then, from the first condition of the theorem and from the
self-similar box-within-a-box structure of the bifurcations for condition —r <x*, <x3% <r it follows that for any trajectory
the single map is described, for instance, by M28]. This  of (A1), if x;(0) e 1*, thenx;(j )el*,i=1,23...N,jeZ".
structure is preserved for the coupled m@g) with an in-  But, on the other hand, the initial map+ coincides with
duced structure of the trajectories in the phase spagg s  (Al). Hence the mag has an attractive domai. In this
described in Sec. Il. The conditions f87) to have an at- proof we did not use the boundary conditions and the theo-
tracting domain fom<1 are(Theorem 1} rem holds in the case of unbounded arrayZ.



54 ONE-DIMENSIONAL MAP LATTICES: SYNCHRONIZATICN . .. 3203

[1] K. Kaneko, Prog. Theor. Phyg4, 1033(1985; Phys. Lett. A
149 105(1990.

[2] K. Kaneko, Physica [23, 436(1986; Phys. Lett. A170, 210
(1992.

[3] K. Kaneko, Physica Di1, 137 (1990; 54, 5 (1991); 55, 368
(1992.

[4] F. H. Willeboordse, Chaos, Fractals Solitoas609 (1992;
Phys. Rev. E47, 1419 (1993; Int. J. Bif. Chaos4, 1667
(19949.

[5] F. Xie, G. Hu, and Z. Qu, Phys. Rev.®2, R1265(1995.

[6] M. S. Bourzutschky and M. C. Cross, CHAQ@S173(1992.

[7] V. S. Afraimovich and V. I. Nekorkin, Int. J. Bif. Chaak 631
(1994; Matematicheskoje Modelirovani§ 83 (1991J).

[8] S. P. Kuznetsov, iTheory and Applications of Coupled Map
Lattices edited by K. KanekdWiley, New York 1993; S. P.
Kuznetsov, Pis'ma Zh. Tekh FiZ, 94 (1983 [Sov. Tech.
Phys. Lett.9, 41(1983].

[9] H. Kook, F. H. Ling, and G. Schmidt, Phys. Rev.48, 2700
(1991

[10] F. Kaspar and H. Shuster, Phys. Lét1L.3A, 451 (1986.

[11] T. Bohr and O. B. Christensen, Phys. Rev. Lé&8 2161
(1989.

[12] R. E. Amritkar, P. M. Gade, A. D. Gangal, and V. M. Nand-

kumaran, Phys. Rev. A4, R3407(199)); P. M. Gade and R.
E. Amritkar, Phys. Rev. B7, 143 (1993.

[13] O. A. Druzhinin and A. S. Mikhailov, Phys. Lett. A48 429
(1990.

[14] C. Giberti and C. Vernia, Int. J. Bif. Chad& 1503 (1993;
CHAQOS 4, 651(1994.

[15] G. Giacomelli, S. Lepri, and A. Politi, Phys. Rev.H, 3939
(1995.

[16] J. Losson and M. C. Mackey, Phys. ReV5E 115(1995; 52,
1403(1995.

[17] V. N. Belykh, N. N. Verichev, L. J. Kocarev, and L. O. Chua,
J. Circ. Syst. Comput3, 579 (1993.

[28] B. V. Chirikov, Phys. Rep52, 263(1979.

[19] Encyclopedia of Mathematical Sciences. Dynamical Systems
II, edited by V. G. SinaiSpringer-Verlag, Berlin, 1992 p.
313.

[20] V. N. Belykh, Math. Russ. Sbornit86, 3 (1995.

[21] C. Reick and E. Mosekilde, Phys. Rev.52, 1418(1995.

[22] V. S. Biragov, I. M. Ovsyannikov, and D. V. TuraeMethods
of Qualitative Theory and Theory of BifurcatiofState Uni-
versity, Gorky, 1988 p. 10.

[23] C. Mira, in A Chaotic Hierarchy edited by G. Baier and M.
Klein (World Scientific, Singapore, 1991



