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By placing several Sb-doped layers close to the surface of a GaAs molecular beam epitaxy—grown
crystal, we achieve a compensation of the Schottky barrier and obtain a good Ohmic contact
between arin situ deposited(without breaking the vacuumAl metallization layer and a highly
modulation dopedr{* ") conduction layer embedded below theloped layers in the GaAs crystal.
When cooled to below the critical temperaturel.2 K) of Al, superconductivity is induced in the
conductive layer of the semiconductor. We have studied the current volta§y® Characteristics in

a planar geometry where the Al has been removed in a thin stripe. We find a manifestation of the
superconducting energy gap and a rich fine structure at injection energies both below and above the
gap. © 1996 American Institute of PhysidsS0003-695(96)00231-§

The study of superconductor—semiconduct&~Sm  ¢= AD/27kgT, whereD= 23" is the diffusion constant
junctions is a field of increasing interest. For applications o, giffusion in three-dimensions.

the main effort has been invested in making a three-terminal  The above definitions of the important quantities draw

device, where the field effect in the semiconductor can bgne attention to the choice of materials. 11—V semiconduc-
used to contr_ol a supercurrent between the closely place@d,s have played a key role, with highly doped InAs as the
superconducting contactsA supercurrent can flow, if the preferred material due to its ability to form very low inter-
distance between the superconductors is comparable 10 thgee parriers with most metals deposited on the surface.
coherence lengtl in the semiconductor, and if the S—Sm -type InAs forms a two-dimension42D) electron gas in-
interfaces are highly transmissive. More fundamental aspec@ersion layer at the surface but, unfortunately, with a rather

dealing with the basic understanding of the induction of suyq,, mobility. More advanced materials such as InAs—AISb
perconductivity in mesoscopiphase-cohereptormal con- quantum wells were used by Nguyenal3 Here a planar
ductors have also gained increased intetésit a normal— structure with a 2D carrier density of roughly 20cm 2

superconductofN—S) interface the well known proximity 504 mopilities of the order of 10 #V s (corresponding to

effect can, thus, be explained ona microscopic_ level in termgnaan free paths of 1,8m) was successfully used to obtain

of the Andreev reflection, where an electron in the normals_gm_g structures exhibiting well pronounced supercurrent.
conductor can be transmitted as a Cooper pair into the supegjeinsasser et al® have employed backgatech-type
conductor if a hole is retroreflected along the time-reverseqino +GasAS grown onp-type InP substrates to produce
path of the electron. ) o three-terminal Josephson field effect transistor devices. In
~ The key parameter in the description of Andreev reflec,oih these works a clear excess current was observed, indi-
tions is the dimensionless parame®f which enters the catingZ factors around 1 or below. Another approach is the

expressior12 for the normal resistance of a N-S interdge ;50 of annealed Ti/Sn contacts to a GaAs/AlGaAs hetero-
=Ro(1+2%). Ry is the barrierless resistance, wher&as a gy cryre containing a 2D electron gas buried below the
measure of the effective interface barrier height. In a mOdegurface7

system with a &function barrier Z is given by Z
=\Zo+(1—r)%4r, where Zy=H/AvE" and r=vov P,
Here H is the strength of the>-function barrier ancv{™,

All the above works, however, rely on rather involved
processing procedures. To obtain a high interface transmis-
sivity and a long coherence length, one needs a high doping

sp i iti i . . Gy .
ve are the Fermi velocities in the normal metal and the Sujgyg| and a high carrier mobility in the semiconductor chan-
perconductor, respectively. The contributions 20 thus, | These two demands are not easily combined, and one

come from an interface energy barrier and a Fermi veloCityyten has to choose a suitable compromise. In this Letter we
mlsmat'ch between t,he two materials. The. lower Ihéne report a new and very simple method for making planar
higher is the probability for Andreev reflection processes al5_gm_g structures with very high contact transmissivities
the S—N or S—Sm interfaces. Another important quantity iS;nq reasonably long coherence lengths. From a technological
the coherence length in the normal metat degenerated qint of view GaAs is the most studied among the 1lI—V
semiconductar This length determines the length scale OVelmaterials, and many experimental groups have access to mo-

which electrons and Andreev reflected holes can mai”tai'ibcular beam epitaxyMBE) systems with Ga, As, Al, and Si
Gources.

