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Wave packet dynamics and photofragmentation in time-dependent
guadratic potentials

Klaus B. Mdller and Niels E. Henriksen
Department of Chemistry, Technical University of Denmark, DTU 207, DK-2800 Lyngby, Denmark

(Received 22 February 1996; accepted 14 June )1996

We study the dynamics of generalized harmonic oscillator states in time-dependent quadratic
potentials and derive analytical expressions for the momentum space and the Wigner phase space
representation of these wave packets. Using these results we consider a model for the rotational
excitation of a diatomic fragment produced in the photofragmentation of a triatomic molecule and
we highlight the signatures of classical mechanics in the final product distribution of this process.
© 1996 American Institute of Physids$0021-960806)02235-(

I. INTRODUCTION operators, we derive analytical expressions for the momen-
tum and phase space representation of the wave packets. In

The number of quantum mechanical results reported fosec. |1 we use the tools developed in Sec. Il to obtain in-
various systems related to harmonic oscillators is huge. Ongight into photodissociation dynamics.

of the remarkable features of this system or generally any
system which is at most harmonic, is that the time evolution; pyNAMICS WITHIN THE LHA
can be described in terms of classical concéasssuggested

by the Ehrenfest theorem We want to solve a time-dependent Sdirger equa-
The purpose of this paper is twofold: First, we elaboratetion of the form
on the dynamics of wave packets in time-dependent qua- ap(at) 52 o2

— +Viua(a,t) | ¥(q,t), (1)

i i i i i i ih -
dratic potentials. We will consider such potentials in the it 2m 9o

form of a time-dependent local harmonic approximation

(LHA)! around the instantaneous center of a wave packetvhere the local harmonic potential is given by

The LHA is, essentially, equivalent to a linearly forced har- _ 1 _

monic oscillator with time-dependent frequency. We summa- Vira (@) =V(a0+VH(a)(a-ay)

rize a number of results for wave packet dynamics within the +(1/2V2(q)(g—qy)?, 2

LHA. Some of these results are well-knowailthough often

reported in a somewhat different contegt are nothing but

an elaboration on well-known results. We would, however,

like to draw attention to two new results; the momentum i )

space and phase space representation of wave packets which G(0:0) =€xpy 2 (a(d—0)"+p(q =00+ ) €)

take the form of harmonic oscillator states which can be ) L ,

displaced, rotated, and squeezed in phase space. provided the parameters evolve in time according to
Second, we apply these results to photofragmentation dgq,/dt=p,/m,

dynamics. The present work was, in particular, inspired by D

work on rotational excitation based on a harmonic oscillator ~ dP/dt=—=V"(qy),

quel with a t_ime_-depe_ndent equiliprium bending ar?_gﬂe. dey /dt= —zaf/m—v@)(qt)/z, (4)

This model which is equivalent to a linearly forced oscillator

successfully reproduced the qualitative features of the rota- dy,/dt=ifa,/m+ pf/(Zm)—V(qt).

tional distribution of NO following photodissociation of

NOCI in various bending states. It is one of the objectives o

this paper to shed more light on the theoretical foundation 1 2agmyy(t)+myy(t)

for that work. Exact results can, of course, be obtained by at:i( 2aomy,(t) +my(t) )

direct numerical solution of the relevant wave packet evolu- , .

tion. However, here the aim is to highlight the signatures Oiwhere them;;’s are elements of the matrM, satisfying the

classical mechanics in the observables. Work to that effec‘?quat'on of motion

where V(V(q,) is the nth derivative ofV(q) evaluated at
q=q,. It was shown by Hellérthat a solution is given by

[he time evolution of, can also be expressed in the fartn

®)

has, of course, been carried out previodsWe believe, 0 1/m
however, that the present approach is complementary to pre- —M,= ~V@(g) 0 M, (6)
vious work and, consequently, that additional insight is ob- t t

tained.

This paper is organized in the following way: In Sec. Il,
we consider wave packet dynamics within the LHA and us-t
ing the concept of time-dependent destruction and creation ;= yo+ 9 t,tg]+if IN(2agmqo(t) +my,(t))/2, (7)

with the initial conditionMy=1. Similarly, we can express
as
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5038 K. B. Mdller and N. E. Henriksen: Time-dependent quadratic potentials

whereJ[t,t,] is the classical action along the trajectory from (11) become time-dependent and the dynamics is not solely

Jos Po 10 Q;, Pt - contained in Eq(4). Such problems are beyond the scope of
Normalization of Eq(3) implies this paper.
5 ok In this paper we consider only the dynamics of the GHO
Im %:_m( ) (8)  states in one-dimensional problems. Note, however, that the
4°121m o results of the present section can be generalized to multidi-

a condition which is imposed at=0, and which is fulfiled mensional local harmonic potentias?*! _

at later times by virtue of the equations of motion. The  The introduction of destruction and creation operdtors
Gaussian wave packet mettod a method by which one (See also Ref. J2can be useful conceptually as well as for
can propagate any wave function. This is accomplished bjhe purpose of calculating various expectation values. Thus,
expanding the wave function on a set of Gaussian wave A= (4% Im “12 20 (8—a) +i(P—
packets, followed by the introduction of a LHA in the dy- = a) A~ 12a(q=a) Ti(P=Po),

