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‘‘Low-momentum electrons’’ and the electronic structure
of small molecules

Hartmut Schmider
Department of Chemistry, Chemical Physics, Technical University of Denmark, DTU-207,
DK-2800 Lyngby, Denmark

~Received 11 March 1996; accepted 20 May 1996!

The electronic Husimi distributionh(rW,pW ) is a ‘‘fuzzy’’ density in phase space. Sections through
this function with a zero momentum variable (pW 50), are shown to be indicative of the spatial
locations of chemical bonds and ‘‘free electron pairs’’ in molecules. The distributionh(rW;0) tends
to focus on the inter-nuclear regions in position space. The Laplacian¹ r

2h(rW;0), of thefunction
may be used to enhance its diffuse features. The argument is made that the momentum-space
Hessian of the Husimi function at the momentum-origin (pW 50), includes information about the
‘‘flexibility’’ of the electrons and the anisotropy of the latter. The diagonalization of this tensor
supplies a pictorial map of preferred directions of electrons in the low-momentum, i.e., ‘‘valence’’
region of momentum space. Examples studied in this paper include the H2, N2, CH4, H2O, C2H4 and
C6H6 systems in their Hartree–Fock approximation. ©1996 American Institute of Physics.
@S0021-9606~96!00133-X#

I. INTRODUCTION: THE HUSIMI FUNCTION

In recent years, the quasiclassical phase-space descrip-
tion of many-electron systems has gained increasing atten-
tion as a means of combining real-space and momentum-
space concepts for a more complete insight into atoms and
small molecules on a one-particle level.1–7 The motivation
for such a description is that it promises to make both local
and nonlocal information about an electronic system acces-
sible in form of the classical notions of position and mo-
menta. This information, contained in the~spin-traced!
single-particle reduced density matrix~in the following, ab-
breviated ODM for ‘‘one-particle density matrix’’! r(rW;rW8),
may not be obtained from analysis of the familiar charge
densities in position and momentum space alone, nor com-
bined.

The way to arrive at such a description is to transform
the ODM into a function of position and momentum, a re-
duced phase-space distribution. This transformation is not
unique, and as a consequence, many distributions may be
obtained and have been suggested.8 They have in common
that they may be used in combination with classical phase-
space functions to obtain quantum-mechanical expectation
values. The most well-understood of these distributions is
also the oldest one: the Wigner distributionW(rW,pW )9–13

W~rW,pW !5S 1p D 3E r~rW1sW;rW2sW !e22ipW •sWdsW. ~1!

Atomic units ~\51! are used throughout, and consequently,
factors of \ are omitted. Among the possible phase-space
representation, the Wigner function takes a special position,
not only because of the symmetry and simplicity of its defi-
nition, but also because it fulfills conditions10–13which favor
it before other alternatives.

Like most phase-space distributions that derive directly
from Fourier-transformation of the ODM, the Wigner func-
tion has the position and momentum densities as its margin-

als, i.e., integration over one space yields the density in the
other. However, orthogonality conditions10 force this func-
tion to exhibit regions of negativity, which makes the inter-
pretation as a probability distribution impossible. It may be
argued that this problem overcompensates the close analogy
to classical phase-space of the Wigner function, and that the
lack of intuitive understanding has somewhat hindered its
application as an interpretative tool in chemistry. It must be
pointed out that alternative transforms of the ODM are also
not positive everywhere, and that many of them are not even
real-valued by definition.

The fact that it is impossible to assign a clear probability
to points in phase-space, i.e., to definepositive definitedis-
tributions that assign a probability of finding a particle at
positionrW with momentumpW is, of course, a consequence of
the uncertainty principle of quantum mechanics. However,
there exist distributions that include this principle in their
definition, and consequently are positive everywhere. The
most popular of those is the Husimi functionh(rW,pW ),4,14–16

which gives the probability of finding a particle in a coherent
state~a so-calledstate of minimal uncertainty! centered at a
given point in phase space. Its definition is, alternatively, a
projection of the ODM onto a continuous basis of phase-
space wave packets, or a Gaussian convolution of the Wigner
distribution in both position and momentum space;

h~rW,pW !5S 1

2p D 3E z* ~rW,pW ;rW8!r~rW8;rW9!z~rW,pW ;rW9!drW8drW9

~2!

