
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Fields From Markov Chains

Justesen, Jørn

Published in:
I E E E Transactions on Information Theory

Link to article, DOI:
10.1109/TIT.2005.858988

Publication date:
2005

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Justesen, J. (2005). Fields From Markov Chains. I E E E Transactions on Information Theory, 51(12), 4358-
4362. DOI: 10.1109/TIT.2005.858988

http://dx.doi.org/10.1109/TIT.2005.858988
http://orbit.dtu.dk/en/publications/fields-from-markov-chains(e8d6fc38-d04e-47c4-bf73-e3255b9e7ee8).html


4358 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 12, DECEMBER 2005

where! is now changed to a complex, primitive p(K+1)th root of unity.
Two examples on rotated AM-PSK constellations are shown in Fig. 2.
With some straightforward adaptations of the proof of Theorem2, it can
be shown that the mapper � defined by (8) is rank-distance preserving
as well.

APPENDIX

Lemmas that are used in proving Theorem 2 are provided here for
reference.

Lemma 3 ([2]): Let H be an (m � n) matrix with components
drawn from a subfield of the complex numbers . If atH = 0t,
a 2 m, implies a = 0, then H has rank m even when considered as
a matrix over the complex numbers.

Lemma 4 ( [2]): Let p be a prime and let ! be a complex, primitive
pK th root of unity K � 1. Then

[!]=(1� !) �= p:

Lemma 5 ([2]): Let p be a prime and let ! be a complex, primitive
pK th root of unity; then

4s =
!

p a
� !

p b

! � 1
2 [!] (9)

where ak; bk 2 p. Moreover

4s � a0 	p b0 (mod 1� !) (10)

where 	p denotes subtraction in p.
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Fields From Markov Chains

Jørn Justesen, Member, IEEE

Abstract—A simple construction of two-dimensional (2-D) fields is pre-
sented. Rows and columns are outcomes of the same Markov chain. The
entropy can be calculated explicitly.

Index Terms—Markov chain, Markov random field, two-dimensional
(2-D) field.

I. INTRODUCTION

There are extremely few two-dimensional (2-D) discrete fields that
permit a simple analysis. In particular it is rarely possible to calculate
the entropy explicitly or to find probabilities of finite symbol configu-
rations. We present a simple construction that allows rows and columns
to be outcomes of the same Markov chain. Such fields may be useful
in constructing codes for two-dimensional storage, or they may serve
as models of images. One may think of these fields as crosswords in a
regular language [1], [2].

The most important class of 2-D fields that admits a detailed anal-
ysis is the Pickard fields [3], [4]. A discussion of Pickard fields and
other Markov random fields on finite rectangular lattices was given in
[5]. However, important questions about the application of these results
remain unanswered, and in particular the structure of fields with con-
straints on the symbol sequences was not considered in [5].

Constrained arrays are often considered as models of 2-D informa-
tion sources and as adaptations to the properties of recording media [1],
[6]. In Section II we give some definitions relating to constrained ar-
rays and discuss the relation to crosswords. In the rest of the paper it is
assumed that the constraints can be satisfied by requiring the rows and
columns of the array to follow the probability distribution of a Markov
chain. If a finite alphabet Markov chain is given, the construction de-
scribed in Section III can be applied directly.

II. CONSTRAINED TWO-DIMENSIONAL ARRAYS

We consider the set of N by L arrays, 	(N;L), where the entries,
b(r; s), are taken from a finite alphabet A = fa0; a1; . . . ; aJg. We
require that the arrays satisfy the following constraint: In any row or
column, any two consecutive symbols must belong to a set of admis-
sible pairs, 
. If the number of such arrays is j	(N;L)j, the combina-
torial entropy of the constraint is defined as

C = lim
N;L!1

log j	(N;L)j

NL
: (1)

Thus, C measures how the number of arrays increases with their size.
Shannon gave a well-known solution to the problem in one dimen-

sion [1]. For the given constraint, C may be found as the logarithm of
the maximal eigenvalue of the adjacency matrix indicating the permis-
sible transitions. Moreover, if the sequences are converted to a Markov
chain by using a suitable assignment of transition probabilities, the
maximal entropy of theMarkov chain equals the combinatorial entropy.
In two dimensions, the properties of fields are much more complex.
When a field consistent with an admissible subset can be constructed,
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the maximum entropy is attained by a Markov random field. However,
it is in general difficult to find the combinatorial entropy.