. . - R . 12
namics for each of these Gaussians. Al=(4% Im o) Yi2aF (G—q)—i(p—py), 12
For the present purpose it is, however, advantageous to . )
note that Meyer showédsee also Ref.)8that the Gaussian ©Peys the standard commutation relation
v_vave.packet is the.first member of an infinite series of solu- [At ,A;r]: 1 (13)
tions in the LHA, given by
—ing and a direct calculation shows
én(Q,t)=cyHn(x(q—ay))e” "7G(a,t), 9 . ”
— —i
whereH, is thenth Hermite polynomial, and An(@0)= V- a(a, e, (14)
c,=(2"n1)"12, Al pa(a,t)=Vn+ 1, 1(q, 04,
k= (2 1m a,/h)Y2, (10) and we observe
t AlA (0, =nn(0,1). (15)
=(2/m) | dt’ Im a; . apn
A=t )fo o Thus,At‘LAt is a number operator. Since this operator is Her-

. . . . _mitian the orthogonality of the eigenfunctions follows, i.e.,
Thus, the dynamics of the hole set of functions is contained 9 Y 9

in the same set of parameters which describe the dynamics of (¢,(t)|dn (1)) = S - (16
the Gaussian wave packet. By solving E4). we have, ac-

cordingly, solved the dynamics for all wave packets which
initially takes the form of a harmonic oscillator eigenfunc- d,n(q,t):(n!)*1/2e*inﬁt(AtT)nG(q,t)_ (17

tion which can be boosted f, in momentum and displaced »
to qo in position and which can have any width &t0 The position and momentum operators can be expressed

[related toa,, see EQ.(20)]. We use in the following the @S linear combinations oA, andA{ according to Eq(12).

acronym GHO for the generalized harmonic oscillator statesIhus,

én(0,t). A

It should be noted that for LHAs with time-independent q—qt=(

force constantpwherek=V®)(q,) is a positive constahthe

dynamics of the GHO states is simplified in the special case no\V2 R

where ag=i/mk?2. This choice fora, implies thata,= P—p= (m) (Al +af A,

and consequently that the uncertainties in position and mo-

mentum are time-independent. Thus, the Gaussiagnd therefore the expectation values of position and momen-

$0(q,t)=G(q,t) is just one of an infinite set of states with tum are given by

this coherent property, which can be found in harmonic and - _

linearly forced harmonic oscillators. {ga(lal n(1)) =01,
The dynamics of any initial state can be inferred from  ($,(t)|p|dn(t))=p;,

the dynamics of the GHO states. We can always expand Frl]at is, by the parameters which evolve in time according to

wave packet in terms of thé,(q,t) set, since this is a com- Hamiltons equations; and the associated uncertainties are
plete orthonormal set at any time. Consequently, the dynam- q '

From Eq.(14) we also get the result,

2
) (Al +Ay),
(189)

(19

ics of given by
(AQ)2(t)=(1+2n)A/(41m ay),
A= Capn(a1) (1D (AP =(1+ 202 1m o, (20

is also obtained simply by solving E¢4) (this observation where the uncertainty, for an operatsy is defined in the
was also made in Ref. 8 albeit in implicit foymThe GHO  ysual way

states might also form a useful basis for general potentials 5 “o - 5
beyond the validity of the LHA:® In this case the,’s of Eq. (AX)R(D) =(Dn(D[X Dn()) = (Bn() X[ Pn(1)).  (21)
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K. B. Mdller and N. E. Henriksen: Time-dependent quadratic potentials 5039

From these relations it follows that the expectation value ofr if we introduce a new function,
the energy in the LHA is given b ~ , ;
¥ given by Ta(P)=Z24(y.1)  With Y(p)=(k/2a0)(P—Py).

(Hiua)n(1) = H (0, py) + (Ap)2(D)/(2m) (28
we can write this relation in a more compact form,

+(12VP(g)(AQ)a(L), (22)
, J

whereH (g, p,) = pf/(2m) + V(). a%?n(y,t)=2ya%3nfl(y,t)—(a:*/at)w%?nfl(y,t)- (29

The time evolution of the uncertainties is coupled. Thus,
using Eq.(4) and Eq.(20) we find That is,

/2
d(Ap)A(1) d(AQ)3(t) o[ a
dt” =— dt” vV (q,). (23) Aoy, )= w H, pEaal (30

This relation shows, e.g., that a spatially spreading wavd hus, these polynomials are related to the usual Hermite
packet moving in a potential with a positive second deriva-PolynomialsH,, however, now with a complex argument.
tive at the center of the packet must have a contracting mo-  TWo special cases of E¢26) should be noted. First, for
mentum uncertainty. In addition, it contains the exact resulfoherent states, we havey=imw/2, y=—i(p—py)/

that there is no spreading in momentum in constant or lineax’iMw, and Eq.(26) reduces to

potentials. bo(pt)=cn(—)"H((p— pt)/\/ﬁmco)e‘”"glé(p,t),3

A. Momentum space representation (39

We consider the momentum space representation of theinceé ~we in__this case have Z,(y,t)=(~i)"
GHO functionse,(q,t), which we denote as,(p,t). The X Hy((p—py)/ VEme). Second, if we, in addition, assume