5S 1p D 3E e2s 2~rW82rW !2e2~pW 82pW !2/s 2

3W~rW8;pW 8!drW8dpW 8, ~3!

where the wave-packetz(rW,pW ;rW8) represents the coherent
state and is defined as
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z~rW,pW ;rW8!5S s 2

p D 3/4e2s 2~rW82rW !2/21 ipW •rW8, ~4!

ands 2 is a ‘‘shape-factor’’ that describes the degree of lo-
calization in position and momentum space. Ifs5`, the
Husimi function @properly renormalized with a factor of
(Aps)3# reduces to the charge density, whereass50 yields
@after renormalization with (Ap/s)3] the momentum
density.5

It may easily be verified4,15 that the uncertainties of
z(rW,pW ;rW8) in position- and momentum-space fulfill the
Heisenberg condition independently ofs 2, namely

Dr i5
1

A2s
and Dpi5

s

A2
, ~5!

and that thereforeDr iDpi51/2, wherei denotes any Carte-
sian component andr i andpi are conjugate coordinates. Set-
ting s 251 ~as will be done throughout this paper! corre-
sponds to a description, where position and momentum space
are treated on an equal footing in atomic units.

Several favorable properties of the Wigner function have
been given up in the Husimi distribution to achieve interpret-
ability as a density; among them the charge and momentum
densities as marginals, and the simple relationship to classi-
cal phase-space. The marginals of the Husimi function are
Gaussian convolutions of the densities,4,15 and expectation
values may be derived from the Husimi function by finding
the appropriate representation of the corresponding opera-
tors. This is equivalent to solving a deconvolution problem.17

The gain is thath(rW,pW )drWdpW may be termed the probability
of finding a particleapproximatelyat position rW with ap-
proximatelya momentum ofpW . The inherent ‘‘fuzziness’’
expressed in the term ‘‘approximate’’ is, however, clearly
defined by Eqs.~2!–~4!.

In recent years, the Husimi function was used repeatedly
as a tool for the understanding of the effect of the chemical
bond in molecular systems.5–7 It is our belief that it may be
used as a comparably simple concept for the unification of
the two main descriptions in quantum chemistry. As an ex-
ample for its applicability, we want to suggest the concept of
‘‘low-momentum electrons’’ in this paper.

II. ‘‘LOW-MOMENTUM ELECTRONS’’

Although the Husimi distribution may be interpreted
more intuitively than the Wigner function, it still is a six-
dimensional function, and as such does not easily lend itself
for display. A possibility for the study of the ‘‘shape’’ of this
function is the systematic investigation of itscritical points.
For this, thegradientof the Husimi function may be defined
in the following manner:

¹W h~rW,pW !5H ]h

]m J , ~6!

wherem denotes any component ofrW or pW . This is a six-
component vector, and a characterization ofh(rW,pW ) may be
achieved by searching for (rW,pW )-vector pairs, for which this

gradient vanishes (u¹W h(rW,pW )u50). A complete list of such
pairs, together with their classification in terms of eigenval-
ues and -vectors of its Hessian tensor~i.e., the 636-matrix of
its second derivatives! at those points includes the basic in-
formation about the topology of the distribution. Research
along those lines is currently being carried out.18

One of the findings from this type of study is that, for
many systems,all extremal points inh(rW,pW ) are situated at
the origin in momentum space, i.e., atpW 50. This is not sur-
prising, remembering the fact that the momentum densities
of small molecules exhibit only few critical points other than
the origin ~which has to be critical because of the inversion
symmetry of momentum distributions19,20!, and that these
features are of a rather diffuse nature.21–23 The convolution
with a Gaussian of the order of 1 a.u. width@which is the
momentum-space marginal ofh(rW,pW )# is likely to exhibit
only one central maximum at the origin with all other fea-
tures ‘‘washed out.’’ However, this finding lends a particular
importance to the momentum origin, an idea that was
brought forward previously by other authors.24

The value ofh(rW,0) focuses on those electrons that are
approximately at rest. Sections through this ‘‘low-
momentum electron density’’~LMD ! are therefore singling
out those contributions to the electron distribution that are
dominated by slow valence electrons. The typical distance of
those valence electrons from the nuclei in a molecule is of
the order of an Ångstro”m, i.e., characteristic for bond
lengths. These ‘‘bond-regions’’ are profoundly influenced by
formation or breaking of bonds, in other words, by the un-
derlying chemistry. It may be argued that the main energetic
impact of bond formation arises from a net decrease of the
potential energy, which is achieved by a contraction of the
charge density in the vicinity of the nuclei~for a detailed
discussion of the balance of effects, see Refs. 25 and 26!.
However, thisabsolutechange takes place in regions were
the charge density is very high and quite isotropic. The effect
is therefore not particularly characteristic of the system and
the changes it undergoes. On the other hand, it is usually
accompanied by a greatrelative and stronglyanisotropic
change in the valence region, which also influences the ki-
netic part of the energy balance, and is very characteristic for
the system specifics. It is therefore certainly chemically rel-
evant to study functions that depend mainly on slow elec-
trons. In the following, we will focus onh(rW,0) to substan-
tiate these conjectures.