their phase coherence. In the dirty limit where the electroni

mean free patt is much shorter than the coherence length, o, samples consisted of 200 nm GaAs grown in a MBE
chamber on an undoped GaAs substrate. The 200 nm were

E|ectronic mail: rjt@mips.fig.dtu.dk doped with Si to 4.410® cm 2 and capped with 5
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DC Bias Voltage (mV) FIG. 2. (a) The resistance nonlinearity is seen to vanish as the temperature

is raised to above 1.2 K, which is the critical temperature for the Al films.
We see that the zero bias anomaly is quickly quenched as the temperature is
FIG. 1. (a) The differential resistance and the excess current for one of ouincreased, while the fine structufthe subharmonic energy gap strucjuee
samples withs doping. At the sharp peaks in differential resistatatet+1.8 more robust. The crossover voltage at which the resistance changes from
mV), the excess current is quenched due to self-heatmdhe same quan-  Rg to Ry follows roughly the temperature dependence\/dt.—T. (b) The
tities measured on a sample witho@itdoping. We notice a much higher nonlinearity can also be quenched by applying a magnetic field. Here the
resistance level and a deficit current instead of an excess current. The difiormal region, where Al was removed, had the form of a meandering line as
ference in the noise level ifa) and (b) is due to slightly different experi-  shown in the inset of Fig. 3. The total length of the line was 100.
mental setups when used recording the two traces. In these plots the etched
stripe had the form of a straight line across the mesa. At the top of the figure

we show the corresponding cross sections of the samples. doped GaAs |ayer and the Al, would be 0.39. From our ex-
periments we deduced values in the range 0.7-0.9 for the

s-doped layers separated by 25 A of undoped GaAs. Each gtdoped samples. _

the 5-doped layers contained510'* cm~2 Si atoms. These The critical temperature for our Al films was about 1.2
layers were inserted to decrease the Schottky barrier at tH& and the electrical measurements were performed Ha
subsequent Sm-S interface formed as the structure was téfyostat with a base temperature of 0.3 K. In our experimen-
minated with 200 nm of pure Al, which was deposited aftert@l Sétup, we applied a dc voltage bias and superimposed a
the substrate temperature had fallen to about 3Qt6(re- small sinusoidal ac modulation, that allowed us to measure
vent the formation of AlAs at the interfageAs seen in Fig. the differential resistance and theV characteristics simul-

