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Abstract. Image segmentation has long been an important problem icotfne
puter vision community. In our recent work we have addreshedoroblem of
texture segmentation, where we combined top-down andrbetio views of the
image into a unified procedure. In this paper we extend oukwwgrproposing
a modified procedure which makes use of graphs of image regiorthe top-
down procedure a quadtree of image region descriptors &r@at in which a
novel affine contractive transformation based on neiglmgoregions is used to
update descriptors and determine stable segments. In tterbap procedure
we form a planar graph on the resulting stable segments evdtiEyes are present
between vertices representing neighboring image regldasthen use a vertex
merging technique to obtain the final segmentation. We yéhié effectiveness
of this procedure by demonstrating results which comparé tovether recent
techniques.

1 Introduction

The problem of image segmentation, with the general goaladfittpning an image
into non-overlapping regions such that points within a €lase similar while points
between classes are dissimilar [1], has long been studiedmputer vision. It plays a
major role in high level tasks like object recognition [2,®here it is used to find image
parts corresponding to scene objects, and image retrié¢lsalhere the objective is to
relate images from similar segments. Textured objectsaitiqular, pose a great chal-
lenge for segmentation since patterns and boundaries cdiffioalt to identify in the
presence of changing scale and lighting conditions [5le@fextures are characterized
by repetitive patterns [6], and these are only characteffistm a certain scale. Below
this scale these patterns will only be partly visible [7] efhimakes precise boundary
detection in this case an additional challenge. The intgnrsiriation of textures is of-
ten overlapping with the background, which may add furth#ficdlty. Examples of
proposed approaches to texture segmentation includeactivtours [8], templates [2],
or region descriptors [9]. We recently introduced a new apph to texture segmen-
tation [10], where the procedure is unsupervised in theestret we assume no prior
knowledge of the target classes, i.e. number of regions awkriextures.
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(©)

Fig. 1. Texture segmentation from contractive maps. In (a) a hgereous image is shown cre-
ated by composing a Brodatz texture [11] with itself rota®€ in a masked out area obtained
from the bird in (b). The resulting segmentation is showrcin (

Our segmentation technique begins with a top-down quad&eemposition proce-
dure where nodes describe image regions such that the redrlges the entire image;
the next four children each describe quarter and so on. BEaatitaee node contains a
descriptor characterizing the texture of the associatgibme This characterization is
obtained as a distribution of a set of kernels that we intcedun [10]. At each level
of the tree a novel contractive transformation is computeefich node and is applied
to update the node. The decomposition is controlled by thkilgl of the resulting
node descriptors relative to their neighbors, and a leabtained either when a node
is deemed stable or it covers a subpixel image region. Follpwhis procedure we
apply our graph-based merging technique. A planar grapbrisdd on the resulting
leaves with edges connecting neighboring image regionsa/h@ights are based on
descriptor similarity. The final segmentation is obtaingdtbratively merging nodes
with highest similarity.

Figure 1 shows a result of our procedure. Figure 1(a) shoveseadgeneous image
with itself rotated 90 in a masked out area obtained from the bird in Figure 1(b). The
resulting segmentation is shown in Figure 1(c). An ovenaéwur procedure is shown
in Figure 2. The remainder of the paper is summarized asWslltn section 2 we ex-
plain the entire procedure by first reviewing t#felFS used to obtain a base description
of the image, followed by a description of the top-down pssc&here we introduce our
novel contraction maps, and finally we describe the bottprprocess which includes
the details of the planar graph merging technique. In se@iwe present some results
and compare them to other methods. We provide a conclusisgcition 4.

2 Method

In this section we present an overview of the general praesidu unsupervised texture
segmentation. First we give a brief review of the procesdtdioing base characteriza-
tions of small regions of the image which serve as a startiiigtfior the segmentation.