Fourier transform of the first function gives, thatt=0 andgo=po=0 (and yo=i Im(yy)), we obtain the
_ _ well-known result for the momentum representation of the
do(p,t)=G(p,t) stationary eigenfunctions of a harmonic oscillator with fre-
quencyw.t®

:(2wﬁ)-1’2f dge PYG(q,t)
B. Phase space representation

i 1
:(—i2at)1’2exq’ %( - E(p— py)? In this section we turn to a Wigner phase space descrip-
t tion of the GHO states. We do this because a phase space
picture provides us with the most intuitive way to think of
: (24 the GHO states as generalized harmonic oscillator states. The

Gaussian wave packet is the first member of this set and in a
We can now take advantage of the fact that the GHO funcwjigner phase space description it is well known that this

tions can be generated from the Gaussian wave packet usiRggte is a Gaussian with elliptic contours rotated with respect
a creation operator. By Fourier transformation of Bg) we {0 the coordinate axes and displaced from the center of the
get a recursion relation by which we can generate the mocoordinate systertf In comparison, the ground state of a
mentum space representation of the functions wittharmonic oscillator is a Gaussian centered at the center of the
n=123... . Thus, coordinate system with contours aligned with the coordinate
axes.

The Wigner transition functiolV,, .(q,p) for two arbi-
trary stateg,) and|y,,) is defined a&+°

—gip+ 7

én(p,t)=(4nh Im at)llzeiﬂt( —2af

f iy
%—i_lqt

_i(p_pt))gn_l(p't)' (25 Wn,m(qap):%<¢n|ﬁ(qrp)|¢m>i (32

Given the structure of this equation and that of &), it is whereﬁ(q,p) is the Wigner operator,
clear that the general result can be expressed in the form

A 1 ) e
~ . _ 1 @ iap’ —pa’ )k "—pa’)ih
Bo(P.)= o Tn(P,DE BB (p 1), 0o Tlap= g | dadpie e e g
Using Eq.(25) we can derive a recursion relation for the (33
unknown functions7,(p.,t), To evaluate the Wigner transition functions for two GHO-
12/ 1m states we rewrite the Wigner operator in terms/Aqfand
'%/“(p’t):<h I ) ( at(p_pt) A;r which enables us to use directly the derivation of the
m 'y ay

Wigner transition functions for two harmonic oscillator
eigenstates as given in Ref. 17. Introducing

* ﬁ (o7
o ”%)‘]‘“‘1(”’” @) Ze=(4h Im ap YA~ i2a(q—q) +i(p—p0)s (3D

J. Chem. Phys., Vol. 105, No. 12, 22 September 1996
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5040 K. B. Mdller and N. E. Henriksen: Time-dependent quadratic potentials

we obtain »
~ 1 * * A *A
H(q,p):—f 2z A" "2 ZgZN-Z*A, (35
T 2.5
where Z is a complex number and’Z=d(ReZ)d(Im Z). L
Since the GHO states are number states associatedAyith 20 V2
and A/ we obtain from Ref. 17 that the Wigner transition Lo
function for two GHO states is given by V2
1.5
(=DMm|¥2 2 N
= _ Bryn—mg—2|Z
Wn,m(q-put) oh ni (Zztel )N~ Mg t D,
_ 1.0
XL ™(4)Z?), n=m, (36)
whereL () is the associated Laguerre polynomial
0.5\
H s .
m+v (—X) q;
LO(x)= . 3 A
V02 s 37) . | e /o
0 0.5 1.0 1.5 2.0 2.5 q

As a special case, the Wigner distribution for thin GHO

state becomes
FIG. 1. The contour ellipse defined B¥,|=1/4 (A=1) of a GHO state

(_1)n _ 2 with g,=2.0, p,=1.5 and a,=(1+i)/2. The light grey areas show
Wi (g,p,t)= 7‘9 212 Ln(4]Z4?), (39) (Aq)o(tt) and (A;D)O(t), respe(;tively.
where
|Z,/2={4] a|?(59,)*+ (5py)®— 4 Re ay(5ay) (Spy) }/
or linearly forced harmonic oscillators is, accordingly, very
(47 Im ay), (39)

simple: The center of elliptic contour levels with fixed shape
with 8q,=q—q; and dp,=p—p;. If we introduce the real and orientation rides on a classical trajectory.

numberszy, and 6, Up to now, we have in this section considered the phase
: space description of the dynamics within the LHA as a trans-
tanh( 7,)e' %= t (40) formation of the, in general, more familiar wave function
1-2iey description. But, of course, the phase space description has a
|Z,|? can be rewritten as right on its own and we end this section with a qualitative
y _ ) characterization of the dynamics in the LHA based only on a
|Z|*={e"“"(5q, cog 6,/2)+ op; sin(6,/2)) phase space description. To do this we recall that the equa-

