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ABSTRACT

Minimum symbol error rate detection in Single-Input Multi-
ple-Output(SIMO) channels with Markov noise is presented.
The special case of zero-mean Gauss-Markov noise is ex-
amined closer as it only requires knowledge of the second-
order moments. In this special case, it is shown that opti-
mal detection can be achieved by a Multiple-Input Multiple-
Output(MIMO) whitening filter followed by a traditional
BCJR algorithm. The Gauss-Markov noise model provides
a reasonable approximation for co-channel interference, ma-
king it an interesting single-user detector for many multi-
user communication systems where interference from other
transmitters has a limiting effect.

1. INTRODUCTION

Interference from other users is a limiting factor in many
real-life communication systems. The optimal solution is to
jointly detect the desired and interfering users, but this has
a complexity scaling exponentially with the number of in-
terferers. Approaching the optimal performance with lower
complexity is therefore of great interest and much work has
been done within this field of research.

The idea followed in this work is to only detect the de-
sired user and model the rest as noise. The solution to
this problem of single-user minimum symbol error rate de-
tection in channels with memory, today known simply as
the BCJR algorithm after its inventors, is derived in [1] for
memoryless noise. In [2] and [3], a Markov model of the
noise is assumed and the optimal symbol-by-symbol and
sequence detectors are derived, but only for Single-Input
Single-Output(SISO) channels.

However, optimal representation of communication sig-
nals may require multiple observations per symbol. This is
the case, if the signal has a bandwidth beyond the Nyquist
frequency giving rise to a cyclostationary signal after digi-
tal sampling [4]. Another example is, if multiple antennas
are available in the receiver. The resulting redundancy in
the signal should therefore be exploited to better reject the
interfering signal.
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The presented framework is easily extended to include
MIMO channels and/or multi-user detection by extending
the discrete state-space, but this is outside the scope of this
paper. Group detection of some streams/users and letting
the remaining be approximated as Markov noise is also an
option. Furthermore, the probabilistic nature of the detector
makes it a good match for iterative decoding and parameter
estimation schemes.

Section 2 presents the signal model and Section 3 de-
rives the optimal symbol-by-symbol detector for SIMO chan-
nels with memoryless noise in order to establish the for-
malism that Section 4 extends to Markov noise. Next, the
special case of SIMO channels with Gauss-Markov noise is
looked into in Section 5. Section 6 contains simulation re-
sults of the presented detector using a GSM physical layer
to highlight the benefit of the detector under the influence
of co-channel interference.

2. SIGNAL MODEL

The received signal is assumed to have Nd receive dimen-
sions and the received signal in the dth dimension is mod-
eled as

rd (t) =
∞∑

n=−∞
hd (t − nT ) sn + εd (t) (1)

with T being the symbol period and εd (t) being the
noise process of the dth receive dimension. The nth com-
plex symbol sn belongs to the constellation set Ω and the
number of constellation points is |Ω|. Further, it is assumed
that the constellation points have unit average power, i.e.
Ω = {+1,−1} for binary modulation leading to |Ω| = 2.
The overall time-invariant impulse response hd (τ) in the
dth receive dimension includes pulse shaping in the trans-
mitter, radio propagation channel and receive filtering. Fur-
thermore, it is assumed to be zero for τ < 0 and having
finite temporal length LT .

In the detector, the received signal is sampled once every
T for each dimension and the samples from all dimensions
at the nth symbol is then put into a stacked column vector
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notation as

r (nT ) = [r0 (nT ) , r1 (nT ) , ..., rNd−1 (nT )]T (2)

where (·)T indicates matrix transpose. Samples starting
from the n1’th symbol and ending at the n2’th symbols is
represented by

rn2
n1

= [r (n1T )T
, r ((n1 + 1) T )T

, . . . , r (n2T )T ]T (3)

Assuming sn = 0 for n < 0 and that Ns − L + 1
symbols have been transmitted, the available received signal
of length NsT is therefore rNs−1

0 .

3. OPTIMAL DETECTION IN SIMO CHANNELS
WITH MEMORYLESS NOISE

The optimal symbol-by-symbol detector chooses the sym-
bol having the highest posterior probability, that is

ŝn = arg max
sn

P
(
sn | rNs−1

0

)
(4)

As a result of the finite constellation size |Ω| and the
channel having a memory of L − 1 symbols, the task of
finding the posterior distribution may be formulated as an
inference problem on a Hidden Markov Model(HMM) with
|Ω|L−1 states. The state vector of the jth state at the nth

symbol determine the symbols interfering with the desired
user in rn

n assuming the jth combination of the interfering
symbols. The state vector is therefore defined as