III. SOME EXAMPLES

We have computed the LMD and related quantities for a
series of molecules from wave functions of self-consistent
field ~SCF! quality ~dynamic electron correlation is therefore
neglected!. In comparisons with results from the singles/
doubles configuration-interaction~SDCI! approximation, we
did not find qualitative changes. The basis sets employed
were of a ‘‘triple-zeta with valence polarization’’~TZP!
quality, and are standards included in the program
HONDO-8,27 with which all ab initio calculations were per-
formed. The bond lengths and angles are experimental data
from the literature~citations for the systems referred to: H2
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and N2,
28 H2O and CH4,

29 C2H4,
30 C6H6

31!. No great influ-
ence of small changes in the molecular geometry is expected.

The LMD h(rW,0) for the hydrogen molecule~bond
length of 1.40a0! does not exhibit any maxima at the site of
the nuclei, but rather a single one at the bond midpoint. It is
otherwise very featureless. Although theindependent atom
model ~IAM !, i.e., a simple superposition of atomic contri-
butions at the same inter-nuclear distance, exhibits this con-
centration as well,32 the effect is greatly enhanced in the
molecule, and as a result, the difference density~molecule -
IAM ! is positive between the nuclear centers, and negative
behind them. The total number of ‘‘electrons at rest’’ in-
creases on bond formation, and very distinctly so on the
bond~see Ref. 5, Fig. 5!. This effect is equivalent to the one
observed when comparing charge densities. The H2 example
was given previously by Anchell and Harriman,5 and the
effect expressed was called ‘‘forward redistribution’’: an in-
crease between the nuclei and a depletion behind them.

One might expect similar effects in other molecules, but
great caution is advised there. As was pointed out
previously,5 if a large contribution to the bond is owing to
‘‘ p-type’’ atomic functions on the bound centers, the com-
plete opposite may be observed for small values ofpW , and
thus for the LMD. A good example is N2, where a complete
‘‘reverse redistribution’’ occurs~see Ref. 5, Section VI.2.,
Fig. 13 for a detailed analysis!. It should also be kept in mind
that each ‘‘local momentum distribution’’ at any given point
rW is normalized to the value of a convolution of the charge
density at that point. As a result, the number-density of low-
momentum electrons is influenced by both the relative num-
ber of electron approximately at rest, and the absolute num-
ber of electrons to be found approximately at that point. To
separate one from the other, LMD would have to be divided
by *h(rW,pW )dpW , yielding the ‘‘percentage of electrons at
rest.’’

Our main interest, however, is the topology of thetotal
LMD h(rW,0). It appears that maxima in this function occur
between,rather thanat or nearconnected nuclei. This is the
case even for polyatomic molecules, and may be used to
‘‘locate’’ bonds. A rather striking example for this effect is
the methane molecule. Figure 1~a! shows the distribution in a
plane that passes through the carbon and two of the hydrogen
nuclei. The maxima occur on the bond axis 1.34a0 away
from C, whereas the bond length is 2.07a0 . Note that the
apparent maximum behind the carbon atom is really a saddle
point @of the ~3,21! type, to follow the notation of Bader33#,
connecting two bond-maxima out of plane. At the site of the
nucleus itself, the function has a local minimum.

The situation is not always as clear as this. If the central
atom is very electronegative, the bond maxima are less pro-
nounced and may degenerate to shoulders. An example for
this is found in the water molecule@Fig. 1~b!#, where only a
deformation of the LMD in the molecular plane indicates the
presence of the O–H bonds. The maximum of the distribu-
tion is located slightly behind the oxygen nucleus~0.10a0!,
and is rather flat.

The natural means of enhancing features of such diffuse

distributions is the computation of their Laplacian; for the
LMD we have

¹ r
2h~rW,0!5F]2h~rW,pW !

]x2
1

]2h~rW,pW !

]y2
1

]2h~rW,pW !

]z2 G
pW 50

.

~7!

Local concentrations of ‘‘low-momentum electrons’’ will be
visible in this distribution as negative areas. It must be
pointed out that the stronger features of the Laplacian~as
compared with the function itself! have a clear meaning; the
value of the Laplacian is proportional to the difference be-
tween the local value of the function, and the average value
in an infinitesimal surrounding.34 In that sense, the Laplacian
is a useful function to locate preferred areas in the distribu-
tion. It has been used in this capacity with great gain in the
analysis of charge densities~see Bader’s monograph33 for
many applications!.