27 ; _ 2 tion of motion for Wigner functions in potentials which are
+e°"(5q; sin( 6,/2) — Sp; cod 6,/2))°}/(2h).  (41) at most quadratic coincides with the classical Liouville
For Gaussian wave packets these are the well-known expregquatior?!?2 Therefore, the dynamics can be explained in
sions for the Wigner distribution$:"® We see that not only  terms of classical trajectories in phase space.
the ground state but all the GHO states have samg el- In the LHA the potential is expanded to second order
liptic contours in phase space. These contours are centeredgbund the center trajectory. This implies that the dynamics

di, Py, are rotated through the ang#/2 and the ratio be- with respect to the center is linéar
tween the axes is given by expf2 Special among these
contours is the so-called uncertainty cont6UFhis contour, G
given by|Z,|=1/4, has the property that its projections on op, | =Mt
the g and p axes equal £q)q(t) and Ap)y(t). Since the
uncertainties of the higher GHO states are proportional to thevhere M, is the classical stability matrix introduced in Eq.
uncertainties of the ground state, EQQ), the uncertainty (6). This matrix is a symplectic 2 matrix and it is well-
contour characterizes a full set of GHO states. The uncelknown that such a matrix can be decomposed into a product
tainty contour and various parameters are illustrated in Fig. bf 2 X2 matrices describing pure rotations and pure squeezes
for a GHO state withn,=(1+1i)/2. in phase spac®€ The phase space flow around the center
In the special case of LHA's with time-independent trajectory can thus be described in terms of rotation and
force constantwherek=V(?)(q,) is a positive constahit squeezing implying that any phase space distribution under-
should be noted that if we specialize to coherent states wheigoes rotation and squeezing with respect to this trajectory as
ap=imki2=a,, then6,=0 andy, is constant, that is, the time evolves. In particular, an ellipse centered on this trajec-
lengths of the major and minor axes of the ellipse are fixedory will stay an ellipse under time evolution.
and they are aligned with the coordinate axes at all times. From this small analysis within the framework of the
The dynamics in phase space of coherent states in harmoni¢iA, it is also clear why a parametera{ for the GHO

6do
opo | (42)

J. Chem. Phys., Vol. 105, No. 12, 22 September 1996
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K. B. Méller and N. E. Henriksen: Time-dependent quadratic potentials 5041

rotation of the diatomic molecule. These terms depend on
and ¢, respectively. The centrifugal energy associated with
the atomic motionj?/(2ur?), depends onm as well as on

Nyc.m.
@’/r’?X ? ¢ and this term has consequently been placed together with

9@ the interaction potentiaV; fulfills the relations,

Vi1, @) =Vin(r,— @),

FIG. 2. The coplanar scattering model used for the description of the dis- . _\/.

sociation dynamics of the triatomic molecule, ABC, into+ABC with BC Vin(r, @) =Vin(r, -+ 25m),
as a rigid rotor. The coordinates used in the model are defined in the figure, . . . . .
see the text for further details. The radial kinetic energy operator simplifies when we

write the wave function in the forrf)(r, #,t)/+r, since

(45)
where se Z.

state$ characterizing the shape of a Wigner distribution can I:|(r)(Q(r,¢,t)/\/F)= 1/\/FI:| 1(NQ(r,¢,1), (46)
be expressed in terms M.
where
I1l. APPLICATIONS A 52 2
The results derived in the previous sections can provide Hi(r)=- m w2 a2 +V(r). (47)

insight into photofragmentation dynamics. The momentum

distribution in the fragmentation of a diatomic molecule canConsequently, we can consider the time evolution and eigen-
be inferred directly from Eq(26) (see Ref. 19 for details  values of()(r,¢,t) using the simple form of the radial ki-
We will, however, focus on the more interesting dynamics ofnetic energyH,(r), and we can recover the results corre-
a triatomic molecule and consider translational and rotationasponding toH(r) simply by a multiplication of the wave
final state distributions. The description which follows is, function by 1/\/F_

essentially, a direct extension of previous wotisuch that We assume that the wave function can be factorized ini-
vibrational states of the triatomic molecule with any numbertially (i.e., no correlation

of quanta of excitation are included. We start with a review

of how to turn the dynamics of a triatomic molecule into a  Q(r,¢,00=Y(r,0)®(¢,0). (48)

set of quasi-one-dimensional equations of motion associated | . ) .
with time-dependent quadratic potentials. The time-dependent self-consistent fi€ldDSCH approxi-

mation is introduced;
A. Coplanar dissociation, equations of motion

_ iF(t)/h
We consider a triatomic molecule, ABC, which dissoci- Q. ) =Wn(r,)Pm(,)e ' (49

ates into A-BC. We use a coplanar scattering model as il-yhich implies,

lustrated by Fig. 2. That is, we assume that the motion takes

place in a plane, the total angular momentum is zero, and we ¥ (r,t)

adopt a rigid-rotor description for the diatomic fragment. Us- 'ﬁT =(Hy(r) +V(r,0))Wn(r,t),

ing Jacobi coordinates, i.e., coordinates associated with the (50)

vector from A to the center of mass of BC and the vector  s® (4,t) -

from B to C, respectively, with being the length of the first I ————=(H($)+Vi(.0))Pr(9.1),

vector and¢ being the angle between the two vectors, we

obtain(see, e.g., Ref. 34 where
Hio= RO Vil 2R, 3y (1) = (0,0 Vin(r, 8+ 122D @ p($,1),

where . (52)
. 210 Vi) =(Wo(r,0|Vin(1 ) + 12212 ¥ (1),
H(r)= 2u r or ' ar +Vn), and in the phase factd¥(t) is real valued and the observ-

A (44)  ables considered in the following will not depend on this

A= 5. factor. L .

