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Oscillators and Operational Amplifiers

Erik Lindberg, IEEE Lifemember ∗

Abstract — A generalized approach to the design of
oscillators using operational amplifiers as active ele-
ments. A piecewise-linear model of the amplifier is
used so that it make sense to investigate the eigen-
values of the Jacobian of the differential equations.
The characteristic equation of the general circuit is
derived. The dynamic nonlinear transfer characteristic
of the amplifier is investigated. Examples of negative
resistance oscillators are discussed.

1 INTRODUCTION

When you want to design an oscillator the
Barkhausen Criteria is normally used as a start-
ing point i.e. a linear circuit with poles on the
imaginary axis is designed [1, 2]. In order to start-
up oscillations some parameters are changed so that
the poles are in the right half of the complex fre-
quency plane. The linear circuit becomes unstable
and the signals will grow until infinity i.e. we must
introduce nonlinearity in order to limit the signal
amplitude.

• Oscillators are nonlinear circuits.

In the following an oscillator design procedure is de-
scribed. It is based on the idea of ”frozen eigenval-
ues” [3]. By means of piecewise linear modelling of
the nonlinearities the circuit is linear in time slots so
that it make sense to study the eigenvalues (poles)
of the Jacobian of the differential equations and
see whether the signals are increasing or decreas-
ing in amplitude in a certain time slot. If you ob-
serve that the poles are moving back and forth be-
tween the right half (RHP) and the left half (LHP)
of the complex frequency plane the mechanism be-
hind the behavior of an oscillator may be described
as an act of balance between the energy you gain
from the dc power supply when the poles are in
RHP and the energy you loose when the poles are
in LHP. The characteristic equation for a general
linear circuit with a perfect amplifier with a piece-
wise linear transfer characteristic is derived. The
dynamic transfer characteristic of a specific oper-
ational amplifier (op amp) RC4136 is studied by
means of PSpice analysis.
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2 THE CHARACTERISTIC EQUATION

Figure 1 shows the general circuit which is an
op amp with positive and negative feed-back. If
we introduce memory elements - capacitors, coils,
hysteresis - in the four admittances various types
of oscillators may be obtained. The nonlinearity
needed for oscillations may be introduced as non-
linear losses or hysteresis in connection with the
memory elements. If we introduce linear mem-
ory elements with no hysteresis a nonlinear transfer
characteristic of the amplifier must be introduced.
Let us assume that the amplifier is a perfect am-

Figure 1: An amplifier with positive and negative
feed-back, V (3) = A× V (1) − A× V (2)).

plifier with infinite input impedance, zero output
impedance and piecewise linear gain A. The gain is
very large for small signals and zero for large sig-
nals. Now a network-function may be calculated
e.g. the transfer function V (3)/V IN . The rela-
tion between the output voltage V (3) and the input
voltage V IN becomes:

V (3) ×
(

Y B

Y A+ Y B
− Y C

Y C +D
− 1

A

)
(1)

= V IN ×
(

Y D

Y C + Y D

)

If we observe that V (3) is different from zero when
V IN is zero then the coefficient of V (3) must be
zero i.e.(

Y B

Y A+ Y B
− Y C

Y C + Y D
− 1

A

)
= 0 (2)

Equation (2) is called the characteristic equa-
tion. The characteristic polynomial of the lin-
earized differential equations describing the circuit
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may be derived from this equation. For infinite gain
(A = ∞) the equation becomes:

(Y A× Y C) − (Y B × Y D) = 0 (3)

For zero gain (A = 0) the equation becomes:

(Y A + Y B) × (Y D + Y C) = 0 (4)

Table 1 is derived from the characteristic equation.
It shows that it is possible to place the frequency
determining circuit in any of the four admittances.
If one of the admittances of Fig. 1 is chosen as a

Case Gain: A = 0 A = ∞
A Y A +RB −RB ×RD/RC
B Y B +RA −RA×RC/RD
C Y C +RD −RD ×RB/RA
D Y D +RC −RC ×RA/RB

Table 1: The ”load” of an admittance ”YX” for
gain zero and gain ∞ when the other admittances
are conductors (GX = 1/RX).

simple capacitor C or a simple coil L and the other
three admittances are chosen as conductors (resis-
tors) multi-vibrator oscillators might be designed.
If one of the admittances of Fig. 1 is chosen as a sim-
ple LC parallel or series circuit and the other three
admittances are chosen as conductors (resistors)
negative resistance sinusoidal oscillators might be
designed.

