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Fronts between hexagons and squares in a generalized Swift-Hohenberg equation

C. Kubstrup® H. Herrero? and C. Peez-Garca®
ICenter for Chaos and Turbulence Studies, Physics Department, Technical University of Denmark, DK-2800 Lyngby, Denmark
’Departamento de Bica y Matemtca Aplicada, Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Navarra, Spain
(Received 3 February 1995; revised manuscript received 15 Septembgr 1995

Pinning effects in domain walls separating different orientations in patterns in nonequilibrium systems are
studied. Usually, theoretical studies consider perfect structures, but in experiments, point defects, grain bound-
aries, etc., always appear. The aim of this paper is to perform an analysis of the stability of fronts between
hexagons and squares in a generalized Swift-Hohenberg model equation. We focus the analysis on pinned
fronts between domains with different symmetries by using amplitude equations and by considering the
small-scale structure in the pattern. The conditions for pinning effects and stable fronts are determined. This
study is completed with direct simulations of the generalized Swift-Hohenberg equation. The results agree
qualitatively with recent observations in convection and in ferrofluid instabilif8$063-651X96)10707-§

PACS numbes): 47.27.Te, 47.54:r, 44.25+f

[. INTRODUCTION section we discuss a minimal GSHE model to obtain those
kinds of patterns. As analytical studies on the GSHE are
Pattern formation is quite common in fluids, lasers, andquite difficult, we proceed in several steps. We derive the
chemical reactions, where a huge amount of research work gmplitude equations for this GSHE model and we quote the
being done. Most efforts have been addressed to a univers&fability of the stationary solutions under spatially homoge-
understanding of these phenomena, where notable advand@@0us perturbations. With these amplitude equations, the
have been accomplishétl]. One of the topics that received Vvalue of the control parameter that leads to an immobile
attention is the dynamics of defects and of fronts in thesdPinned front between hexagons and squares can be ob-
nonequilibrium systems. Stationary fronts have been estai@ined. This parameter value must correspond to a solution in
lished in the transition between roll and hexagonal patterng'e hysteric region where both hexagons and squares are
in convection under non-Boussinesq conditions. The compestable, and its derivation is performed in Sec. Il. Using this
tition between hexagons and squares has been theoretical§ference value, we shall use the GSHE to show that the
analyzed2,3] and experimentally observéd] in interfacial ~ Pinning effect is possible for a whole interval of parameter
instabilities of ferrofluids under a vertical magnetic figk]. ~ values, due to the interplay between the small-scale structure
Just recently such a competition has also been observed #d the envelope fieléhonadiabatic effecis14]. An esti-
Beénard-Marangoni convectiofi6,7]. This competition can Mmation of this interval is given in Sec. IlI. _
lead to interesting features: defects, grain boundaries, hyster- Numerical simulations of the GSHE are presented in Sec.
etic effects, etc. In the present paper we will analyze thdV, thereby checking analytical results and evaluating the
stability conditions for fronts between square and hexagongfonstants for which calculations in previous sections only
structures. We will follow the outlines of Refk8, 9], where ~ give the order. We will bring phenomenological results that
this specific problem was only partially solved. support the grouping of the fronts in two different types.
In the vicinity of an instability threshold, a systematic Section V is dgvoted to a discussion of the results and to
procedure allows us to reduce the evolution equation to linPresent the main conclusions.
early unstable modegcenter manifold reduction Spatial
variations can also be included leading to generalized | GENERALIZED SWIFT-HOHENBERG EQUATION
Ginzburg-Landau equation&GLE’s) for the amplitude of
those mode§10,11). However, this formalism is limited toa ~ The Swift-Hohenberg equation was introduced to study
finite number of spatial Fourier modes, since each mode rePatterns of rolls in Rayleigh-Beard convectiorj12]. Beste-
quires an extra envelope equation. Swift and Hohenfizy  horn and co-worker$15—-17 have systematically general-
proposed a model equation for a rapidly varying scalar funcized this equation to include more general planforms. The
tion. This equation reflects, mainly, effects of a rotationally GSHE can be thought of as an approximation in real space to
invariant linear selection. It is possible to generalize this2n order-parameter equation that is possible to deduce from
model to include spatial derivatives in the nonlinearities thathe basic equations. A GSHE that allows haxagons and
can lead to square and hexagonal pattdti®. We shall ~squares to evolve, takes the fofti7,18,9:
refer to this generalized Swift-Hohenberg equation as GSHE.
This GSHE allows for numerical simulations that resemble ¢=[e— (1+A)?]¢— ay’— B+ SYA > — yipA? Y.
quite well the patterns found in several nonequilibrium sys- 1)
tems.
The main aim of this paper is to present theoretical results This is an equation for a real-order paramegér,t), a
on pinned fronts between patches of different symmetries iscalar variable proportional to the velocity and temperature
patterns where hexagonal and square cells coexist. In the firBelds in convection or to deviations of the interface with
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respect to the midplane in ferrofluida;is the Laplacian in
two dimensions. Here is the control parameter defined as a |41
distance to criticality. We simplify further this last equation
keeping only the essential terms: one which makes the hex- :