21 The final product distribution in a photofragmentation

where proces_%9 can be obtained frqm_a propagation into the_ as-
. ymptotic region {~<) of the initial state(times the transi-
j2=—1h2%9¢?, tion dipole moment Eq. (48), followed by a projection on

p=ma(Mg+me)/(ma+mg+me) and| is the moment of the asymptotic states. Thus,

inertia for the diatomic, BC, moleculéd(r) represents the P(E,1) = 7Z(0)Pyand ki) Pro) (52)
radial energy associated with the atomic motion whereas ' ran R
H(¢) represents the rotational energy associated with thevhere

J. Chem. Phys., Vol. 105, No. 12, 22 September 1996
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5042 K. B. Mdller and N. E. Henriksen: Time-dependent quadratic potentials

2 fast dissociation dynamics. The validity of the TDSCF ap-
proximation has been examined in the literat(see, e.g.,
Ref. 26 and references thergimhese studies have shown

2 various levels of success. One type of application which,

however, should be avoided is to situations where a wave

packet starts on the top of a barrier. The bifurcation of such

a wave packet is described quite poorly within the TDSCF

approximation.(iii) We have introduced the LHA for each

mode. What is required for a successful application of this

approximation is localized wave packets with respect to an-

Here k;=\2u(E—€)/%?, E is the total translational and harmonicities in the potential, this is, normally, equivalent to

rotational energy,e;=1242/(21) is the rotational energy, the requirement of fast dissociation dynamics. The descrip-

wherel =0,+1,%2,... and%(w) is a factor which contains a tion of the bifurcation of wave packets is also problematic

function related to the light pulse used in the within the LHA.

photoexcitatiort® Equation(52) is a product form where the With the approximations described above we have the

first factor gives the momentum distribution associated withdesired set of quasi-one-dimensional equations of motion.

translation, and the second factor is the angular momenturhhe successful application of the one-dimensional model in

distribution associated with the rotational motion. Note thatRefs. 2 and 3 represents one example where these approxi-

both distributions take the form of a Fourier transform of anmations appear to be valid.

asymptotic wave packet.

We now introduce the LHA for each of the modes. That
is, a second order expansion around the expectation value of

Ptrans(k'):f drr(e M) (W (r,t~%)/\T)

=“ dre K"y (r,t~x)

(53
2

Protl) = ‘ f d¢e7”¢®m(¢:t~°°)

r for the potential, B. Translation
Assume that the quantum states in theoordinate, ini-
Virand 1 D) = V(1) +(Prn($,0)[Vin( 1, b) tially, can be represented as GHO states of the form,
+(12-h2BI2ur?)| D), (54

W (r,0)=cyHn(ko(r —ro))exp{(i/A)[ ao(r —ro)%+ yol},
and likewise a second order expansion around the expecta- (56)
tion value of¢ for the potential,
that is, as a stationary state of a harmonic oscillator centered
atrg (note thatpy=0 and thateg=i Im aq for a stationary
statg. The time evolution is given by E¢50) and with Eq.
(54) within the LHA, we obtain

Viot( §,0) =(Wn(r,0)[Vi(r, )| Wn(r,1)). (59

Note thatV,.(¢,t) as well as the ternt?/(2u)(1/r?) will
vanish ast—«. We assume in the following that the latter
term is small compared th?/(21) also during the dissocia- Puand k) =1
tion and this term is consequently droppédr a specific t
example where this approximation is valid, see Ref. 2

Before we start looking at the final product distributions wherep=k#, and according to E¢26)
with the results developed in Sec. Il, the basic approxima-
tions are summarizedi) We have used a coplanar descrip-
tion_ of the dissociation Qynamics which,. esseqtiall_y, is I‘T’n(p,t)|2=ni||ﬁ//n(p,t)|2
equivalent to a well-established approximation which is ad- 2'n!
equate when one focuses on the main dynamical effects in 5
translational and rotational dynamitsi) We have assumed < exp — (P—py) (58)
that there is no correlation initially between the two modes, 2(Ap)S(t)
and the time-evolution is considered within the TDSCF ap-
proximation and hence no direct correlation is allowed forand the parameters evolve in time according to @y.thus
(but energy can nevertheless be exchanged between tlig ,p;) evolves according to Hamiltons equations. Using Eq.
modes. This requires weak coupling between the modes 030), we obtain

im|W,(p,t)|2, (57)