In [1] the authors discussed Shannon’s statement (published without
proof) of a relation between the entropy of a language and the possi-
bility of constructing crosswords. Crosswords may be seen as a partic-
ular instance of the above problem, however in the early days of infor-
mation theory, the concepts of formal languages and grammars were
not available. In [2] natural languages were modeled as Markov chains
(both on the word and the sentence level), and this approach was the
basis for assigning an entropy to languages.

The definition of a formal language does not involve probabilities, al-
though later probabilities may be assigned to the derivations. Similarly
other types of constrained finite alphabet systems are often initially de-
fined without a probability distribution. We discuss only the simplest
kind of formal languages, finite state or regular languages. In particular
we do not discuss languages that are designed to describe two-dimen-
sional structures. Instead we simplify the general regular languages to
follow the definition given above: A word may start and end with ar-
bitrary symbols, and the sequence of symbols has to agree with the set
of admissible pairs. We assume that any admissible string can be ex-
tended to an arbitrarily long word in the language. If we start from a
language generating finite length words, we can concatenate these by
considering the closure of the language, and if desired we can add a
space to separate words. However, we do not require that the limits of
the finite rectangle coincide with the beginning or end of such finite
words.

Example 1: For the alphabet fC;O;D;Eg, let the set of admissible
pairs be


 = f(CC); (CO); (CE); (OD)(OE); (DE); (EC); (ED)g:

Thus, DECODE is a word.

We do not assume that the language is symmetrical, and thus, it must
be specified that the description applies to the sequences of symbols
read left to right or top to bottom. The indexing of the array is chosen
to agree with the indexing of the Markov chain. However, it is im-
portant that the model is developed in order of increasing indices in
one dimension, but in the opposite order in the other dimension. Thus,
the description will be left-to-right but bottom-up. For symmetric lan-
guages we can use the common top-down ordering of the symbols. To
generate anN by L crossword, we first fill in the left column, and next
the bottom row starting with the left symbol. The following rows are
filled in one symbol at a time starting from the bottom and working left
to right.

Lemma 1: If all pairs (b(r; s�1); b(r; s)) and (b(r; s); b(r+1; s))
are in 
 for r > r0 and for r = r0 and s < s0, then there is at least one
possible choice for b(r0; s0).

Proof: (b(r0; s0�1); b(r0; s0)) and (b(r0; s0); b(r0+1; s0))must
be in 
. Since b(r0 + 1; s0 � 1) satisfies the same constraint, we can
always choose the same symbol for b(r0; s0).

Lemma 1 gives the reason for specifying the symbols in this slightly
unnatural order. If the array is generated left to right starting from
the top, b(r; s) is constrained to follow the symbols b(r; s � 1) and
b(r � 1; s). However, there may not be a symbol that satisfies both of
these conditions, and consequently some previous choices may have to
be changed.

For a particular choice of the last row, we can get a possible row
above by shifting all symbols to the right. In this way all rows and
columns become shifts of the same word.

Thus, any word of length N + L� 1 can be converted into a trivial
array, and the set of arrays is not empty.

Corollary 1: If the trivial arrays are the only solutions, the combi-
natorial entropy is zero, otherwise it is positive.

Example 1 (Continued): If an array were generated left to right and
from the top, we might end in a situation as

O E

D ?

which cannot be completed. On the other hand

D ?

E C

can be completed by E (and in this case it is the only possibility).

Lemma 2: The causal (symbol by symbol) generation of arrays gen-
erates all arrays that satisfy the given constraint.

Proof: The initial column and row include all admissible possi-
bilities. In the subsequent choices, a symbol is only excluded if it vio-
lates either the row or column constraint.

Example 1 (Continued): Starting with the left column and the
bottom row, we generate a 4 by 4 array:

C

O

D

E C C E

:

From 
 we get that b(3; 2) must be E. Since b(3; 3) follows E, it can
be C or D, but C cannot follow D. The symbol b(3; 4) follows a C ,
and could, thus, be C ,O, or E. But since it is followed byE, it cannot
be an E. Thus, the third row can be DECO or DECC . By similarly
filling in row 2 and 1 from left to right we may get

C E D E

O D E C

D E C O

E C C E

Corollary 2: A nontrivial crossword based on a regular language
exists if and only if there is at least one pair of symbols (au; av) such
that for b(r; s � 1) = au and b(r; s+ 1) = av , there are at least two
admissible values for b(r; s).