agonal symmetry possible and another responsible for the .-~~~ Hexagons
squares. Then we propose the following equation as a mini- / ‘

mal model:

Y=[e—(1+A0)2 g+ ay?— By — ypAZY2.  (2)

When a=y=0 we recover the Swift-Hohenberg equation
discussed in Ref.12]. From the linear stability analysis we
find thate=0(e) and we assume that=0(\/e). Usually the ,
following boundary condition$BC’s) are assumed,

U= 0dnp=0, 3 & 0 €s €h €

wheren is a unit vector normal to the sidewalls.

-

FIG. 1. Stability of the hexagons and squares, as a functien of

i i <es<
A. Stability analysis under spatially homogeneous Note the hysteretic region fafs=<s=<ep.

perturbations but we assume in the following that the system has an infi-

We now consider situations where the system developaite extent. In fact, these equations are #meplitude equa-
almost perfect patterns with a well-defined symmetry. Thetions of the GSHE, provided we identify the coefficients:
scalar variabley can be developed in terms of plane waves

that can lead to rolls, squares, or hexagons: a=2a, b=6B+20y, c=3p+16y,
6 _ d=6B+28y, e=6B+16y. (7)
P(xt) =2 [A(X;,Y;, T)eki*+c.c]+0(A?), (4)
=1 Now we are interested in the stability threshold for each
_ _ symmetry and not for a full stability analysis of that system.
V\r/]hererI=X:nj » Yj=X.7, and nli and 7; are multualg/ O Then we restrict the linear stability analysis to spatially ho-
t ogljona unkl)t v((ja_ctprs. .Aﬁ SS_ua,htvvo temp.)?(ra ﬁn Spalt'ahwogeneous perturbations around stationary solutiGHse
scales can be Istinguished in t. e system: for the enve Op&ability analysis for nonhomogeneous perturbations can also
function X andT are the slow variables, andt are the fast be performed20,21)). The results were obtained and dis-

variables for the underlying structurg19]. Ai(T), ¢ ssed in previous worke8,23). In summary, squares are
j=12,...,6 are themplitudes of the modes with wave g e i P kE8,23) ¥. 54

vectorsk;, j=1,2, ... ,6,corresponding to the directions of

the six principal mode§l]. These wave vectors are related 40%(9B+32y)

by ky+Ko+ks=0, ky+ks+ke=0, k;-k;+3=0, j=1,2,3, and B<0/\e> W:85>Oy ®

lk;|=k. . Here six orientations are included in order to allow

for two conjugated sets of hexagons and structures contairmd hexagons are stable if

ing both hexagons and squaisse Fig. 2 and further expla-

nations in the text After introducing this development into —a? 16a2(38+13y)

Eq. (2) one obtains a set of amplitude equations: Ec™ 158+ 56y e (3B+4y)? ~&h ©
g i 93

(We present these results in terms of parameters in the GSHE
for the sake of comparison with numerical simulations.
graphical scheme of the above results is given in Fig. 1.
Stability for hexagons requires a further condition, namely

A1:8A1+4 A1+a A2A3

X3 V2
—[b(|Ay|*+|Ag]?) + A+ d(|As|?+|Agl?)

that |(158+56v)/(188+72y)|<1. (We will show that this

2
elA"IAL, condition is fulfilled in our case, but generally this may not
P P22 be so) This extra condition is a result of including perturba-
A4:£A4+4 o —| Ajt+a AsAg tions perpendicular to the hexagonal modes.
Xy 2ke 9Yg So far we have only considered hexagonal and square

—[b(|As|*+|Ag|?) +c|Ag| >+ d(| Al 2 +]Agl?)