FIG. 1. Total LMD h(rW,0) for the CH4 molecule at experimental bond
length~2.065a0! ~a! and for the H2O molecule at experimental bond length
~1.809a0! and angle~104.5°! ~b!. The central atom is at the origin of the
coordinate system. Thez-axes coincide with the molecularC2 axes, and the
depicted planes contain two hydrogen nuclei and the central atom. Contour
lines are from 531024 to 7.531023 in steps of 531024.

3629Hartmut Schmider: Electronic structure of small molecules

J. Chem. Phys., Vol. 105, No. 9, 1 September 1996

Downloaded¬04¬Dec¬2009¬to¬192.38.67.112.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp



For water~Fig. 2!, the Laplacian succeeds in making the
bonds visible as minima. There is an additional minimum
located behind the oxygen nucleus, which may be associated
with the ‘‘free electron pairs’’ on oxygen in water. That this
is so may be seen in the plane perpendicular to the molecular
one, passing through thec2 axis @Fig. 2~b!#. The negative
region extends half-moon shaped behind the nucleus, i.e., in
a region where conventional ‘‘valence-shell electron-pair re-
pulsion’’ ~VSEPR! arguments35 would place the free elec-
tron pairs. It is indeed remarkable how similar the regions
that we associate with bond and free electron pairs are to the
ones obtained with the aid of the so-called ‘‘electron local-
ization function’’ ~ELF! suggested by Becke and
Edgecombe.36 This lends further credibility to the conjecture
that chemically relevant information is expressed in LMD
and its Laplacian. The negativity regions in Fig. 2 are even
more strongly pronounced37 than the corresponding ones in
the Laplacian of conventional charge density~see, e.g., Ref.
33, p. 263, Fig. 7.5!. The feature in the center is a local

maximum, indicating the flatness of the maximum in the
LMD itself @Fig. 1~b!#. This is not very surprising if one
keeps in mind that in other comparable molecules~e.g., CH4!
one finds a local minimum of LMD in the vicinity of the
central atom.

The last example in this section is the benzene molecule
~Fig. 3!. Distinct maxima inh(rW,0) ~a! mark the C–C bonds,
albeit slightly outwards from the line connecting two adja-
cent carbon nuclei@Fig. 3~a!#. The C–H bonds are also
clearly expressed as maxima, 1.32a0 away from the carbon
atoms~the C–H bond length is 2.05a0!. The center of the
molecule is of course a~3,11! ring-critical point, i.e., a
maximum only with respect to displacement perpendicular to
the molecular plane. So are points in the close vicinity~0.08
a0 ring-outwards! of the carbon atoms. All critical points lie
in the plane. The Laplacian of the LMD exhibits strong
minima on the C–H bonds~not shown!, but the hydrogen
atoms are ‘‘invisible’’ in both functions, i.e., they cannot be

FIG. 2. Laplacian of the LMD¹ r
2h(rW,0) for the H2O molecule in the mo-

lecular plane~a! and perpendicular to it~b!. The hydrogen atoms in~b! lie
on the right-hand side. Contour lines are from2131022 to 0 in steps of
231023.

FIG. 3. ~a! Total LMD h(rW,0) for the C6H6 molecule at experimental bond-
lengths~C–C: 2.640a0 ; C–H: 2.048a0! in the molecular plane. Contour
lines are from 131023 to 731023 in steps of 131023. ~b! Laplacian of
LMD ¹ r

2h(rW,0) for the same molecule. The depicted plane is perpendicular
to the molecular one, and passes through a C–C bond. Contour lines are
from 2831023 to 231023 in steps of 231023.

3630 Hartmut Schmider: Electronic structure of small molecules

J. Chem. Phys., Vol. 105, No. 9, 1 September 1996

Downloaded¬04¬Dec¬2009¬to¬192.38.67.112.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp



associated directly with any separate extremal points.
The Laplacian may be used to more closely analyze the

shape of the maxima in the LMD that are associated with
each of the bonds. For this purpose a section through
¹ r
2h(rW,0) perpendicular to the molecular plane is displayed

in Fig. 3~b!. It passes through a C–C bond axis~i.e., off-
center!. In contrast to the ‘‘round’’ and very diffuse C–H
bond features, the negative region in¹ r

2h(rW,0) associated
with this C–C bond is oblong in shape, a feature not visible
in the LMD itself. This may be assigned to the partial
p-character of that bond in the aromatic system. It is also
observed in the shape of the Laplacian of the total charge
density of this molecule. The Laplacian features several
zero-value surfaces, which may be used to define a general
shape of the molecule, since they separate~negative! regions
where slow electrons accumulate, from regions that are de-
pleted of them. For the benzene molecule, the latter is of
course mainly the center of the ring and the vicinity of the
carbon nuclei. Note that the positive regions are outwardly
closed, since the Laplacian of any reasonable density has to
approach zero asymptotically from above.