Thus, for languages with this simple structure (which may, however,
serve as a first approximation to natural languages), crosswords are
possible even in some cases where the entropy of the language is low.
Clearly Shannon’s assumption of “a rather chaotic and random nature”
is not satisfied.

III. THE PROBABILITY DISTRIBUTION

We assume that a regular, irreducible finite state Markov chainM is
given. Thus, the state at point (r; s) is a random variable B(r; s) with
value b(r; s) in the finite alphabetA. The stationary probability of state
j is Qj = P [b(r; s) = aj ], and the transition probability from state i
to state j is

qij = P [b(r; s+ 1) = aj jb(r; s) = ai ]

which is nonzero if and only if (ai; aj) 2 
. The transition matrix T
has entries qij . We describe a simple construction of a two-dimensional
field such that any row (from left to right) and any column (from top
to bottom) has the probability distribution of the chainM . We give the
probability distribution for a finite N by L rectangular segment with
indices 1 � r � N , 1 � s � L. The distribution is defined by a causal
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model in the sense that we give the conditional probability distribution
of symbol B(r0; s0) conditioned on all symbols below, r > r0, and to
the left, r = r0 and s < s0.

Initiallywe let the left column, s = 1, and the bottom row, r = N , be
specified by the chainM , i.e., the last symbol of the column,B(N; 1),
is used as the initial state for the row. We then specify the conditional
probability of the random variables in row r,B(r; s+1), given two of
the neighbors, B(r; s) and B(r + 1; s + 1). We prove that if the row
r+1 is the Markov chainM , then the new row also has the distribution
of M . Repeating this process the probability distribution of the entire
rectangle is specified. It follows from the symmetry of the construction
that the columns have the same probability distribution.

In order to describe the distribution of two successive rows we in-
troduce a new Markov chain with the pair [B(r; s); B(r+1; s)] as the
state. In this chain we require that the transition probabilities satisfy

P [B(r + 1; s+ 1) jB(r; s); B(r + 1; s) ]

= P [B(r + 1; s+ 1) jB(r + 1; s) ] : (2)

Thus, row r+1 can be extended independently of the past of row r,
and we choose the conditional probabilities to coincide with the tran-
sition probabilities of M

P [b(r + 1; s+ 1) = aujb(r + 1; s) = av] = qvu:

The definition of a symmetric Pickard field [3] similarly requires
B(r; s + 1) to be independent of B(r + 1; s), but in many cases
these conditions cannot be satisfied. In the more general definition [4],
[5], (2) is combined with a stationarity condition to give an indepen-
dence condition in the opposite direction: B(r; s � 1) is independent
of B(r + 1; s). We proceed in a more direct manner letting the condi-
tional probability of B(r; s + 1) be defined by

P [b(r; s+ 1) = aujb(r; s) = av ; b(r + 1; s) = ax

b(r + 1; s+ 1) = aw] =
qvuquw

t

qvtqtw
: (3)

This probability may be interpreted as the probability of a symbol
in the Markov chain M given the previous and the following symbol.
Thus, it does not depend directly onB(r+1; s) but onB(r+1; s+1).
It follows from Lemma 1 that there is at least one nonzero term in the
sum in the denominator of the right side of (3).

Example 1 (Continued): For the given set, 
, we can choose the
transition matrix as

T =

1=4 1=2 0 1=4

0 0 1=2 1=2

0 0 0 1

1=2 0 1=2 0

:

The stationary probabilities for the Markov chain are
(1=4;1=8; 1=4; 3=8). With these transition probabilities we
can calculate the probability of the initial row and column from
the first part of the example to be 1=512. In row 3, we found that
the symbols following D had to be EC , and thus, the conditional
probabilities are 1. For the last symbol we get from (3)

P [b(3; 4) = Ojb(3; 3) = C; b(4; 4) = E]

=
1=2 � 1=2

1=2 � 1=2 + 1=4 � 1=4
=

4

5
:

In row 2 the only possibility is ODEC , and in row 1, the conditional
probabilities of b(1; 2) = E and b(1; 3) = D are found from (2) as
1=3 and 4=5. The probability of the outcome of the array is the product
of these four factors, 1=2400.