σj
n = [ŝj

n−L+1, ŝ
j
n−L+2, ..., ŝ

j
n−1] (5)

with ŝj
n−1 being the value of the n − 1’th symbol in

the jth state. Further define Ω0 as the set of all states and
Ω(sn−1) as the set of states where ŝn−1 takes on a specific
value from Ω. This makes it possible to rewrite the posterior
probability as

P
(
sn−1 | rNs−1

0

)
=

P
(
sn−1, rNs−1

0

)
P

(
rNs−1
0

)

=

∑
σj

n∈Ω(sn−1)
P

(
rNs−1
0 ,σj

n

)
∑

σj
n∈Ω0

P
(
rNs−1
0 ,σj

n

)
(6)

The result of Equation (6) is, that the desired posterior

can be extracted from the joint probability P
(
rNs−1
0 ,σj

n

)
by marginalization. Finding the joint probability is done
by splitting it into a forward variable αj

n and a backward
variable βj

n as

P
(
rNs−1
0 ,σj

n

)
= P

(
rn−1
0 ,σj

n

)
P

(
rNs−1

n | rn−1
0 ,σj

n

)
= P

(
rn−1
0 ,σj

n

)︸ ︷︷ ︸
αj

n

P
(
rNs−1

n | σj
n

)︸ ︷︷ ︸
βj

n

(7)

The conditioning on rn−1
0 can be dropped as the state

vector contains all information about the past. However,
this is only true when the noise is memoryless as assumed
here.

To find the forward and backward variables, let the apri-

ori probability of a state transition be P
(
σj

n | σj′
n−1

)
and

the set of states where P
(
σj

n | σj′
n−1

)
�= 0 as Ωn. This

makes it possible to find the forward variable recursively as

αj
n = P

(
rn−1
0 ,σj

n

)
=

∑
σj′

n−1∈Ωn

P
(
rn−1
0 ,σj

n,σj′
n−1

)

=
∑

σj′
n−1∈Ωn

P
(
rn−2
0 ,σj′

n−1

)
︸ ︷︷ ︸

αj′
n−1

P
(
σj

n | σj′
n−1

)

P
(
rn−1

n−1 | σj
n,σj′

n−1

)
(8)

and the backward variable as

βj
n = P

(
rNs−1

n | σj
n

)
=

∑
σj′

n+1∈Ωn+1

P
(
rNs−1

n ,σj′
n+1 | σj

n

)

=
∑

σj′
n+1∈Ωn+1

P
(
rNs−1

n+1 | σj′
n+1

)
︸ ︷︷ ︸

βj′
n+1

P
(
σj′

n+1 | σj
n

)

P
(
rn

n | σj′
n+1,σ

j
n

)
(9)

In the special case where the noise εd (t) is zero-mean
Additive White Gaussian Noise(AWGN) with variance σ2

per dimension, the observation probability is conditionally
Gaussian and is given by

− 2ln
(
P

(
rn−1

n−1 | σj
n,σj′

n−1

))
+ Z

=
1
σ2

∥∥∥rn−1
n−1 − r̂n−1

n−1

(
h,σj

n,σj′
n−1

)∥∥∥2 (10)

with the normalization constant Z = Ndln
(
2πσ2

)
. The

function r̂n−1
n−1

(
h,σj

n,σj′
n−1

)
reconstructs the desired sig-

nal from the sampled impulse response h and the overall
state. In the case of AWGN, the complexity of the algo-

rithm is O
(
Nd |Ω|L

)
operations per symbol as O (Nd |Ω|)

operations must be performed in each of the |Ω|L−1 states.

4. OPTIMAL DETECTION IN SIMO CHANNELS
WITH MARKOV NOISE

The noise process εd (t) is now assumed to be Markov with
a finite temporal memory NmT and possibly coupled across



the receive dimensions. As before, it is desirable to model
the desired signal by a HMM, but now the noise is inde-
pendently modeled by a Markov model and the memory
needed to correctly capture the state of the system is now
L− 1 + Nm as the memories add up. The number of states
is now |Ω|L−1+Nm and the new state vector is therefore de-
fined as

σj
n = [ŝj

n−L−Nm+1, ŝ
j
n−L−Nm+2, ..., ŝ

j
n−1] (11)

As in Equation (7), the joint probability is found by
splitting it into a forward variable and backward variable
by

P
(
rNs−1
0 ,σj

n

)
= P

(
rn−1
0 ,σj

n

)
P

(
rNs−1

n | rn−1
0 ,σj

n

)
= P

(
rn−1
0 ,σj

n

)︸ ︷︷ ︸
αj

n

P
(
rNs−1

n | rn−1
n−Nm

,σj
n

)︸ ︷︷ ︸
βj

n

(12)

However, the conditioning on rn−1
0 can only be reduced

to rn−1
n−Nm

as a result of the finite memory Markov noise and
the fact that only the desired signal is described by σj

n.
As before the forward variable αj

n and the backward
variable βj

n may be found recursively. The forward variable
is found by

αj
n = P

(
rn−1
0 ,σj

n

)
=

∑
σj′

n−1∈Ωn

P
(
rn−1
0 ,σj

n,σj′
n−1

)