We then indicate our modifications to the decompositionsfi@mation and the ap-

proach to merging leaves and generating the final segmemntati
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Fig. 2. The segmentation procedure. The top-down decompositidhedimage is shown in (a).
In (b) the feature kernel set is shown. The firstimage in (t)ésover-segmented image obtained
from the decomposition. The segments are merged in therbatfmprocedure to obtain the final
segment shown in the last two images.

2.1 EKkPIFS and the base descriptors

In [10] we introduced the concept of kernel partition itedhfunction systems:PIFS)
which proved to be a viable technique for obtaining a basaratterization of local
image structure to serve as a starting point for segmentafimce we are primarily
focused on the top-down and bottom-up procedures in thigmpap only provide a
brief review of kPIFS descriptors and we refer the reader to our previous pa@gfor
more details.

The kPIFS technique which we developed is inspired by and clasdéed to the
partition iterated function systems (PIFS) introduced &gqliin [12] for the purpose
of lossy image compression [13]. We saw potential in PIFSharacterize local image
structure based on evidence indicating that it can be usiegdks such as edge detection
[14] and image retrieval [15].

The traditional PIFS image compression technique compauses of self-mappings
on the image. The process begins by partitioning an imageaiiset of domain blocks
Dy, and again into smaller range blocks, as illustrated by Figure 3(b). The image is
encoded by matching an elemehtc D; to eachr, € R;. In the course of matching,
a transformatiort,, which is generally affine is calculated for the domain blaegk
that matches range bloel and6y(d,) is used to represem,.. Once all of the maps
are computed they can be applied to an arbitrary image andesillt in an accurate
reconstruction of the encoded image.

For our goal of characterizing local structure we desighBtFS to avoid self-
mappings between domain blocks and range blocks. Insteatioge to find mappings
from an over-complete basis of texture kernélg;, to the range blocks of the image as
illustrated by Figure 3(c). The kernels employed here arenti® represent local struc-
tural image patterns such as corners, edges of varying witfhangle, blobs, and flat
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Fig. 3. Comparison of PIFS andPIFS. Part (a) shows the original image with the highlighted
area is focused on in (b) and (c). Part (b) is an example of RifeSe the best matching domain
block is mapped to a range block. Part (c) showskRH=-S where the domain blocks are replaced
by domain kernels.

regions. In our procedure, each image range block will beastarized by distances of
each of the domain kernels to the range block after a caidmratansform is applied.
Specifically, for a domain kernel, € Dx and a range block, € R; the distance in
kPIFS is given by

de — prd, Tk — firy
Udg UTk

; 1)

where, and o, are the mean and standard deviation respectively of hlockhe
calibrated blocks will be highly influenced by noisesif, is small and if it is zero we
cannot estimaté,pirs. Therefore, we use a measure of flathess of the range blocks,
by = o, /I, - 1f by < ty, wheret is a threshold, we categorize the block as flat.
We then let each range block be described by its best mapgast @istant) do-
main kernels. The similarity for a kernel is weighted by teative similarity of all of
the kernels to the range block. Lét., denote the mean distance from each kernel in
Dg to the current range block obtained from (1) and4gf.. be a scalar constant
controlling how many domain kernels are included in the dpons. The kernel to
range block similarity is given by, 4, = max {Yernadr, — Sxprs(rx, de), 0}
for eachd, € Dy to form a vector of similarities which is normalized yieldia range
block descriptor in the form of a distribution of domain kel Intuitively eachuy,., 4,
describes the error in fitting kerné) to blockr.

Spprrs (T, de) = ’

2.2 Top-down decomposition

In the first step of the top-down procedure we begin the coogtm of the quadtree
by decomposing the image to some start ldvgl., where levell is the root cover-
ing the entire image, by splitting the region nodes at eaedl i@to 4 child subregion
nodes. Once we are at levigl,, we calculate a descriptor histogram for each of the
22(lsear—1) region nodes by summing thé®IFS descriptors making up each region and
normalizing. From this point onward iterative transforioas for each node at the cur-
rent level are constructed based on the local spatial neifjloiods and are applied to
each of the nodes until an approximate convergence is rdagh¢his point stable re-
gions are identified and the next level of the quadtree istoocted from the children
of the nodes based on some stability (or discrepancy) measur
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In practice the choice df;.,. in both the original and modified version is important
in determining the resulting segmentsiglf,.; is a small number then there is a risk that
the region nodes identified as stable will still contain mbekerogeneity while a larger
lstary CaN result in an over-segmentation. We have experimeritallyd thatlg;,,; = 6
is a good choice as a start level, i.e3atx 32 sub-image nodes.