+ e|Al|2]A41

(5

patterns. From the form of the amplitude equations one can
deduce that the hexagonal pattern formed by a resonant triad
is independent of other interacting modg22]. (Mixed
modes as, for exampled,=A,#A; and A;=A;=Ag=0

the rest are obtained by cyclic permutations of the indicesare always unstable in a system displaying hexagdhsan
indices 1,2,3, and 4,5,6. The BC's, are

A=3,A=0,

(6)

furthermore be shown that the roll pattern never is stable in a
system permitting a stable square pattern. Further analysis
shows also that rectangular as well as rhombic patterns are
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impossible or always unstable; in other words, the amplitude
equations do not provide planforms for any more of the usual y
structures to be stable. ko

IIl. CONDITIONS FOR A FRONT k6

An important property of the amplitude equations is that ky
they are relaxational, i.e., they can be deduced from a 9
Lyapunov functionaF[A]:

6

F[A]=f dX dYJZl

d iazA

c
—alAj2+ 5 AT

ks ks

2 6
C
- |+ 3 anglarar
IABE:

FIG. 2. The six modes considered in the study shown with the
—a(A1AA3+ALASA), (10 angle 9 as mentioned in the text. 1,2,3 and 4,5,6 form resonant
triads and 1 and 4 are perpendicular.

where g;; are the coupling coefficients seen {6). The
minima of this functional correspond to the stationary states,
andA, is a solution of P y D,aj+ca;+ da; +a,az—as[aZ+g (a5+a3) +g,as

+9s(as+a3)]=0,

SF[A]
iIT T T o (11 " ’ _ 2 2, .2 2
A, Djay+cay+ da,+asag—asaz+9i1(as+ag) +g.a7
, 5 . 2 2\7_
where § is a Frehet derivative. For many values of the pa- +gs(azta3)]=0, (16)
rameter, the functional has several local minima, all corre- . ,
with the BC's

sponding to stable solutions. The comparison between the
energies of_the minima of[A] allpws for a prediction of lag|=|a,|=|as|=a,#0, a,—as=ag=0 for x=—c,
towards which state the systemlikely to evolve, but the

actual evolution depends on the initial conditions. lay|=|as|=a,#0, a;=0, j=2,356 forx=",

To make the algebra more tractable we will consider from (17)
now on primarily one spatial variable (assumed to be per-
pendicular to the frontand we average in thg coordinate. where
We rescale the amplitude equations in the usual Wafter

the averaging, aly-dependence can be taken as zero Di=cos'd, Dp=3(cosf—v3 sinf)?,
. 22 a D3=3(cos9+V3 sing)?, (18
A]:_aj, T,:_T, X,:_Xl D]:(kj))z(y
c c 2\c 2 D,=sir?g, Ds=1(V3 cosf+sing)?,
De= (V3 cosf—sinb)?, (19
b d e
91=5r 9275 G55 9=z (13 D; are in units ofk,=1, and@ is the angle betweek, and a

vector normal to the fronfsee Fig. 2 where the front is
Notice that now the control parameter ds Stationary solu- assumed to be vertigalThe stationary versions of EqEL6)
tions of hexagons, wherea,=[1+\1+45(1+29g;)]/ (c=0) can be considered as the equation of motion of a
[2(1+2g,)] and stationary squares=./&/(1+g,), have ~Mechanical system with a Lagrangian

the following stability intervals for the homogeneous pertur- 6
bations in this notatiofisee Eqs(8) and(9)]: L= Z %Dj(ai)z—v, (20)
j=1
5> 17092 f (14)
or squares,
(1-91+9,—-03)° q 6 Lo 1.4 9l 5

V:E (iaaj_zaj)__z 7aja| +a1a2a3+a4a5a6.
-1 gy +2 =1 JANAS @

<4< for hexagons, 15

a(1r2g) =" (g 12 gons, (19

An immobile front corresponds to a trajectory of the me-

with the extra conditiof(2g,+1)/(2g,+93)|<1. chanical system joining two local maxima of the effective