Case: D A
RA 180Ω RLC
RB 180Ω 180kΩ
RC 180kΩ 180Ω
RD RLC 180Ω

Table 2: Resistor values for two cases D and A.
RLC is a two-terminal with a capacitor C = 1nF
in parallel with a coil L = 256mH with series resis-
tance RL = 14.8Ω.

3 NEGATIVE RESISTANCE OSCILLA-
TORS

In [4] a 10kHz negative resistance oscillator is de-
signed where Y D is chosen as a coil LD = 256mH
(with a series loss resistor RD = 14.8Ω) in parallel
with a capacitor CD = 1nF. The op amp RC4136 is
used. The components Y A, Y B and Y C are chosen
according to case D of Table 2.

Figure 2 case D shows the dynamic transfer func-
tion of the op amp. The gain A is varying almost

piecewise linear between zero and +2.3305 corre-
sponding to the poles:
− 2.801k±j × 62.44k (Q = +11.0, f = 9.94kHz)

and
+ 36.37k±j × 50.78k (Q = −0.86, f = 8.08kHz)

respectively in the complex frequency plane.
The quality factor Q of a pole specified above is

defined as

Q =
√

(α2 + ω2)/(−2 × α) (5)

It is a measure for the distance of the pole from the
imaginary axis. It is seen that Q becomes ∞ for
poles on the imaginary axis. Q is negative for poles
in the right-half-plane RHP and positive for poles
in the left-half-plane LHP. The real part of the pole
may be calculated from

α = ω/
√

4 ×Q2 − 1 (6)

or 2α = ω/Q for large Q.
Now the sign of the gain of the op amp is changed

Figure 2: Op amp dynamic transfer-characteristic
V (3) as function of input voltage V (1, 2) for the
two cases D and A.

corresponding to inverting the input terminals or
to interchange Y A, Y B and Y D, Y C. This corre-
sponds to case A of Table 2.

Figure 2 case A shows the dynamic transfer
function of the op amp. The gain A is varying
almost piecewise linear between zero, −12.7 and
−565 corresponding to the poles:
−2.801k±j × 62.44k (Q = +11, f = 9.94kHz),
+1.993k±j × 62.46k (Q = −16, f = 9.94kHz) and
+2.729k±j × 62.43k (Q = −11, f = 9.94kHz)

From Fig. 2 it is seen that both in case D and in
case A the poles follows the whole trajectory i.e. a
complex pole pair goes to the real axis and split up
into two real roots. One real root goes against zero
and the other real root goes to ∞. The two real
roots meet again and a complex pole pair leaves
the real axis and crosses the imaginary axis [4].
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In case D the fast transition from positive gain to
zero gain via infinite gain happens at large values
of the op amp input voltage V (1, 2). In case A the
fast transition from negative gain to zero gain via
infinite gain happens at small values of the op amp
input voltage V (1, 2).

Please note that it is not a jump when the real

Figure 3: Gain A = dV (3)/dV (1, 2) and op amp
inverting input V (2) as functions of time, ”positive
gain”, case D.

Figure 4: Gain A = dV (3)/dV (1, 2) and op amp
non-inverting input V (1) as functions of time, ”neg-
ative gain”, case A.

pole goes from +∞ to −∞. The Figures 3 and 4
show the gain as function of time for positive gain
and negative gain respectively.

An old rule says that if your oscillator do not
work then change the input terminals of the op
amp. Here is given an example where the oscillator
works for both positive and negative gain.

4 A DESIGN PROCEDURE

We want to study a negative resistance oscillator
where Y C is a RLC series circuit i.e. case C.

ZC = 1/Y C = sLc + Rc +
1
sCc

(7)

with Lc = 256mH, Rc = 14.8Ω and Cc = 1nF.

From equation (2) we get:

Y C +
(

1
RD

)
×
(

Num

Denom

)
= 0 (8)

where Num = RB −RA× (A− 1)
and Denom = RA+RB × (A+ 1)

The characteristic polynomial becomes:

s2 + 2 α s+ ω2
0 = 0 , (9)

where
2α = (10)(

1
Lc

)
×
(
Rc ×Num+RD ×Denom

(RB −RA× (A− 1))

)

and
ω2

0 =
1

Lc × Cc
(11)

α = 0 for

A =
(RA+RB) × (Rc +RD)
(Rc ×RA−RD ×RB)

(12)

Table 3 shows corresponding values of A and α.