—

1
V2m(Ap)o(t)

1, n=0
| Za(p,0)[2=4 2(p=pY?(AP)§(H), n=1 , (59)
4(1-2(p—p)#(ApP)5(1) +(p—pY*/(AP)G(1)), n=2
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etc. Note that|W,(p,t)|2 will have zeroes atp=p, for Yao(#)=CrmHm(ko(d— b))
n=1 and atp=p; = (Ap)y(t) for n=2, respectively. A plot _
of Eq. (58) is shown in Fig. 3 as solid lines. The momentum X exp{(i/#)[ ao( p— o) >+ ¥ol} (63

representation of the GHQ statgs is reminiscent of the well-g{)o is the equilibrium bending angle of the electronic ground

known result for harmonic oscillator states except that thestate(which might differ from the corresponding angle fol-

position of the center as well as the width of the distributionsgying vertical excitation—if an equilibrium angle exists in

are determined by the dynamics. the excited staje Each packet in Eq(62) evolves indepen-
dently due to the linearity of the time-evolution operator.
Equation(50) with Eg. (55) within the LHA implies that,

C. Rotation *

Pro(d0)= 2 g 20m,,(#), (64)

Assume that the quantum states in theoordinate, ini-
tially, can be represented by stationary harmonic oscillator
states. The symmetry of the potential, E45), implies that where _

(for a molecule with no specific orientation in spadhe Yo i (D) =CroHm(ki(d—Bp))e ™t

most realistic representation of the initial state, is given by a . .

superposition of wave functions centered @& and at xexp{(i/h)[a($=d)*+]u(¢= b+ nl}
— ¢g, respectively. Thus, (65)

O 0)=thy (D) + iy (P). (60)  SiNCeVu(r, ) =V,o(r, ¢+ 2sm) according to Eq(45). The
0 0 parameters evolve in time according to E4), e.g.
As long as these states are localized during the time evolu- g4 /dt=j, /I,
tion such that normalization to one in the interval _ (66)
e [—m, 7] is possible, it is clear that the Fourier transforma- ~ dji/dt=—0dV o $,0)/3h| 4=,
tion proceeds in the same way as for the translational motion . L . -
since the integration can be extended to the interval fron\i\’:irevm((ﬁ’t) Is the potential given in EQ55) within the
minus to plus infinity. Using E(53), we get The Fourier transform of Ed64) takes according to Eq.
Prot 1) =Pr(1)+ Po(l)+interference term, (61)  (26) the form (we perform first the integration and subse-

) ] ) ] quently the summation
wherel in the first term predominantly will correspond to

1¥=0,1,2,..., and in the second term to f dpe 19D _(é.t)=c 7(j,1)e MAG(],1)
I7=0,—1,—-2,..., since the two wave packets will evolve —o

corresponding to clockwise and counterclockwise rotation. ®

The first two terms are expressions for the distribution of the % 2 g i2smilh (67)
angular momentum which mathematically is equivalent to s=—o

Eq. (58), the essential difference is that the angular momen'According to Poisson’s summation formula, the last factor

tum, J:hlﬁ' 1S q_glantlzedl. Thbe last mtehrferencel term 'ePre-can be viewed as a series of delta functions which are non-
sents the possible overlap between the angular momentu%ro only whenj/% is an integer, that is

representations corresponding to clockwise and counter-
clockwise rotation. This term is small if the average magni- | =I%, (68)
tude of the angular momentum is large. Equati®d) is  \yhere|=0.+1+2 .. .

equivalent to the result reported in Ref(ébeit obtained in Thus, we obtain the following expression for the first

a somewhat different wayand as in that work we neglect in 1.5 terms in Eq.(61), corresponding to clockwiseH) or
the following the interference term. We elaborate below on., nterclockwise £) rotation

the form of the first two terms in the expression and we _
show, in particular, that the result which we have outlined Pf;{_(l)= lim|®n(j,1)]?, (69
here is valid also after the fragmentation is over, where the toee
wave packet associated with the free rotor motion will take gyhere
finite value at the borders of the intenjat 7, 7].
The continuity of the wave function associated with the = - .. 1 D2
bending vibration and eventually the free rotor motion of the (1) - 2™m! (.0 V27 (Aj)o(t)
BC fragment implies that the wave function must be invari-

ant to an angle displacement o§2, wheres is an integer. (i—iv?
This condition is incorporated in the expresgion X exp - 2(A))3(1) (70
* and the difference between the twer {(—) rotational direc-
D(4,00= Z_m P+ 25q( D), (62 tions show up, solely, in the opposite signsjof This is
. exactly the same functional form as for the translational mo-
whereg e]— o,[ and mentum, however, the continuous momentum varigb)es
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The same expression was given in Ref. 19 however, only