To study a mobile-front solution with constant velocity  potentialV, which corresponds to two different structures. A

we write a; as a;(§), é&=X'—cT'. The functionsa;(¢§) are  maximum of the effective potential corresponds to a mini-
then determined by the equations mum of L and of the Lyapunov function&[A]. This struc-
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: - ] J\ l 'w:[ea—(lw)z]wwz—g Yo yyAtyR (29
A front between hexagons and squares can be described as a

; . scalar field:
front front

4
FIG. 3. Fronts of types | and I, respectively. ‘/’:2‘/; le aJCOSkJ"X"'O(E)' (24)

ture can exist only if the values of the potentialin both ~ where the amplitudesa; are solutions of the rescaled
points are equal. The front moves to the “right” lif( — o) Ginzburg-Landau(GL) equation (16) when 6=0. In this
>L (), i.e., the structure with the lower value BfA] in-  case, we hav®,=1, D,=D3;=3%, D,=0, Ds=Dg=4%, and
vades the one with the larger value. For two given homogea,=a; The front does not move faf=5,>1.
neous stationary structures, there is a unique value of the Of course the last equation is not an exact solution of the
control parametep; that fulfils this condition. Usually this GSHE, even though the amplitudes were exact solutions of
value can be found only numericallg], but it can be given the GL equation$5). We are looking for a corrected solution
analytically in some particular cases considered in the fol{at lowest orderfor small|5— &, such that
lowing. _

Two extreme cases of possible orientation in the front can b=t ¥, (25)
be considered. A scheme of these two types of fronts is
shown in Fourier space in Fig. 3. These two fronts are the/€®
simplest to describe, but fronts with arbitrary angkesan 4
also be studied. Type | corresponds to fronts wéttlose to %:2\/;2 aj(\/z[x—g(et)])coslq-x, (26)
zero, and type |l to those witl# different from zero. The =1
calculations will only be performed for the type-I frot@ ~ ) . _ _ _
=0), since for the type-Il front the short-scale effects elimi- 2nd ¢ has its origin in nonadiabatic effects and in the small
nate the possibility of pinning. differences|s— 43y, i.e., y=0(e). o

An analytical solution can be found for<@y,—1<1, AImea_r per.turba_uve analy§|s around the solutigygives
small 5— 8, andg,—1, as well as setting;=2+g, in Egs. e following linearized equation fop:
(16). If =0, thenD,=D5, and there is a solution with ~ o~ ~ o~ 0
a,=agz and a5=a6=(2). In3this case, a front between the o1y = (1H8)"g+ 2ahoih= BYoih— y20A™ (o)
solutionsa,=as=az=0, a;#0, a,=a;#0 atx——o, and - o dé
a;=a,#0, a,=az=as=az=0 atx—o can stabilize if the - WA%:— ——(6—61)¥p— G, (27)
potential given in expressiof21] obeys|V(—w)—V(x)|

=0. This condition is fulfilled for the following value of the \yhereG contains the fast dependenceson cogk;-x) that

control parametes:. is the source of nonadiabaticity. Explicit calculation®fis
, , too cumbersome a task to be included here. We include an
0=(4/3g,+35)(9:—1) "~ (22 outline of this calculation in Appendix B.
The main result of the calculation that we get froB10)
(The detailed calculations are given in Appendiy A. is the following estimate of the interval aroul for which
the front between hexagons and squares is immobile:
A. Nonadiabatic pinning effects V3—1 3(g;—1) 1/2
The possibility of a stable front has been determined by |6 61|<C3ex;{— g 7 (29

amplitude equations in Sec. Il. We determined the value of

the control parameter to have such a front with a conditionvhere C; is a constant. This means that a front between
similar to the Maxwell construction in phase transitions. Butsquares and hexagons is observable for this full range of the
this value is not exact because it does not take into accoumpntrol parameter. It is important that, close to the critical
small-scale effects. When these effects are inclugethdX  value g;=1, e<g;—1<1, since in this case the fact &f

are no longer independent, giving rise to exponentially smalbeing small may be compensated gy—1. In the limit
(nonadiabatig effects. In Ref.[14] it has been shown that e=g;—1, the interval of pinning is1ot exponentially small
interaction of a mobile front with these small-scale structuresand the analysis is no longer valid, since the characteristic
can give rise to the pinning of the front with an adjusting width of the front is comparable with the period of the struc-
wave-number field in the pattern. In the case of hexagons viire at small scale. A more careful analysis is necessary to
rolls, it has furthermore been shown that if the front is almosfind an estimation in this caséSee Appendix A for details.