The novel idea that we now introduce to this procedure addeethe iterative trans-
formations that are applied to the nodes until convergerioe convergence of both the
original transformation and the new one presented herereproperties of contractive
transformations in a metric space [16]. Here we briefly nevtiee necessary concepts.

Definition 1 (Contractive Transformation). Given a metric space (X, ), a transfor-
mation 7' : X — X iscalled contractive or a contraction with contractivity factor s if
there exists a positive constant s < 1 sothat 6(7'(x), T (y)) < sé(z,y) Va,y € X.

Let us then denotd°"(z) = T o T o --- o T'(z); that is, T composed with it-
self n times and applied te@. The property of contractive transformations that we are
interested in is given in the following theorem which is pedin [16].

Theorem 1 (Contractive Mapping Fixed Point Theorem).Let (X, 0) be a complete
metric space and let T : X — X be a contractive transformation, then there exists a
uniquepoint z; € X suchthatfor all z € X wehavez; = T'(zy) = lim,, .00 T°" ().
The point z; is called the fixed pointof T'.

The importance of this theorem is that if we can show a transdition to be contrac-
tive in a defined metric space, then we are sure that some foiatiill be reached by
applying the transformation iteratively. In both the onigi procedure and the updated
version the metric space was defined as the set of image rdgammiptor histograms
which can be thought of as lying in the spdRB&. It follows that any metric oiR? can
be chosen, but in practice however we have just used.théistance metric, denoted
by 6., and defined a8y, (x,y) = X%, [z — vil.

In the original paper on the procedure [10] we proposed atoamation to perform
an iterative weighted averaging of similar region desoriptvithin a local spatial neigh-
borhood. Specifically, given some descriptgrat the current level of the quadtree, let
N; denote the set ofn x m spatially local neighbor descriptors aroung but not
includingw;, and letu,;, be the averagé., distance fromw; to all of the other de-
scriptors in\;. We then denote a weighted average distange= vy, , wherey is
some weighting constant, and denote the set of close dessif = {w; € N :
dr, (w;,w;) < tu;}. Then we define a transformatidn for this descriptor to be the
average of the descriptafg” andw;. More explicitly:

1
E(W)ZW w -+ Z wj |- 2)

A transformationF; was found for eachv; at the current level and it was applied
iteratively to obtain updated descriptors, €. = F£™(w;), until 5z, (WP, w' ™) < e
for some given error threshold We claimed that each; was contractive and would
thus yield a fixed point descriptor based on a result from \@rMadart and Van Zanten
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[17]. While this appears sufficient, the proof is complickéad indirect and’; takes a
somewhat inconvenient form. Here we propose a simpler dffaressformation where
contractivity can easily be observed.

Our new transformation is also defined for each region desrat each level of
the quadtree. Letv;, \; andt,;, be defined as above and lef = {w;} U N;. We
now define a set of scalar weights for every descripto¥jrsuch thats; ;, represents
a measure of similarity betweem; andw; for w; € N. The weights are defined
aSS(”) = max{(tN. —dr, (W;,W;))/c;, 0}, wheree; is a normalization constant so

thatz 1 s(” = 1. In this way alls(; ;) < 1, and each descriptav; € N has an
assomated similarity weight; ;) with the special scalay; ;) being the weight for the
w;. Now define a new descripter; to be a linear combination of the descriptors\i
asvi = >, e, 56.5)W;» and our affine transformatia@; for descriptow; is given
by