1, the insertion of thé-doped layers had a dramatic effect on taneously. The ac bias was kept sufficiently low to ensure
the interface resistance. The contact resistivity was lowerethat the measured ac voltage remained much lower than
by three orders of magnitude from about 10" Q m? to kgT/e. AboveT, thel -V characteristics were linear. Below
about 0.5¢1071° O m?. A 17 um wide mesa structure was ¢ the characteristics became nonlinear. At very high biases
etched in the Al and the doped GaAs layer, and Ti/Au bondthe differential resistance reached the normal resistance level
ing pads were deposited. Adm wide line was then etched Ry. An excess current relative to the normal state character-
in the Al across the mesa using conventional electron bear$tic was detected until a certain voltayg, where Joule
lithography with polymethylmethacrylate resist. The Al heating caused a breakdown of superconductivity in the
was wet-etched in §P0,:H,0 (1:2) at 50 °C for about 2 banks near the normal conductor. This breakdown resulted in
min. The two-terminal resistance was dominated by the oxan abrupt jump of the current from the excess current in the
ide barriers between the Al and the Ti/Au pads, whereas thguperconducting state to the normal state current. This jump
four-terminal resistance exclusively probed theuth long  gave rise to a sharp peak in the differential resistance. As
Al-GaAs—Al configuration. In order to make a systematicseen in Fig. {b), samples cut from a wafer withodtdoping
study of the electrical properties of the S—Sm-S interfacegxhibited a deficit current. Abové,, irregularities or meso-
the line across the 1Zm wide mesa was etched in meander scopic fingerprints were detected in the differential resistance
patterns of different total lengths as exemplified in the insebn top of a constant level equal to the normal state resistance
of Fig. 3. The mobility of the doped GaAs layer with the Al Ry. The peak heights at V. and the mesoscopic finger-
removed from the surface was 0.132/Ms and the carrier prints aboveV, and below—V, were not always fully sym-
density 4.75%10°* m™3. This gave a mean free path of metric. BelowV, the differential resistance dropped to an
roughly 50 nm and a 0.3 K coherence length of 250 nm. Theverall level lower tharRy . This lower resistance level we
lowest obtainable factor forH=0, i.e., assuming solely a denoteRs. V. is not the gap voltage &/e since it had
contribution from the Fermi velocity mismatch between thedifferent values for samples with different shape of the
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”.;:l 8r N:ZE:Z] Jeo RNEVapplll = 2|N_W + Ry, 3)
o l6 o d . . . .
g ’ 02 whereRg,= p,./dw is the resistance of the piece of semi-
51-4‘ 1% 2 conductor of lengthL between the superconducting banks,
Szl o 10 E while py is the normal state contact resistivity with dimen-
20| 03K “20°§ sion [Q m?]. Iy=Vpnd/psm iS the decay length fo¥/(x)
g B [ 77400 across each of the S—Sm interfaces away from the etched
S087 Ry=103(@) Y, e stripe. For samples cut from thizdoped wafet y was of the
0 o 00 < P order of 0.5um, while for solely modulation doped samples
DC Bias Voltage (uV) it was roughly 60um. In the superconducting state, the en-
ergy gap will, thus, appear at voltag¥g,,=2A/e+ Rgyl .
FIG. 3. Thel-V characteristic(thin solid ling for the same sample as In Fig. 3 we show thall/dV-V and|-V curves for a

shown in Fig. 2. The thick line is the differential conductance with indica- typical sample. In Fig. 3 we have indicated the pOSitiOI’lS of
tions of a subharmonic energy gap-structure. The dashed line indicates the -+ + .
|-V curve corresponding to the normal resistaRge The inset shows the —2Ae, *Ale, and > ZA_/Se' We interpret the obs_er_ved_

sample geometry, with a meandering line etched in the Al on top of theStructure as subharmonic energy gap structure originating
sample. from multiple Andreev scattering across the S—-Sm-S

junction®® This structure can persist evenTe=0 with un-

etched stripe. This is clearly seen by comparison of Figs. fitered amplitude. The value df is, however, subject to a
and 2. Superimposed oRs was a fine structure that was voltage dependence due to the self-heating effect. The dip at
symmetric around zero bias voltage. The precise shape G€re bias was not present in all our samples and is, presum-
this fine structure was sample dependent. Around zero gably, a precursor to a supercurrent, or the so-called zero bias
bias either a bare peak or a peak with a small dip inside ifXC€SS conductance observed by many workers.

was observed. As seen in Fig. 2, the fine structure below_ !N conclusion, we have demonstrated a new and very
V. disappeared gradually as the temperature or the magnetidMple technique to make S—Sm-S structures with high in-
field approached its critical value. The peak around zero biat€rface transmissivities. In our samples we have observed
is most strongly affected by the temperature and by magnetigigh bias excess current and subharmonic energy gap struc-
fields. The temperature dependence f is roughly — tUre. Finally, we have demonstrated how to interpret data
JT.—T, corresponding to an energy balance where the dist@ken in a planar geometry.
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