perpendicular to one of the wave vectérsof the hexagons, The above interval is obtained becauGéas parts inde-
a pinning is possible without requiring a change in the un{pendent ofy from a mode in(26) parallel with thex axis. In
derlying wave numbef8]. principle, one might think that equivalent calculations can be

The GSHE includes the two scales and is therefore a suifperformed for the type-Il front, but Malomeet al. in [8]
able model for a study of the full interval for pinning effects. proved that pinning effects are not possible under these con-
With the rescaled coefficients the GSHE reads as ditions. This argument can be generalized by imposing that a
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FIG. 4. A transient front a£t=0.0497 shown at the timeE;=20 000,T,=60 000, andT ;=70 000 correspondingly. One can see how
small-scale squares are formed in the roll-dominated front, eventually leading to destabilization of the front.

dependence og close to 0 inG is necessary for pinning. determine numerically the parameter range of stability of
The y dependence in our case takes the form lsing), both hexagons and squares, i.e., find the range in which we
where k.L#<1, i.e., that the pinning may be seen for may find pinning. This has been done by taking an initially
<(k.L) ™%, whereL is the system length in the direction.  imposed pattern of hexagons and determining the minimal
and maximal values of for which they are stable. Thereaf-
IV. NUMERICAL RESULTS ter, this range of parameter values has been studied with an

d imul h lution of th q initial pattern of squares. The result is;=0.045<¢
In order to simulate the evolution of the GSHE, we used a_ 13- | these simulations we obtain stable hexagonal

pseudospectral method and a semi-implicit time integr""tiorﬂ)attern at parameter values whétpgy| has the lower value
ﬁ(;tllimgelgna étﬁ%ﬁsdp(\);v?:hg”dér:rﬂné?:r f?,lgmg(;eos;éts for squares. It has earlier been argued that in this case the
b - squares would invade the hexagdd], but this is only true

v=0.24, andAt=1 [in units of Eg.(2)]. We have modeled a .
circular dish with an aspect ratib defined as the quotient for systems where both structures are pres@es; e.g., Fig.

between the diameteD) = 128DX=128x/4=327 and the 4). Furthermore,.it has been shown that in a range just below
depth of the boxd. In this case, we havi|=1, which leads the above-mentioned values, the hexagons are stgble, and
to a wavelength of\=2m/|k|=2a. Therefore, we havd’ directly above, the squares are stable. The transition is there-
=D/d=32. The BC’s used are those commented in Sec. Ifore hysteretio(see Fig. 1 as we previously found analyti-
(=0 and d,=0 on the sidewalls All two-dimensional cally.

(2D) plots are contour plots. Frof¥] we have setc=3, An important feature of a positive defined Lyapunov
which gives B=—0.28, a=0.072, b=3.12, d=5.04, and functional is that for a given solution of the system, it is an
e=2.16. With these values we gg{=b/c=1.04,9,=1.68, ever constant or decreasing function of time. This math-
andg;=0.72, which are values in good agreement with thoseématical result has an experimental interpretation as well. As

used in Sec. lll. Calculating @+1)/(29,+9s) we get is known from the literaturg25] the presence of defects
3.08/4.08<1, showing that we are dealing with the full sta- (which as earlier stated are unavoidable in our systeon-
bility interval of the hexagons. tributes by increasing the Lyapunov functional. The evolu-