0.4
035 | for m=0. A somewhat similar expression for the rotational
distribution was given in Ref. 2. It was, however, only given
03¢ within the linearly forced oscillator model whereas the
2 025¢ present expression is within the full LHA, that is, the expres-
g o2t sion allows for a time-dependent frequency. The implication
S of this is, essentially, that the width of the distribution be-
s 015¢ comes time-dependent and as discussed in the previous sec-
0.1 tions it is determined by the classical dynamics around the
0.05 | center of the wave packet. Whether the final value of the
0 , . width, (Aj)o(t~<), is larger or smaller than the initial
0 2 4 6 8 10 value, Aj)o(t=0), is determined by the dynamics to be
illustrated later.
(angular) momentum When one considers rotational distributions at a fixed
0.4 (photon energy one should not forget that such distributions
0.35 | should be calculated using E@2). Thus, the translational
03 distribution should be taken into account. Since the small-
> o025 | ness of the rotational energy typically implies that
I Ki min~ Kimax Wherelmin andlmax are the numerical value of
§ 0.2 ¢ the smallest and largest rotational quantum numbers which
& 015} defines the width of the distributions in E¢9), we can
01 b anticipate thatPynd Kimin) ~ Pirand Kimax) - Thus, the transla-
tional distribution can be, essentially, constant in the relevant
0.05 region and the rotational distribution can be inferred directly
0 : ' s : + from Eq.(69). By the same token one would expect that the
0 2 4 6 8 10 - S - -
rotational distribution is, essentially, independent of the pho-
(angular) momentum ton energy except for an overall scaling constant. These re-
0.4 . . . . sults are similar to what one obtains from the simple
035 | mn=2 | Franck—Condon mapping where final state dynamics is
' neglected. However, more accurate estimates of the rota-
03} 1 tional distribution should be based on E§2).
2 025¢f 1 We note that the present description allows us to under-
g ool 1 stand effects which are beyond that of an independent mode
o description. From the equations of motion E§0), we ob-
& 0.15¢} X .
serve that energy transfer between translation and rotation
01} 1 can make the LHA for the rotational motion a function of the
0.05 | ] bending quantum number, that is the parameters of the rota-
0 . , tional distributions might depend somewhat on the bending
0 2 4 6 8 10 state.

(angular) momentum
1. The decaying quadratic well/barrier

FIG. 3. Final product distributions in the photofragmentation of a triatomic To make the considerations above more explicit, let us
molecule, ABC, which dissociates into A BC, in a coplanar model with  consider a simple model. Assume tl{atsimilar model po-

BC as a rigid rotor. The full line is the momentum distribution aSSOCiatedtential has been used previously see, e.g. Ref. 28
with translational motion and the points give the angular momentum distri- ’ ’

bution associated with rotational motion of the diatomic fragment according  V/, .(r, ) = Ad)zef er (71
to Egs.(58) and (70), respectively. The three figures correspond to initial
states with zero, one, and two quanta of excitation in the translational angvhich for a positive value of the constafstcorresponds to a

the bending coordine_\te, respectively. The units used or(ghgulaj mo- molecule with a linear equilibrium geometry in the excited
mentum axis are arbitrary Wit =j-=5. (repulsive electronic state whereas a negative valueAof
implies that the electronically excited state does not support

) _ an equilibrium angle. Then, according to E§4), we get
replaced by the quantized angular momentum variajle,

These distributions can appear as a smooth discretized ver- Viand",1)=V(r)+(j{+(Aj)5() —h%4)/(2ur?)

sion of the distributions obtained for the translational mo- 2 2 Cer

mentum. If, however, 4])(t) is small, the discretized ver- TA(S T+ (Ad)m(t)e (72)
sion will appear as an incomplete representation of theSince the validity of the simple model potential is confined
underlying continuous distribution. The points in Fig. 3 givesto the interval¢p € [ -, 7] (as long as the interaction is
a graphical representation of Eq.0). importan} we have assumed that the bending wave function,
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14

FIG. 4. The classical trajectory in the decaying oscillator, definedwbyl ande=1/10, with initial conditions ¢y,py)=(—5,0). Inserted at;, p;
corresponding té=0,16,and 180 are snapshots of the uncertainty ellipsel() of a GHO state that starts out as a coherent state of the harmonic oscillator

with w=1. The first two contours are drawn on the same scale, whereas the scale is changed on the third. On the latter also the asymptotic uncertainty in
momentum is shown for the lowest GHO state.

for the purpose of evaluating the expectation valuegdf decaying force constaAt 3! This is the so-called aging os-
during the fragmentation, can be normalized to one in theillator (+) or barrier (~) given by V(q,t)
interval ¢ € [—m,7]. Thus, we see that will depend on =+ (1/2)w(t)?g? where w(t) = wexp(—ewt/2), £>0 [the
the bending quantum numben, and we can writery(m).  time evolution ofr,(m) is of course faster than linear in

Since, time]. From the analytical solution one can obtain a couple
Vrot(¢>,t)=A¢2<\I’n(r,t)le’“I\Pn(r,t)> of interesting result$ concerning the asymp_totlc_ valu_es of
the momentum and the associated uncertainty in this quan-
=Ap?e M1+ (Ar)A(t)/2+...}, (73 tity.