IV. ANALYSIS OF THE SHAPE IN MOMENTUM SPACE

The LMD selects a single point in momentum space, the
origin, as representative. It has been pointed out by Kulkarni
et al.24 that this point is of particular importance for the
topological analysis of molecular momentum distributions,
particularly in the course of chemical reactions. However,
the included information is necessarily restricted, a fact that
may be seen as an advantage if only the ‘‘slow’’ valence
regions are of interest. It is of course also possible to choose
other momenta to gain more insight~see e.g., Ref. 5!, but
they would have to be chosen in each case separately.

Anchell and Harriman6 recently gave a convincing ex-
ample of how the total local momentum distribution, as de-
fined by means of the Husimi function, may be used to as-
sess the kinematic situation of electrons in specific regions of
position space. They did this by analyzing the anisotropy of
the Husimi kinetic-energy tensor. Since our study employs
only one point in momentum space, the tensor describing the
directional properties of our ‘‘resting electrons’’ has to be of
a differential, rather than an integral nature. The obvious
choice is the momentum HessianHp at pW 50;

Hp; i j5
]2h~rW,pW !

]pi]pj
U
pW 50

. ~8!

Associated with this tensor is its trace, the Laplacian of the
Husimi function in momentum space
[¹p

2h(rW,0)5Hp;xx1Hp;yy1Hp;zz]. Its equivalent for the to-
tal momentum densityp(pW ) was the subject of some recent
studies.22–24,38–40

The momentum-Laplacian¹p
2h(rW,0) gives a measure for

how strongly peaked a local momentum distribution is
around the momentum origin. It has been argued that a local
concentration of momentum signifies ‘‘flexibility’’ of the as-
sociated electrons,39 an interpretation that was used for a
conjecture concerning the conductivity in chemical systems.

One argument for this may be given in terms of a ‘‘free
particle at rest.’’ In the absence of an external field, it is
completely unrestrained, and its wave function is spread over
all position space. On the other hand, the momentum-space
analog is ad-function at pW 50, with an infinite ~negative!
Laplacian. If the particle is subjected to an external attractive
potential, its ‘‘mobility’’ decreases, it is more restricted and
simultaneously, its momentum distribution broadens due to
the uncertainty principle.41

As mentioned in Sec. III, the absolute value of the La-
placian is proportional to the difference between the local
value of the density at a point and the average in its infini-
tesimal neighborhood.34 For the momentum density of a
bound system, the Laplacian thereforedecreaseswith in-
creasing strength of the binding. For example, if the external
potential is harmonic~i.e.,V(rW) 5 kurWu2!, the Laplacian scales
with k25/4, whereas for a Coulomb field [V(rW)52Z/urWu], it
goes withZ25. In any case, the stronger the particle is re-
strained, the smaller will be the magnitude of the Laplacian
of the momentum density. This is true even if the value of
the momentum density itself should be accidently zero~such
as inp-states at the origin!.

Another, equivalent, way of linking the Laplacian at
pW 50 of a momentum distributionp(pW ) to the ‘‘mobility’’ of
the particles, is the realization that

¹2p~0!52~2p!23E B~sW !s2dsW,

i.e., that it may be written as thesecond momentof the cor-
respondingautocorrelation function B(sW). The latter is es-
sentially a self-overlap of the one-electron wave function in
position space, and therefore gives a measure for the
‘‘range’’ of the particle.42–44The weighting withs2 particu-
larly emphasizes large arguments, i.e., long-range effects.
This is another formulation of the well-know reciprocity be-
tween position and momentum representation: strongly
peaked~i.e., localized! distributions in one space correspond
to diffuse behavior, i.e., large range and slow asymptotic
decay in the other. However, a diffuse function in position
space would certainly be considered ‘‘softer’’ or ‘‘more flex-
ible’’ than a localized one.

Kulkarni et al.22–24 relate p(pW ) and its Laplacian at
pW 50 to bond polarities and consequently to the ‘‘ionic con-
tributions’’ to the wave function. They argue that a shift
towards higher momenta and a drop in the value at the origin
are a consequence of a ‘‘biased’’ charge distribution. Their
examples22 for covalently bonded symmetrical molecules
generally show the most negative eigenvalue of the momen-
tum Hessian at the origin associated with the main bond
direction. Exceptions occur only for rather polar systems,
and usually coincide with minima or saddle points at the
origin.