Lemma 3: The stationary distribution of the two-row chain is

P [b(r; s+ 1) = au; b(r + 1; s+ 1) = aw] = Ququw:

Proof: Column 1 was chosen to have this distribution. Assuming
it is true for column s, we get from (2) and (3)

P [b(r; s+ 1) = au; b(r + 1; s+ 1) = aw]

=
v;x

Qvqvxqxw
qvuquw

t

qvtqtw
= Ququw:

Lemma 4: The transition probabilities of row r satisfy

P [b(r; s+ 1) = aujb(r; s) = av ] = qvu:

Proof: Similarly,

P [b(r; s+ 1) = aujb(r; s) = av]

=
x;w

qvxqxw
qvuquw

t

qvtqtw
= qvu:

We can now prove the following.

Theorem 1: If row r+1 is a Markov chain and the symbols in row
r have conditional probabilities given by (3), row r is the same Markov
chain.

Proof: In the two-row chain it follows from (2) that the proba-
bility distribution of row r + 1 is

P [B(r + 1; 1)]P [B(r + 1; 2)jB(r+ 1; 1)] . . .

P [B(r + 1; N)jB(r + 1; N � 1)]

in agreement with M . It follows from (3) and Lemmas 3 and 4
that the probability distribution of the triple (B(r; s); B(r; s + 1);
B(r + 1; s+ 1)) is that of three consecutive variables inM , and thus

P [B(r; s)jB(r; s+ 1); B(r + 1; s+ 1)] = P [B(r; s)jB(r; s+ 1)]:

Thus, row r can be extended to the left independently of row r + 1
to the right, and the transition probabilities are those of the Markov
chain M taken in the reverse order. Consequently row r has the same
distribution asM . Thus, when row r+1 and b(r; 1) are given, we can
use (3) to specify the distribution of row r and get another copy ofM .

The Markov property of the rows is a special case of the sufficient
condition presented by Shtarkov and the author in [6]: The two-row
Markov source provides a description of row r as a hidden stateMarkov
source with B(r + 1; s+ 1) as a hidden state variable. However, this
variable in fact depends on only the observed state B(r; s+1), not on
earlier symbols in row r.

Since the field is defined by the conditional probability given in (3),
and this value depends only on the symbols immediately below and to
the left, the causal model can also be interpreted as defining column
s + 1 conditioned on column s. Thus, the proof of Theorem 1 also
shows that column s + 1 is the Markov chain M .

A distribution on a finite array is said to be (locally) stationary [5] if
the probability of any subset of symbols is invariant to any translation
that keeps it entirely within the rectangle. Since the marginal distribu-
tion of any subset can be calculated fromM and repeated applications
of (3), we have

Corollary 3: The probability distribution is stationary.

It follows that the probability distribution defined here for a rectangle
of arbitrary size can be extended to a stationary measure of a Markov
random field in the entire first quadrant. Furthermore the field can be
extended to an arbitrarily large part of the rest of the plane by translating
the origin to a point in the third quadrant.
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IV. THE ENTROPY OF THE FIELD

Let the transition probabilities of the chain be qij . The two-step tran-
sition probabilities are found from T 2 as

q0

ik =
j

qijqjk:

Theorem 2: The entropy of the field is

R =
i

Qi

k

q0

ik

j

�qijqjk
q0

ik

log
qijqjk
q0

ik

: (4)

Proof: We consider a rectangular segment of the field and apply
the chain rule for the entropy. First the entropy of the left column and
the bottom row is found from the entropy of M , denoted R1, and the
entropy of a single symbol R0. Then the remaining symbols are taken
row by row. Let U(r0; s0) be the set of variables with indices r > r0

and r = r0, s < s0. Writing the entropy as the expected value of the
logarithm, it can then be expressed as

R0 + (N + L� 2)R1 �E

N�1

r=1

L

s=2

logP [B(r; s)jU (r; s)] :