In Sec. lll we used the Lyapunov functiora[ A] of the tion of the system will eliminate defects and thereby lower
amplitude equationg10). But the GSHE equatiofand the Lyapunov functional until a stationary state is reached.
BC'’s) also has a potentigLyapunov functional F[] of the ~ This means that the only stable solutions of the equation are
form local minima of the functional or metastable solutions, but

since we are working with a numerical approximation the
£ a B latter is not possible due to unavoidable perturbations. Fur-
F[lﬁ]:f dx dY{ 3 Yo 3 P+ 7 Y+ 3 [(A+D)y)? thermore, the sidewalls are known to be responsible for
wave-number selection mechanisms, etc.
Y 0io Due to sidewall effects, a front moves faster in a finite
+ 4 YATYS Y, (29) system than in an infinite one. In a moving front we get rolls
that are far from perpendicular to the sidewalls. These rolls,

a feature that can be used to address some general statemdR@ether with those on the other side of the boundaries, form
on possible solutions of the GSHE. squarelike structure$V,,=0 is a symmetric, reflective BC
This means that we have squarelike defects on the bound-

aries in a front moving from a structure of squares invading
a hexagonal region. As shown in REZ3] this type of defect

It is easily realized that the circular finite boundary musthelps to increase the velocity of the transition. The effect on
have an effect on the results obtained. The solutions arthe interval of pinning is very complicated. The boundaries
forced to contain defects because neither hexagons ndwelp stabilize the rolls of the front, thereby widening the
squares can fill a circle without defects. Our first aim is tointerval, but the presence of squarelike defects at the bound-

A. Coexisting solutions and sidewall effects
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FIG. 5. A pinned front fore=0.048 45(top) shown at the time3;=15, T,=10 000, andl ;=50 000 and fore=0.0495(bottom shown

at the timesT,=10, T,=20 000, andT;=100 000. Note the rolls in the front area and squarelike patterns near the boundaries in the
hexagonal region.

aries of the hexagonal regidisee Fig. % will most likely derlying rolls, and that this process slowly eliminates the
have the opposite effect. stability of the pinning.

We will search in Sec. IV B for solutions of the system In Fig. 6 we have initialized our system with the two
containing a front with zero velocity, i.e., a pinning effect types of fronts, | and I, in order to compare their stability.
[8]. Such a solution may appear when the two potentiaFrom the figures it is very clear that the type-Il front is not
minima have(almos} equal values. pinned, and is indeed rather unstable. This confirms the ana-

lytical conclusion that the front has to be close to perpen-
B. Pinning effects dicular to one of the modes in both structures in order to

In a previous section we showed that the pinning is posP0SSibly be pinned. _ _ _ _
sible for an interval ok. By using a low constant amplitude A Scheme of the interacting modes in a pinned front is
initial surface for the simulation of the GSHE we found pin- Presented in Fig. 3. For the type-I front one can easily de-
ning effects at least between 0.04845<0.0495. The whole duce that in the region of the front the disappearing mode of
interval may be larger, since we took only a few initial con- the squares is the parallel one. The perpendicular one exists
ditions, and the basin of attraction of the pinned front can bén both squares and hexagons and by looking at, e.g., Fig. 5
wider. If we compare the length of this interval fer=0.01  one realizes that it indeed also exists in the front. The same
in Eq. (28), we find thatC;=0.0017. This can be considered result has been obtained from the analytical calculations,
O(e). Pinned fronts of type | can be observed in Fig. 5, forwhere a front is obtained without changing the four interact-
the two border values of. The system has also been run ing modes[indeed, a mode may exist in the fro&+0)].
using a 256256 grid. In this case the fronts formed in a This is a roll mode, which under the conditions considered
different direction, but apart from this, they formed similarly here is unstable. In this there is no contradiction, and actually
to the ones shown. this is in good agreement with earlier results, where a roll

We would like to point out that at times it is necessary tosurvives in the typical defe¢penta-hepta paiiin a hexago-
watch out for very long transients. In Fig. 4 something simi-nal pattern23].
lar to a stable pinned front appears as far &60 000, but at For values ofe just outside the pinning interval, the ve-
T=70 000 the front is gone and the squares have invaded tHecity of the front(which we estimate as the velocity with
whole surface. From this we can infer that the small-scalevhich the domain of hexagons decreasesather large, in
structures slowly form squares in the area dominated by urthe sense that the transition is an abrupt one.
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FIG. 6. Fronts of type (top) and type ll(bottom at £=0.049 shown at the timeB,=1, T,=250, andT3=800, respectively. The type-I
front is clearly stable and rolls are forming in the front. In the lower evolution series the square pattern will slowly overtake the whole
surface.