These are considerations that argueglobally on the basis
of total momentum distributions. Our concern here is to ap-
ply them locally, i.e., point wise in position space. This may
be done employing the Husimi functionh(rW,pW ). Since the
momentum HessianHp @Eq. ~8!# is a tensor property, one
may identify the direction of its main principal axis~i.e., the
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direction of the eigenvector with themost negativeeigen-
value! as the favorable one, or the direction of greatest mo-
bility. However, since Husimi distributions are known to be
very isotropic in momentum space,4–7 any study of anisotro-
pies depends on rather fine details. It is therefore favorable to
subtract the isotropic value as a reference. In the following,
we use a few small molecules to demonstrate how these con-
cepts may help in interpreting LMD’s further.

V. MOBILITY OF ‘‘LOW-MOMENTUM ELECTRONS’’:
MORE EXAMPLES

There are, of course, various ways to display the infor-
mation derived from the momentum-Hessian ofh(rW,pW ). The
method chosen here is to project the ‘‘main axis’’~in this
case the axis associated with the mostnegativeeigenvalue of
Hp! pointwise onto a chosen plane of the system, and to
choose its length proportionally to the anisotropy at that
point. The advantage of this approach is that information
about the ‘‘out-of-plane’’ components of the main axis are
taken into account as well, since only if the latter is normal
to the chosen plane, will its image reduce to zero. The dis-
advantage lies in the fact thatonly the main axis is consid-
ered. This may lead to discontinuities of the display around
symmetry axes of the molecule; here, the eigenvalues are
degenerate, and on either side of the symmetry element, dif-
ferent vectors~with different components in the displayed
plane! are the main axis. We chose this method, since it
seems to yield rather complete information, albeit at some
expense of clarity. The length of the vectors are chosen pro-
portional to theabsoluteanisotropy

Dl5ul12lavu5Ul12S (
i

l i DY3U5 1
3u2l12l22l3u,

~9!

where the indicesi of the eigenvaluesl are taken to be in
ascendingorder.

Only for a few very simple diatomic systems~see Fig. 4!
is the ‘‘shape’’ ofh(rW,pW ) around the origin of momentum
space directly compatible with thebond-directional principle
~BDP!40,45–47 or its local version derived from the Husimi
function.6 The BDP expects momentum distributions to be
elongated in directionsperpendicular to the one of the
chemical bond. Fig. 4~a! shows a map of ‘‘main mobility
vectors’’ ~MMV’s !, i.e., projections of the main axes of the
Hp tensor for the hydrogen molecule. Far away from the
nuclei, the vectors are always radial, both for atoms and mol-
ecules. They will also be quite small, since the anisotropy
decreases, of course, with distance from the nuclear frame
work. In the vicinity of the bond axis, however, the main
direction is parallel to the bond, indicating that the ‘‘low-
momentum electrons’’ in those regions are most ‘‘mobile’’
in bond direction.But only if the general shape of the local
momentum distribution is assumed to be similar for all mo-
menta, will this correspond to distributions that follow the
BDP. This is the case for H2 as the prototype of a simple
covalent bond. The contour lines in the figures show the

absolute size of the momentum-Laplacian¹p
2h(rW,0). As ex-

pected, the most negative region is on-axis between the nu-
clei.

For multiply bonded diatomics,p-contributions will al-
ter the picture somewhat by introducing perpendicular com-
ponents in the vicinity of and behind the nuclei. The example
of the N2 molecule demonstrates this quite clearly@Fig.
4~b!#. Only far away from the molecule is the main axis
oriented radially again. This finding, that the internuclear
region exhibits local momentum distributions that are elon-
gated perpendicularly to the bond, was demonstrated earlier6

on the examples of CO and N2. But again, the shape around
the momentum-space origin may often not been taken as an
indication of the anisotropy of the whole system. Note that in
the nitrogen molecule@Fig. 4~b!#, the bond midpoint is a
local maximum in¹p

2h(rW,0), indicating@in contrast to H2;
Fig. 4~a!# a lower flexibility between the nuclei as compared
to the regions behind them.