For all terms in the sum, it follows from (3) and Lemma 4 that

EflogP [B(r; s)jU(r; s)]g
= EflogP [B(r; s)jB(r; s� 1); B(r + 1; s)]g
=

i

Qi

j

qij
k

qjk
qijqjk
q0ik

log
qijqjk
q0ik

=
i

Qi

k

q0ik
j

qijqjk
q0ik

log
qijqjk
q0ik

:

The conditional entropy of B(r; s + 1) is found from (3). The ex-
pected value thus, equalsR as given by (4), and the entropy of the field
becomes

lim
N;L!1

R0 + (N + L� 2)R1 + (N � 1)(L� 1)R

NL
= R:

Example 1 (Continued): The entropy is found from (4). The only
triples that give positive contributions to the entropy are CCC ,CEC ,
COD, CED, CCE, COE, ECE, and EDE. We get

R =
3

64
H

1

3
+

3

32
H

1

3
+

5

64
H

1

5
+

15

64
H

1

5

=
9

64
H

1

3
+

5

16
H

1

5
= 0:352:

Lemma 5: For a constrained array, R > 0 if and only if the combi-
natorial entropy is positive.

Proof: The first part follows from Lemma 2 and (3) since all per-
missible outcomes are assigned a positive probability. The second part
is obvious.

Lemma 6: The entropy of M is an upper bound on the entropy of
any 2-D field with rows and columns satisfying this distribution. If any
field reaches this bound, R has the same value.

Proof: Since the distribution of pairs B(r; s), B(r; s + 1) are
given byM , the entropy of the field cannot exceed the conditional en-
tropy of B(r + 1; s) given B(r; s), which is the entropy of M . How-
ever, for the field to reach this entropy,B(r; s+1) andB(r+1; s+1)
have to be independent given B(r; s). If we let the distribution of this
triple define a second order Markov chain, it must again have the same
entropy, since the entropy is at least that of the field and cannot exceed

the entropy ofM . The only possible structure is a chain with period 2,
and we provide an example.

Example 2: The concepts presented in this section can be illustrated
by considering the alphabet A = fC;D;Eg and the following con-
straints:

2.1: 
 = f(CD); (DC); (DE); (EC)g. The Markov chain can
have an entropy of 0.4, but only trivial arrays exist, and thus,
the entropy of the 2-D field is 0.

2.2: 
 = f(CD); (DC); (CE); (EC)g. Both the Markov chain
and the field have maximal entropy 0:5, since the chain alter-
nates between the symbolC and one of the other symbols. We
get the same result from Theorem 2.

2.3: 
 = f(CD); (DC); (CC)g. This is the well-known binary
“hard-square” field. The largest value of the entropy for the
2-D field is known with high precision as 0:5879 [7], but the
distribution has none of the simple properties described here.
With the probability distribution described in this correspon-
dence and P [D] = 0:222 we get R = 0:5831.

Lemma 5 and 6 and Example 2 indicate that the simple fields con-
structed here have a relatively high entropy, but that they reach the max-
imal values only in extreme cases. However, considering the other ap-
proximations involved in data compression or encoding, these fields
may provide a useful starting point.

Example 3: Consider an alphabet of at least five symbols, aj , 0 �
j � J , where a transition can occur only from state j to state j or
j � 1 modulo J + 1. (One may think of the 2-D field as an image
where the color changes only incrementally in each direction). In one
dimension the entropy is maximized by taking a symmetric probability
assignment. If the probability of staying in the same state is 1 � 2�
and the probability of changing in either direction is �, the entropy for
a one dimensional chain is clearly R1 = H(2�) + 2�. Assuming all
symbols equally likely, we find for the field q0ik = (1 � 2�)2 + 2�2

for k = i and 2�(1� 2�) for k = i� 1. From (4) we find the entropy

R = (1� 4�+ 6�2) H
2�2

1� 4�+ 6�2
+

2�2

1� 4�+ 6�2

+4�(1� 2�):

The largest value is exactly 1 bit for � = 1 � p
2=2. If we elimi-

nate the transitions between the extreme states (the field may model a
surface whose amplitude changes only in steps of at most 1), the en-
tropy in one dimension is reduced, but in two dimensions we can get
a slightly larger value. Thus, if only the allowed transitions are given,
the maximal entropy occurs for a nonunique asymmetric probability
assignment. A simple chain with near maximal entropy uses only three
states with

T =

1=3 2=3 0

1=4 1=2 1=4

0 2=3 1=3

:

From (4) we find the entropy as

R =
1

3
H

3

7
+

4

21
+

25

42
H

2

5
� 1:097:

V. MODIFICATIONS

In this section, we briefly describe how some more general fields,
which have been discussed in the literature, can be understood in terms
of the methods presented here.