V. CONCLUSIONS an interval of parameter values, and it has been shown that
these fronts consist of rolls, though such solutions are un-

In the present paper we have studied the competition b.eétable in our system. Proof of very long transients in systems

E/vehen bhexagonst. an?_h.square?_ |nha Senerahzed ?jw' close to pinning conditions have been shown as well.
ode?fergB’equg :\c/)ln. IS equa |ont' as ede? prfoposﬂe.das aAll these results are in qualitative agreement with recent
modet Tor baard-iarangoni convection and Tor 1errofiuics experimental observations by Nitschke and Thg&sand

under the influence of a vertical magnetic field. Using theSchatz[?] on Banard-Marangoni convection and by Wes-
model, we have derived amplitude equations and we hav

e ; freid [4] on interfacial instabilities in ferrofluids, where hexa-
performed a stability analysis under homogeneous perturbr;b-Ons and squares coexist for a full range of the control pa-

tions. A Lyapunov functional has been found for the amp“'rameter. Even though sidewall effects are crucial in

tude equations, and with it a potential was derived. Usmgexplaining the patterns observed in these experimgsits

this we calculated a value of the control parameter for which, " " tets do not prevent the obtaining of stable type-|

?ur Peﬁag:ion-squtare fr(t)nt is pinned.tA t_horough aTﬁlySiS O%ronts between squares and hexagons. Some work is planned

ronts between two structures containing more than on - -

mode (here three and twohas been reported. This analysis order to make a closer comparison with these results.

has been enhanced taking into account the nonadiabatic ef-

fects of the small scales. The pinning is possible in a whole

parameter interval, and we have provided a further criterion e penefited from discussions with M. Bestehorn, M.

necessary to see pinning: The fronts need to be perpendiculghatz, A. Thess, and M. Tribelsky. We acknowledge partial

to a fundamental mode of both competing patterns in ordefinancial support from DGICYT(Spanish Governmentin-

to be stable. der Grant No. PB93-0708. This project has been supported
The analytical study is in agreement with numerical simu-py the ERASMUS programs, ICP; 94-B-1028/13.

lations of GSHE. In this analysis, a Lyapunov functional for

the generalized Swift-Hohenberg equation has also been APPENDIX A

found, insuring the relaxational nature of a system with infi-

nite extent. This numerical study has demonstrated the great In this appendix we calculate analytically the value of the

influence of the sidewalls. Fronts have indeed been found igontrol parametep; to have a stable front. This can be per-
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formed with the following hypotheses: <@, —1<1, g,—

small, and by takinggs=3+g, in Egs. (16), #=0, then 13
D,=D4. We calculate a first integral of the system that will 6% 6

represent a constant energy, something necessary to obtain | \/MW\

pinned fronts:
=—%a12—%a2——af—5a§—§aﬁ V /\ /\ /\ /\ /\57\51
i
+ial+ial+iai+=— (2a2a1+a2)+%(aﬁai) \/ V \/ \/ \/ \/ \/ Lo

+ggaas—aa;. (A1)

6
JL
E=L-> a —
]'21 ! ﬁaj/

~ FIG. 7. Schematic behavior of the functié(f,é). This function
In order to represent the spatial dependendd 6fin a more ¢ has (vertica) translational dependence af) showing that we
adequate way we perform the following transformations: have stable solutions for a whole interval of values.

2r cosy 2y siny V(—o)—=V(»)=2saZ—3ai— 2g.ap+ai— sa+ 3al
(=, Ta=(3)" —,
v3(9:—1) 9:-1 308
r 2 =[56,— 55— —2(0:— 1)
a,= V2(cogx—3%), z=—=X',
9,-1 : V3(g;—1) , . . 1
A +2(01- 1] ——=7
(A2) 27(91—1)] (9—1)°
wherer=1+0(g;—1). (In the transformation ofa, we 1
have used the BC'sa,=0 atz——» anda,=a, at z—x.) —[%46,—-3-8g,] ———=0, (A6)
We introduce(A2) in (A1) and find that the extra amplitude (9:—-1)

introduced in the calculations in fact does not affect the o _ o
equation obtained if8] for y and corresponding BC's. For a Which clearly indicates that these assumptions are justified.
front between hexagons and squares we get:

dy 1-v3 cosy APPENDIX B
9z~ Six (4—3 cody) 2’ (A3) In this appendix we present detailed calculations to obtain
the range of the control parameter for which the pinning of a
x—cos Y(1n3) when z— —x, (A4) front is possible. Our starting point is the perturbation equa-
tion (27). The linear operator of the left-hand sidés) of
x—0 when z—w, this equation has a null eigenfunctiakiy/d¢, since iy is a

solution at leading order. Equati¢@7) has a solution if the
The solution of this differential equation can be written in anright-hand side(rhs) of the equation is orthogonal to this

implicit form (see Malomedkt al. [8]): eigenfunction(solvability condition:
v3—1 4+3coy+(4—3cody)? dé (91//0 I
272=——In 1+ cos = dx dy=(5-8) | o 52 dx dy
X dt 9 3
V3+1 I 4—3 cog¢+(4—3cody)Y? . o
4 : 1-cosy +j G(X,Y) — 7E dx dy,
— _ 1/2
3 413 —cosy+ (4—3 cogy) ) (B1)
V3 cosy—1
where
wherez, is a reference point. In the above calculations we
have used two assumptions without explanation, namely 4 n(&+X)
r=1+0(g;~1) and 6&=5,(g,—1) *=(4/30,+3)(g; G=2 Gn(x)co{ : (B2
—1)"2. We may check the validity of these assumpti@ns n=1 Ve

posteriori we introduce the values in expressifi#l| and
calculate |V(—»)—V(®)|. For 8=8=5(g;—1)"2 we We write some of the terms dB, to give an idea of its

should have pinning, i.e., we should obtaivV(—=)  shape, but it is too cumbersome an expression to be written
—V(=)|<1. An explicit calculation gives completely:
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) ) ) , day We average, once again, in thalirection in this expression,
G,=2a,6;+ a| (6a7+4a5+4az+4ay) ax (B3)  and every integral that has dependence is equal to zero.
Changing to slow variables in the amplitudes,
da, das day
+8a,8, 3 +8a183 Gy +8a1a o X=\Jex, &=1Je&, T=et, (B5)
+een (B4)  we get the equation
|
2 2 2 -1 4

dgl * dal da2 da4 @ n(§1+x)

d—T_| f_m IxX Ix Ix| 9% —(6—8,)C+ ngl _an(X)cosT dx|, (B6)
whereC takes the form

co 3(1+0,)[1+28+486g,+V1+48(1+2g,)]—48(1+29;)? E7)

2(1+29;)%(1+9,)

If we consider the analytical continuation &(X) for

complexX and denoted by, the singularity of this function
closest to the real axis, then applying the theorem of the

residues the latter of the integrals is

4
21 Cqexp(—n ImXs/\e)cogn( &, +ReXo)/ Ve].
(B8)

(This can be done because the contributioXofs the domi-
nating part of the integrdR4].) Equation(B6) can be written
as

4

dé;
7 ~Colo-80+ 2 G,
n ImX +ReX
xex;{ — *| comn & > (B9)
Ve Ve

The above equation is the equation of motion of a front in
the case of smalls—&,|. The fixed points of this equation
correspond to immobile fronts between hexagons an
squares. The fixed points @9) can now easily be shown to

have the following property:

ImXg

60— 06,|<C exp —
| l| [{ \/Z

(B10)

This property is easier to demonstrate with 1 only and the
equationé=a+b cog¢). For this equation we have

E=0=¢(=mm, melZ. (B11)

The minimal and maximal values of¢; are
Co(6—86)=Cy exp(—Ime/\/E), where both constants are
positive. To have pinning, the maxima have to be positive
and the minima negative. The above situation is given sche-
matically in Fig. 7, in which it can be seen that fé=4,,
there exist stable solutiorise., points wheré=0 andé<0),

a similar situation occurs in the general case4. We will
estimate the interval for the solution obtained in Appendix A
in the case €g;—1<1, g3=3+¢g, andg,—1 small.

The singularities ofB10) are also fory anddy/dz; since
the singularity ofdy/dz is such that 43 cog x(z,) =0, then
cosx(z)=+/4/3, and from the implicit solution fog (A5) we
deduce:
v3—1

Imzg=—+— .

" (B12)

hen the interval around; for which the front between
exagons and squares is immobile is given by
V3-1 (3(91—1)>1’2}

€

|6—81<C ex;{— g

., (B13

whereC is a constant.
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