FIG. 4. ~a! Momentum-Laplacian of the Husimi function atpW 50 ~contour
lines! and the associated MMV’s in H2 ~experimental bond length 1.401a0!.
~b! Same for N2 ~experimental bond length 2.074a0!. Contour lines are
from 22.431022 to 2231023 in steps of 231023. The scale of the vectors
was chosen arbitrarily.
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Incompatibilities with kinetic-energy considerations
~e.g., Ref. 6! occur frequently for more complicated molecu-
lar structures. The latter focus on high momenta
~p2-weighting of the momentum density in the kinetic-
energy tensor!, whereas we single out themomentum origin.
For example, many hydrocarbons~e.g., Figs. 5 and 6! feature
a preference of the MMV’s of the ‘‘low-momentum elec-
trons’’ in directionsperpendicularto the C–H bonds. This
tendency holds directly on the bond-axes, and even more so
some distance away from it. Only rather close to~but still in
front of! the hydrogen nuclei, in the region where the Laplac-
ian ¹p

2h(rW,0) is minimal, does the parallel component win.
This behavior must be specific for ‘‘resting’’ or slow elec-
trons, since the total local momentum density is deformed in
a perpendicular direction,6 following the BDP. If the local
momentum distribution near the C–H bond-midpoint is ex-
amined in detail, one finds that indeed only for small mo-
menta a deformationin bond directionoccurs, whereas for

larger momenta, the BDP is observed. Apart from the sys-
tems shown, we found this phenomenon for methane, and
both the staggered and the eclipsed conformation of ethane.

For ethylene~Fig. 5!, there is a region in the arc between
each of the carbons and the attached hydrogen centers, in
which the MMV’s are perpendicular to the molecular plane.
Between the carbon centers, an anisotropy perpendicular to
the bond, but in-plane is observed@Fig. 5~a!#. The situation
perpendicular to the molecular plane is worth considering. In
Fig. 5~b!, a section through the mirror plane perpendicular to
the molecular one is displayed. The momentum-Laplacian
¹p
2h(rW,0) exhibits two rather shallow minima above and be-

low the molecule, which may be associated with the
p-system. Around the carbon nuclei, maxima in the Laplac-
ian are visible, and behind them~between the hydrogens! it
is again minimal. The MMV’s in thep-region are indeed
aligned parallel to the bond, a phenomenon that is in accord

FIG. 5. Momentum-Laplacian of the Husimi function atpW 50 ~contour
lines! and the associated MMV’s in C2H4. Bond lengths~experimental!
C–C: 2.530a0 and C–H: 2.052a0 ; angleH–C–H: 117.6°. Contour lines
are from 2231022 to 2431023 in steps of 231023. The scale of the
vectors was chosen arbitrarily. Molecular plane~a!, and plane perpendicular
to it ~b!. The projection of the H-nuclei onto the plane are marked as unla-
belled dots.

FIG. 6. Momentum-Laplacian of the Husimi function atpW 50 ~contour
lines! and the associated MMV’s in C6H6. Bond lengths see Fig. 3. Contour
lines are from2231022 to 2231023 in steps of 231023. The scale of the
vectors was chosen arbitrarily. Molecular plane~a! and plane parallel to the
molecular one, but shifted by 1a0 ~b!. The nuclear frame was plotted for
clarity, but lies below the depicted section.
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with chemical intuition, which would considerp-electrons
most ‘‘mobile’’ in that direction. The total picture is that of a
ring, passing perpendicularly through the nuclei and closing
above and below the plane. The similarity with the nitrogen
molecule @Fig. 4~b!# is obvious, but in the latter case, the
p-system is cylindrically arranged around the bond axis, and
the components perpendicular to this axis are overcome by
it, whereas for C2H4, only one direction shows this effect,
and the ‘‘low-momentum electrons’’ near the bond show a
‘‘main mobility’’ in-plane away from the bond.

In the benzene ring~Fig. 6!, the main axis ofHp in the
vicinity of the center, is perpendicular to the plane. This is no
strong effect, i.e., the local momentum density there is al-
most isotropic around the momentum-origin. As one moves
to the outside~but still in-plane!, the radial component wins
over, and the effect becomes stronger. It extends to infinity
in all directions. However, in the region around the carbon
nuclei, and partly extending into the C–H bonds, the pre-
ferred direction is perpendicular to the plane. This may be
caused by thep-type symmetry of the valence one-electron
functions on the carbon, and it is similar to the situation in
the ethylene molecule~Fig. 5!. No evidence of tangential
components in the MMV’s may be found in the molecular
plane. Even in the C–C bond regions, the preferred direction
is essentially radial. This is in contrast to intuitive expecta-
tions ~which would have slow electrons most mobile in bond
direction! and to the picture obtained in simple linear mol-
ecules. The topology of the momentum-Laplacian around
each C–H unit is equivalent to the one in ethylene~Fig. 5!.