We consider first an aging quadratic well and the case of
g_slowly decaying frequency (< 1). Here, the magnitude of
the momentum is reduced by a factor af ¢r) /> compared
plo its highest value in the stable oscillator. When the initial

state is a coherent stated=iw/2), one finds that the final

Assume, e.g., thad<0 and that them-dependence of the uncertainty in momentum is smaller than the initial. This is

last term in Eq(72) dominates, then we see thét,cis less MOt necessarily the case when the initial state is not a coher-
steep whem is large[ V(r) is a repulsive potentilHence, €Nt state(conjectures based on the uncertainty principle are

r(m) will evolve more slowly whemn is large. This implies obviously erroneou®. Thus, when the adiabatic approxima-
that the torquegV,q/d¢, will show the fastest decay when tion is valid the uncertainty in the momentum for the coher-
m is small, i.e.,j.. takes the smallest value when=0. ent state must decrease due to the decrease in the effective
Thus, the center of the rotational distributions will be at suc-frequencyo(t) and when the free particle motion begins to
cessively higher angular momenta whenincreases. Such take over there is no further change in the uncertainty of the
an effect has been observed experimentally. momentum. Therefore the coherent state undergoes an over-
Note that with the potential of Eq71) the LHA is exact ~ all narrowing in momentum. For the more general case
for the rotational motion and the equation of motion tyr  (@o=i Im g # iw/2) we may have a broadening in the mo-
corresponds to a quadratic well or barrier with a decayingnentum for small times due to a rotation in phase space and
force constant. A numerical solution can, of course, easily béhere is therefore a possibility for an overall broadening in
obtained but the purpose of the present treatment of rotanomentum.
tional excitation is obviously not to try to obtain exact results  Also for an aging quadratic barrier we may have either
but rather to isolate the essential physics of the problem. Tan overall narrowing or an overall broadening in the momen-
that end, it is interesting to note that an analytical solution taum distribution depending on the initial state. This again is
the equations of motion for the GHO states can be obtainedasily understood from the classical dynamics in this poten-
for a quadratic oscillator or barrier with an exponentially tial. The phase space structure consists of stable and unstable

where we have expanded the exponential arauad;(m),
we conclude that the parameters which characterize the rot
tional motion will depend on then quantum number. At a
gualitative level, we can easily anticipate what happens wit
out solving the classical equations of motion ferand ¢, .
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2F

Pt ; t=10
=2.0

80

FIG. 5. The classical trajectory on the decaying barrier, define@ syl ande =1, with the same initial conditions as in Fig. 4 together with snapshots of
the time evolved uncertainty ellipse for the same initial GHO state as in Fig. 4. Also here the asymptotic uncertainty in momentum for the lowest GHO state
is shown for the last ellipse.

manifolds(see e.g. Ref. 6which means that a Wigner dis- tum space or phase space—just by solving the well-known
tribution will contract in one directionalong the stable equations of motion for a Gaussian wave packet.

manifold and expand in anothdrlong the unstable mani- We have used these results to enhance the insight into
fold). Therefore, the uncertainty in momentum for an initial photodissociation dynamics, in particular, the rotational ex-
state with a largen, and 6, such that the contours of its citation of a fragment. We have tried to shed more light on
Wigner distribution has the major axis along the unstablahe theoretical foundation for a linearly forced oscillator
manifold will initially decrease. If the free particle dynamics model for rotational excitatidi* which successfully repro-
takes over before the elongation along the stable manifolduced the qualitative features of the rotational distribution of
has made the uncertainty in momentum larger than the initiaNO following photodissociation of NOCI in various bending
value, there is an overall narrowing in momentum. In thegtates. We have extended the model from a linearly forced
case we considered above withy=i Im ag implying that  ggcillator description to the domain of the full LHA, we have
the contour ellipses of the Wigner distribution have axesexpicitly considered the time evolution in the case of an
aligned with the coordinate axes, there is always an Overau:xponentially decaying force constant, and we have consid-

broadening in the momentum distribution. _ ered the effect of the interaction between rotational and
Using the analytical solutions to the aging oscillator andi.4nsiational motion.

the aging barrier we can illustrate the quantum dynamics of g4 the derived expressions we observe that within the
rotational excitation. Figure 4 illustrates the case of a bent {q |y the observations can be interpreted in terms of classical
linear transition whereas Fig. 5 corresponds to a transition ifyecnanics: in the sense that the parameters of the wave func-

a molecule which IS bent in .the electronic ground Stal&ions evolve according to classical mechanics. Thus, the cen-
whereas the electronically excited state does not SUPPOTt &1 ¢ the distribution rides on a classical trajectory. The

stable equilibrium angle. Thus, the outcome is in this Caseaispersion in momentum comes from the uncertainty in the

characterized by a fairly large average angular momentum %Rable molecule plus the extra dispersion due to the final state

well as a large uncertainty in this quantity. interaction, that is the spreading or contraction in momentum
which develops in nonlinear potentials. This effect is also
explained from classical mechanics.

We have elaborated on the dynamics of generalized har- The validity of the LHA breaks down as the wave packet
monic oscillator(GHO) states within the time-dependent lo- being propagated becomes more and more spatially ex-
cal harmonic approximatio(LHA). To that end we general- tended. Thus, the present analysis is most reliable winén
ized a number of results. We would, in particular, like tosmall, that ism = 0,1, or 2. If the LHA does not suffice the
point attention to the momentum space and phase space refiynamics detach itself from classical mechanics and the cor-
resentation of the wave packets. Any wave packet can beect interpretation cannot be directly founded on simple con-
propagated within the LHA—in coordinate space, momen-cepts of classical mechanics as in the present work.

IV. CONCLUSIONS
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