=
∑

σj′
n−1∈Ωn

P
(
rn−2
0 ,σj′

n−1

)
︸ ︷︷ ︸

αj′
n−1

P
(
σj

n | σj′
n−1

)

P
(
rn−1

n−1 | rn−2
n−1−Nm

,σj
n,σj′

n−1

)
(13)

and the backward variable by

βj
n = P

(
rNs−1

n | rn−1
n−Nm

,σj
n

)
=

∑
σj′

n+1∈Ωn+1

P
(
rNs−1

n ,σj′
n+1 | rn−1

n−Nm
,σj

n

)

=
∑

σj′
n+1∈Ωn+1

P
(
rNs−1

n+1 | rn
n+1−Nm

,σj′
n+1

)
︸ ︷︷ ︸

βj′
n+1

P
(
σj′

n+1 | σj
n

)
P

(
rn

n | rn−1
n−Nm

,σj′
n+1,σ

j
n

)
(14)

The observation probability is now conditioned on pre-
vious received samples and a convenient way of avoiding

this is by rewriting using Bayes’ rule as

P
(
rn−1

n−1 | rn−2
n−1−Nm

,σj
n,σj′

n−1

)

=
P

(
rn−1

n−1−Nm
| σj

n,σj′
n−1

)
P

(
rn−2

n−1−Nm
| σj

n,σj′
n−1

) (15)

which can be evaluated directly. The complexity of the

algorithm is O
(
|Ω|L+Nm

)
per symbol excluding the com-

plexity involved in evaluating Equation (15).

5. OPTIMAL DETECTION IN SIMO CHANNELS
WITH GAUSS-MARKOV NOISE

The special case where the noise is not only Markov, but
also zero-mean Gaussian is described in this section. This
model fits communication systems well and is interesting
as only the covariance matrix of the noise must be known in
order to evaluate Equation (15). Any Gauss-Markov process
having non-zero mean is also described by this section, as
it may be transformed into having zero-mean by subtracting
the mean.

Let the noise samples be stacked in the same manner in
εn2

n1
as in rn2

n1
for the received signal. To evaluate the top of

Equation (15), the covariance

Σ = E
[
εn

n−Nm

(
εn

n−Nm

)H
]

(16)

is required where (·)H indicates matrix transpose and
complex conjugation. The lower part requires the covari-
ance

Σ̆ = E
[
εn−1

n−Nm

(
εn−1

n−Nm

)H
]

(17)

However, the last covariance is included in the first as
can be seen by block partioning the first as

Σ =
[

Σ̆ B
BH A

]
(18)

Defining

W = Σ−1 −
[

Σ̆
−1

0
0 0

]
(19)

makes it possible to rewrite Equation (15) as

− 2ln


P

(
rn−1

n−1−Nm
| σj

n,σj′
n−1

)
P

(
rn−2

n−1−Nm
| σj

n,σj′
n−1

)

 + Z =

ε̂n−1
n−1−Nm

(
h,σj

n,σj′
n−1

)H

Wε̂n−1
n−1−Nm

(
h,σj

n,σj′
n−1

)
(20)



with the normalization constant being

Z = ln
∣∣∣A − BHΣ̆

−1
B

∣∣∣ + Ndln (2π) (21)

where |·| indicates the matrix determinant and the esti-
mated noise is defined as

ε̂n−1
n−1−Nm

(
h,σj

n,σj′
n−1

)
= rn−1

n−1−Nm
− r̂n−1

n−1−Nm

(
h,σj

n,σj′
n−1

) (22)

However, the rank of W is not full. It is shown in Sec-
tion 8 that rank (W) = Nd, thus making it possible to
express W as a sum of Nd vector outer products

W =
Nd−1∑
d=0

fdfH
d

= [f0, f1, . . . , fNd−1]︸ ︷︷ ︸
F

[f0, f1, . . . , fNd−1]
H︸ ︷︷ ︸

FH

(23)

Whitening of the noise process can therefore be achieved
by the MIMO whitening filter FH . The whitened received
signal and reconstructed signal are defined as

r̃n−1
n−1 = FHrn−1

n−1−Nm

˜̂rn−1
n−1

(
h,σj

n,σj′
n−1

)
= FH r̂n−1

n−1−Nm

(
h,σj

n,σj′
n−1

)
(24)

making it possible to rewrite Equation (20) as

− 2ln


P

(
rn−1

n−1−Nm
| σj

n,σj′
n−1

)
P

(
rn−2

n−1−Nm
| σj

n,σj′
n−1

)

 + Z

=
∥∥∥r̃n−1

n−1 − ˜̂rn−1
n−1

(
h,σj

n,σj′
n−1

)∥∥∥2

(25)

This is simply the AWGN version of the receiver as
the signal has now been whitened by FH , but the chan-
nel length is now L + Nm instead of L. The complex-
ity of the receiver using the whitening filter is therefore

O
(
Nd |Ω|L+Nm

)
operations per symbol excluding finding

and applying the whitening filter. As expected, the results
of [2] and [3] are recovered if Nd = 1 is inserted.