Again we iteratively applyG; to w; obtainingw? = G$"(w;) until convergence,
but here due to the simple affine form 6f; it is particularly easy to demonstrate
the contractivity of the transformation. For arbitrary déstorsx,y € IR? we have
o, (Gi(x),Gi(y)) = Z?:l |(S(i7i)xj + Vi].) — (S(m-)yj + Vi].)|. Notice that thevi]. 's
all cancel out and the; ;) can be factored out, simplifying téy, (G;(x), Gi(y)) =
5(4,1) Z;l:l lz; —y;| = sq,)0L, (x,y) and sinces(; ;) < 1, we have that; is either
contractive or it does not mowe; at all, either way we are guaranteed by theorem 1 to
reach a fixed point descriptor which we can denot@byln practice the convergence
is quite fast and we generally need less thaiterations fore = 0.01.

When the fixed point descriptovg; are reached for all regions at the current level,
we identify the stability of each region based on the disaney of its fixed point to
the fixed point of its neighbors. Since bath andG; average eactv; with its similar
neighbors, there is a strong possibility that sub-imagedkénregions with high local
discrepancy after the iterative procedure will cover défe textures. To avoid misclas-
sifications we split and repeat the contractive mappingbesd regions at the next level
of the quadtree, as illustrated in Figure 2(a). The disarepaf a node is measured by
comparingw; to the fixed points of its four spatially nearest neighborscivtwe de-
note by the seV;. Let i+ a7, denote the averagl, distance fronw; to the descriptors
in \; and letmz;, denote the maximum distance fram to N, then the discrepancy
measure of the region is definedBs = iz, + myz,.

Though we are only concerned with splitting and reprocessitstable regions, in
practice all regions are split. Frof; we are able to calculate a border measure for
each node aB; = D;/ max{D; : j € {1,..., Ny} } whereNy, is the total number of
nodes at the current decomposition levgl.determines how;'s children descriptors
are calculated. Lefw(; jy : j € {1,...,4}} denote thet initial descriptors ofw;'s
children used in the next level of the quadtree3)f= 0 then the region is stable and
there is no chance af; covering a boundary region and so we assigp;) = W; for
all children. When3; > 0 we let{v; ; : j € {1,...,4}} denote the descriptors of
the child regions calculated as the normalized sumRIfFS histograms in the same
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Fig. 4. Bottom-up merging of image regions. Part (a) shows the nbthsegments and (b) show
the corresponding graph. Edge weights are given similégtyveen the segments. In the right
hand of (a) and (b) segments 1 and 2 of the left sides of (a)@nal¢ merged.

manner as at the starting level.,.. Then we obtain the new descriptors\ag ;) =
(1 - Bl)Wl + Biv(i,j)-

2.3 Bottom-up merging of regions

Upon the completion of the top-down procedure we obtain algjga decomposition
of the image with leaves representing non-overlappingstatage regions. The goal
of the bottom-up procedure is to merge these leaves into genmeous clusters which
form the final segmentation.

In our original approach we fit a mixture of Gaussians to theritiution of leaf
nodesw; using the approach of Figueiredo [18] and the final segmientatas found
by the Gaussian that gave the highest probability.

Our new approach begins by forming a planar grép$o that the vertices daf are
the leaf nodes and an edgej) is formed between vertices representing adjacentimage
regions with edge weight equal to,, (W;,W;), the distance between the associated
fixed point descriptors. The bottom-up procedure then neeagkacent vertices aff
based on edge weight. Lef denote the percentage of the total image covered by vertex
. Theng; is considered in the merging, so the smallest regions wilbbeed to merge
with the most similar neighboring region and when merging @vo verticesi, j the
ratio «;; /cr; is considered so that the merged vertex has a descriptohvidimostly
influenced by the relatively larger region.