A α
0 (Rc +RD)/(2 × Lc)
∞ (Rc ×RA−RB ×RD)/(2 × Lc ×RA)

Table 3: Corresponding values of A and α

The poles or the natural frequencies of the circuit
- the eigenvalues of the Jacobian of the differen-
tial equations - are the roots of the characteristic
polynomial.

p1,2 = −α ± j
√
ω2

0 − α2 = −α ± j ω (13)

In order to place the poles close to the imagi-
nary axis α must be much smaller than ω0. For
Q = −10 and ω = 1/

√
256m× 1n = 62.5k, from

equation (6) α becomes 3.128913589k. From Ta-
ble 3 (A = 0) the resistor RD is calculated as
RD = 2α × Lc − Rc = 1.587203758kΩ and from
Table 1: choose RA = RB = 190Ω. From equation
(12) the gain is calculated as A = −2.037649363
which is negative. This indicates that we have to
switch the input nodes of the op amp correspond-
ing to interchange Y A, Y B and Y D, Y C i.e. Y B
becomes a RLC series circuit and we have a case B
oscillator instead of a case C oscillator.

The complex pole pair on the imaginary axis
is found as: For A = +2.037649364, pole:
+0.70µ ± j × 62.5k, Q = −0.5e + 12 and
for A = +2.037649363, pole: −64n ± j × 62.5k,
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Figure 5: Op amp dynamic transfer-characteristic
V (3) as function of input voltage V (2, 1).

Figure 6: Gain A = dV (3)/dV (1, 2) as function
of time.

Figure 7: Gain A = dV (3)/dV (1, 2) as function
of time.

Poles Real Imaginary
Gain A α ±j ω Q
+1e+12 +3.071k 62.42k -10.0
+38.83 +2.767k 62.44k -11.0
+1e-12 -3.129k 62.42k +10.0
-1e-12 -3.129k 62.42k +10.0
-0.2136 -3.870k 62.38k +8.1
-8.64 +4.939k 62.30k -6.3
-12.26 +4.280k 62.35k -7.3
-360 +3.106k 62.42k -10.0
-1917 +3.078k 62.42k -10.0

-1e+12 +3.071k 62.42k -10.0

Table 4: The poles as function of the gain.

Q = +0.5e + 12. Figure 5 shows the op amp dy-
namic transfer-characteristic: V (3) as function of
input voltage V (2, 1). By zooming the character-
istic the gain A = d(V (3))/d(V (1, 2)) is found at
some places. The Figures 6 and 7 show the gain as
function of time. It is interesting to observe that
for rising values of V (3) the infinite gain point ∞ is
passed 4 times whereas for falling values of V (3) the
infinite gain point ∞ is passed only twice. Table 4
shows the poles for the selected values of the gain.
When the gain A is in the interval from −2.20865
to −1.81090 the poles are real. For A = −2 there
are no poles. The dc-gain is found to +38.83 which
corresponds to a complex pole-pair in the RHP.

Here the resistors RD and RC are chosen arbi-
trarily equal to 190Ω. If we choose RD = 1900Ω
and RC = 19Ω so that RD and RA = 1587Ω are
of the same size and so that RC is of the same size
as the resonance impedance of the series resonance
circuit Rb = 14.8Ω an investigation of the spectrum
by means of PSpice FFT indicates that the content
of higher harmonics disappear i.e. it seems that it
is possible to obtain a very clean sinusoidal signal
by means of an optimization of the dynamic trans-
fer characteristic. Also the impact of the choice of
Q should be further investigated.

The results depends on the power supply voltage
and the type of op amp. Besides RC4136 the op
amps LF411, LM324 and uA741 have been investi-
gated with similar results.

5 CONCLUSIONS

Insight in the mechanisms behind the behavior of
oscillators based on operational amplifiers is ob-
tained by means of the ”frozen eigenvalues” ap-
proach [3]. The dynamic transfer characteristic of
a specific operational amplifier (RC4136) is studied
in connection with negative resistance oscillators.
A design procedure is presented.
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