There is only one area, in which the main-mobility di-
rection is tangential, and that is below and above the plane in
tori marking thep-system. This may be seen in Fig. 6~b!,
which shows the MMV-distribution and the momentum La-
placian in a plane parallel to the molecule, shifted by 1a0 .
Here, the familiar ‘‘ring-current’’ model of a benzene mol-
ecule, finds its expression. The effect, that thep-system of
aromatic systems is rather ‘‘conductive,’’ is physically ob-
servable through increased magnetic susceptibilities and
shifts in NMR. This has given rise to studies from the early
days of quantum chemistry,48,49 and up to recent times.50,51

The restriction of tangential anisotropies to regions above
and below the plane indicates that thes-system has indeed
no part in this phenomenon. Of course, caution is advised in
comparing effects that depend on the presence of a magnetic
field, by means of properties that depend only on the unper-
turbed ground-state wave function.

VI. CONCLUDING REMARKS

The picture of a molecule in terms of structure formulae,
which forms the basis of our chemical understanding, is to a
large degree a static one. That electrons in a chemical system
are in constant movement, does not enter it directly, and this
fact may be partly responsible for the preference that has
been given to theoretical models based on the charge-density
in position, rather than momentum space. Position and mo-
mentum densities are not equivalent, but complementary,
i.e., it is not possible to convert one into the other without

additional assumptions. Although in principle, either one of
them determines all groundstate properties~see the famous
Hohenberg–Kohn theorem52 and its momentum-space
equivalent by Henderson53!, the functional form of this rela-
tionship is unknown, and the arising questions form the sub-
ject of a whole branch of quantum chemistry, density-
functional theory~DFT!.

A good deal of the problems with the interpretation of
quantum chemical results arises from the fact that we cannot
simultaneously assign position and momenta. The Heisen-
berg principle undermines an exact phase-space picture of
molecular structure, and introduces ambiguities that may not
be resolved easily. The Husimi function offers a controlled
way of lowering our expectations on what we may find out
about the state of electrons in a molecule by building the
uncertainty relation that exits between their position and
their momentum, into the representation. This function is
still not unique, in that it is possible to focus on one space on
the expense of the other, but one easily may arrive at a ‘‘bal-
anced’’ description.

In this paper, we have attempted to single out the static
aspects of electronic structure by focusing on electrons that
are ‘‘approximately at rest.’’ It turns out that this admittedly
narrow focus recovers indeed basic elements of chemical
structure, namely the bonds. This is the result of a tendency
of these electrons to accumulate between nuclei that are co-
valently bonded to each other. It shares this feature with
descriptions on the basis of the one-particle density
matrix,54,55 from which it is derived. The description is cer-
tainly not complete: polar bonds are often not seen as
maxima in the associated distributionh(rW,0), but lead at
least to accumulative features which may be enhanced by
means of the Laplacian¹ r

2h(rW,0).
The usage of the latter is a standard tool of functional

analysis. It is suitable to detect regions which are preferred
by the distribution relative to neighboring ones. Its interpre-
tation as a local excess or a local concentration makes it a
rather powerful tool to visualize such entities as ‘‘free elec-
tron pairs’’ and ‘‘bond regions,’’ if it is applied to the LMD.
The resulting features are in some cases reminiscent to ear-
lier approaches36 which are based on completely different
concepts.

The analysis of the shape of a local momentum distribu-
tion in the close vicinity of the ‘‘point of rest,’’ i.e., the
origin of momentum space, is enabled by the Hessian tensor
Hp of the Husimi distribution at that point. A conjecture,
made first by MacDougall,39 that links the size of the mo-
mentum Laplacian¹p

2h(rW,0) to electron flexibility is used in
the interpretation of the anisotropies of the local momentum
density for very small momenta. Although in some simple
cases, familiar concepts such as the bond-directional prin-
ciple are reflected in the resulting ‘‘main mobility vectors’’
~MMV’s !, many features are specific to the very slow region
of momentum space and do not coincide with the intuitive
expectations. In some cases, however, interesting results are
obtained with this approach. We find distinct regions in un-
saturated hydrocarbons that may be associated with theirp
system; the preference for tangential mobility in ring-shaped
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regions above and below the molecular plane of aromatic
systems is another example.

We hope that the particular point of view that arises
from the study of these sections through the Husimi function
adds to a more ‘‘holistic’’ understanding of the one-particle
structure of molecules. The parallels between features of
phase-space descriptions such as the one employed here, and
rather diffuse concepts of basic chemical knowledge, support
the hope that many of those concepts can be linked to the
quantum mechanical description of chemistry. Such links, if
nothing else, contribute to a better understanding between
‘‘molecular physicists’’ and ‘‘straight chemists.’’
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