The merging of vertices is done in two steps. Initially we geeall vertex pairs, j
where the edge weight is close(p i.e. less than some small positiveThese regions
had nearly identical fixed points and the disparity is mdatl}i only due to the fact
that the fixed point is approximated. In the second step we\lgtdenote the average
weight in the current grap&’ which is updated after each merging is performed. We
proceed in merging the verticés;j with the smallest current edge weight until the
relative weight,, (W;,W,)/A¢ is larger than some threshold,e,qe € [0, 1). Figure 4
gives an illustration of the process.

3 Experiments

In this section we show the experimental results of our ptace. The images used for
testing our procedure are from the Berkley image datab&afid the Brodatz textures
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Fig. 5. Segmentation of the Brodatz textures [11]. The compositibthe textures is inspired
by the segmentation procedure of Fauzi and Lewis [3]. Setatiens borders are marked with
white lines except (h) where a part in the lower right is mdrikeblack to make it visible.

Fig. 6. Comparative results. This figure shows our results compartgtat of Hong et al.[7]. Our
results are on the top in (a) and (b) and right in (c).

[11]. Our procedure has shown to be very powerful for texaggmentation, which is
demonstrated by comparing our results to state of the atigdstof Fauzi and Lewis
[3], Houhou et al.[8], and Hong et al.[7].

In Fauzi and Lewis [3] they perform unsupervised segmestiatn a set of com-
posed Brodatz textures [11]. We have compared the perfareafrour method to theirs
by making a set of randomly composed images from the samd Bebdatz textures.
These composed images are very well suited to our methodubedhe descriptors
precisely cover one texture, so to challenge our procedarehanged the composition.
Some examples of the results are shown in Figure 5. We ob¢ayngood segmentation
for all images with only small errors along the texture boanes. In 19 of 20 images
we found the correct 5 textures and only the texture in theetaight hand corner of
the last image was split into two. It should be noted that tix$ure contains two ho-
mogenous areas. In [3] only 7 of 9 composed images were getusagmented. These
results show that the texture characterization is quitelgBat the challenge of textures
in natural images is larger, as we will show next.

We have tested our procedure on the same set of images froBetkkey segmen-
tation database [19] as was used in Hong et al.[7] and Houhal&]. The results are
compared in Figures 6 and 7. Our method preforms well conapiar¢éhat of Hong et
al., especially in Figures 6(a) and (c). It should be notaditihe focus of that paper was
also on texture scale applied to segmentation. The resuftgpared to the method of



Texture Segmentation 9

Fig. 7. Comparative results. This figure shows our results in cokiome and three compared to
the results from Houhou et al.[8] in columns two and four.

Houhou et al.are more alike and both methods find the infagesegments in all im-
ages. In Figures 7(e) and (f) our method finds some extraresthich are clearly dis-
tinct. In Figures 7(k) and (I) both methods find segmentsdhanot part of the starfish,
but are clearly distinct textures. There are slight diffees in the two methods, e.g. in
Figures 7(a) and (b) where the object is merged with a patt@biackground in our
method, whereas it is found very nicely in the method of Hauéioal. [8]. An example
in favor of our procedure is Figures 7(m) and (n) where pathefhead and the tail is
not found very well by their method, whereas it is found vesiiy our procedure.

4 Conclusion

Texture poses a great challenge to segmentation methaxs)deetextural patterns can
be hard to distinguish at a fine scale making precise bourdigtaction difficult. We
have presented a novel, computationally efficient appréacegmentation of texture
images. To characterize the local structure of the imag®dege by a top-down decom-
position in the form of a hierarchical quadtree. At each lefehis tree a contractive
transformation is computed for each node and is iteratigpplied to generate a novel
encoding of the sub-images. The hierarchical decompasgioontrolled by the stabil-
ity of the encoding associated with nodes (sub-images)ldawes of this quadtree and
their incidency structure with respect to the original irmagll form a planar graph in a
natural way. The final segmentation will be obtained from @dm-up merging process
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applied to adjacent nodes in the planar graph. We evaluatethnique on artificially
composed textures and natural images, and we observe ¢happimoach compares fa-
vorably to several leading texture segmentation algoistomthese images.
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