6. NUMERICAL SIMULATIONS

In this section, a number of simulations using a GSM phys-
ical layer is presented using the zero-mean Gauss-Markov
model to approximate Co-Channel Interference(CCI). All
interferers are fully synchonized in time with the desired
user. The used modulation is Gaussian Minimum Shift Key-
ing(GMSK) with BT = 0.3 in accordance with the GSM
specifications. However, as this modulation is non-linear, it

is linearized to fit the model of Equation (1) by the Laurent
approximation [5]. The channel model used for all simu-
lations is the Typical Urban(TU) model given by the GSM
specifications using a mobile speed of 50 km/h at a carrier
frequency of 945 MHz. All simulations are performed us-
ing perfect knowledge of the linearized impulse response
of the desired user and covariance matrix of the linearized
interference.

In the detector the received signal is oversampled by a
factor of Nsps relative to the symbolrate. There are several
reasons for having Nsps > 1 in a GSM receiver, one being
that the bandwidth of the signal exceeds the Nyquist fre-
quency. After sampling, the received signal is derotated to
remove the rotation in the GMSK modulation [5]. Next, the
received signal is split into a real and imaginary part as this
improves the rejection of interferers with real constellation
points, such as derotated GMSK, by exploiting redundancy
in the interfering signal [6]. The number of real-valued re-
ceive dimensions for the receiver is therefore Nd = 2Nsps.

As a measure of the level of interference, the Carrier-to-
Interference Ratio(CIR) is defined as the average received
power for the desired user divided by the average received
interference power. Further, AWGN is added to account
for any thermal noise with the Signal-to-Noise Ratio(SNR)
being defined as the average received signal power from the
desired user divided by the noise variance.

For comparison, the performance of IQ-LMMSE[6] and
BCJR detection without whitening is shown using perfect
parameter estimates. Like the Gauss-Markov approxima-
tion, the IQ-LMMSE relies on second-order moments to
suppress interference and therefore seems to be a reason-
able comparison.

In Figure 1 the Bit Error Rate(BER) of a GSM user is
plotted under the influence of one GMSK co-channel inter-
ferer. It can be seen that a gain can be achieved by increas-
ing the oversampling from Nsps = 1 to Nsps = 2 and that
the IQ-LMMSE is outperformed, especially at higher val-
ues of CIR. Higher values of Nsps are not included as only
marginal gains compared to Nsps = 2 are achievable for
this scenario. The value of L = 7 is selected in order to
capture all energy spread out in time by the channel model
and Nm = 3 was selected as higher values seem to provide
little improvement.

In Figure 2 another interferer is added with the second
interferer being 10dB weaker than the first. The perfor-
mance is clearly impacted by the additional interferer, but
a significant gain is still achieved over IQ-LMMSE and by
using Nsps = 2 compared to Nsps = 1.

7. CONCLUSION

Minimum symbol error rate detection in SIMO channels
with Markov noise has been derived as a generalization of
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Fig. 1. BER plot of 1 CCI on TU50 channels with L = 7,
Nm = 3, SNR = 40dB.

the work presented in [2]. In the special case of Gauss-
Markov noise, it has been shown that optimal detection can
be achieved by a MIMO whitening filter followed by a tradi-
tional BCJR algorithm. Numerical simulations have shown
that the presented detector can improve the performance
compared to the IQ-LMMSE and the detector in [2] when
multiple observations per symbol are available in interfe-
rence-limited scenarios.

8. PROOF OF RANK

In this section it is shown that rank (W) = Nd with W
defined by Equations (18)-(19). This is most easily done by
using the inversion lemma for block partitioned matrices to
yield

W = Σ−1 −
[

Σ̆
−1

0
0 0

]

=

[
B̃SB̃

H −B̃S

−SB̃
H

S

]
=

[
B̃
−I

]
S

[
B̃
−I

]H
(26)

with
B̃ = Σ̆

−1
B

S =
(
A − BHΣ̆

−1
B

)−1 (27)

where I indicates the identity matrix. As the Schur com-
plement S is positive definite, it may be Cholesky factorized
as S = CCH making it possible to rewrite Equation (26) as

W =
[

B̃
−I

]
C︸ ︷︷ ︸

F

CH

[
B̃
−I

]H

︸ ︷︷ ︸
FH

(28)
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The result in Equation (28) directly shows rank (W) =
Nd and thereby completes the proof.
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