If the independence condition (2) can be satisfied, the constraint on a
two by two square may still require that the transition probabilities (3)
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be modified to depend directly onB(r+1; s). The following example,
which was also presented in [7] illustrates such a case.

Example 4: Let the rows be a Markov chain with three symbols and
transition matrix

T =

1� 2p p p

p 1� 2p p

p p 1� 2p

:

We obtain a tiling of the plane with rectangles of three colors such that
no adjacent rectangles have the same color by imposing the constraint
that if three of the variables in a two by two square have the same color,
the fourth must have the same color. Thus, the conditional probabili-
ties (3) must be modified to satisfy this constraint, but we want to leave
the marginal distribution P [B(r; s); B(r; s+1); B(r+1; s+1)] un-
changed. For

P [b(r; s) = b(r + 1; s) = b(r + 1; s+ 1) = C]

b(r; s+ 1) has to be C , and the two triples have the same probability.
There is also no problem in the case of

P [b(r; s) = C; b(r; s+ 1) = D; b(r + 1; s+ 1) = C]

since the distribution is maintained by any choice of the transition prob-
ability, (0; 1�q; q) as long as the symmetry in the symbols is preserved.
However, the conditional probabilities

P [b(r; s+ 1) = Xjb(r; s) = C;

b(r + 1; s) = C; b(r + 1; s+ 1) = D]

P [b(r; s+ 1) = Xjb(r; s) = C;

b(r + 1; s) = D; b(r + 1; s+ 1) = E]

can be written as (0; 1 � q1; q1), and ((1 � q2)=2; q2; (1 � q2)=2),
where the parameters must satisfy

2q1(1� 2p) = p(1� q2):

Now the distribution of the sizes of the rectangles can be controlled by
a suitable choice of the parameters, and the entropy can be explicitly
calculated as

R = 2p2H(q) + 2p2(H(q2) + 1� q2) + 4p(1� 2p)H(q1):

If the constraint on diagonal elements prevents (2) from being satis-
fied, or if a distribution is desired where transition probabilities depend
on the other symbol in the diagonal, the state variables in the two-row
chain can be shifted to B(r + 1; s+ 1) and B(r; s). Each row is still
assumed to be the original chain M , but the state variables are two
consecutive symbols in a different Markov chain,M 0, which describes
the diagonal with increasing values of r and s. We could recover the
construction of the previous section by taking M 0 to have transition
matrix T = T 2, but it is also possible to choose a different process.
As discussed in [6], the condition for combining the two chains is that
the transition probabilities commute (in particular they must have the
same stationary distribution).

Example 5: In [8] this idea was used to increase the entropy of the
hard-square model compared to the value given in Example 2. With
the same notation as in the Example 2, P [D] = p and the additional
parameter P [b(r + 1; s + 1) = b(r; s) = D] = p2, let the transition
matrix of the diagonal process be

T =
1�2p+p

1�p

p�p

p

p�p

1�p

p

p

and we get the entropy

R =
(1� 2p+ p2)(1� 2p)

1� p
H

(p� p2)(1� p)

(1� 2p+ p2)(1� 2p)

+
(1� 2p+ p2)p

1� p
H

p2(1� p)

(1� 2p+ p2)p

which has maximal value R = 0:5873.

In information theory, Markov sources or functions of Markov
chains are often used to describe more complex constraints, such as
limits on runlengths, in sequences with small alphabets. If such a
constraint is imposed on the rows and columns of a 2-D field, the
result is usually a different set of transitions in the two directions.
Thus, the construction does not apply to such fields. On the other hand,
the increments of the field considered in Example 3 would provide a
ternary field with bounded sum variation as considered in [9].

VI. CONCLUSION

The construction presented here provides a natural link to the use
of Markov chains in information theory. It also suggests a simple en-
coding of information. The conditional probabilities can be chosen to
approximate the statistics of observed data, or they can be chosen to
achieve large, although usually not maximal, entropy for a set of con-
straints.
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