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Analyzing the Fundamental Properties of
Raman Amplification in Optical Fibers

Karsten Rottwitt and Jørn H. Povlsen

Invited Paper

Abstract—The Raman response of germanosilicate fibers is
presented. This includes not only the material dependence but
also the relation between the spatial-mode profile of the light and
the Raman response in the time and frequency domain. From
the Raman-gain spectrum, information is derived related to the
nonlinear refractive index due to nuclear motions and the Raman
response function in the time domain. It is demonstrated that the
Raman-gain coefficient may be reduced up to 60% if the signal
propagates in the fundamental mode while the pump alternates
between the fundamental mode and a higher order mode. A simple
model shows that the time response related to the decay of phonons
is significantly larger in germanate glass relative to silica glass.
From the Raman gain, it is found that the contribution to the
nonlinear refractive index from nuclear motions is reduced by a
factor of 2 in germanate relative to silica glass.

I. INTRODUCTION

RAMAN scattering is intrinsic to silica glass. This means
that Raman amplification of an optical signal is achiev-

able in any silica-based optical fiber when the signal light
propagates simultaneously with a light beam, referred to as the
pump beam, at a wavelength matched to the so-called Stokes
shift. This Stokes shift is characteristic to the material through
which the beams propagate. In silica glass, the Stokes shift is
a broad distribution but with the strongest peak at 13 THz [1].
This corresponds to 100 nm when the pump is around 1450 nm,
resulting in the strongest peak in the Raman amplification when
the signal is located at wavelengths around 1550 nm.

Raman amplification has proven to be an enabling tech-
nology for implementation of high-capacity optical commu-
nication systems. This is mainly because Raman gain may be
provided throughout the entire transmission fiber, ensuring that
the signal-to-noise ratio is improved when compared to discrete
amplification. In addition to this ability to provide distributed
amplification, Raman amplification also offers the possibility to
provide gain at any wavelength simply by matching the signal
and pump wavelengths to the Stokes shift. Furthermore, the
bandwidth of a Raman amplifier may be extended by combining
multiple pump wavelengths.
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In the late 1980s, Raman amplification was perceived as the
way to overcome attenuation in optical fibers, and research on
long haul transmission was carried out, demonstrating transmis-
sion through several thousand of kilometers of optical fibers
using distributed Raman amplification [2]. However, with the
commercialization of erbium-doped fiber amplifiers (EDFAs)
through the early 1990s, work on distributed Raman amplifiers
was abandoned because of its poor pump-power efficiency
when compared to EDFAs. In the mid-1990s, high-power pump
lasers became available, and in the years after, several system
experiments demonstrated the benefits of distributed Raman
amplification including repeaterless undersea experiments [3],
high-capacity terrestrial [4], [5] and submarine systems trans-
mission experiments [6], shorter span single-channel systems
including 320 Gb/s pseudolinear transmission [7], and soliton
systems [8], [9].

The capability to improve the noise performance by us-
ing distributed amplification was demonstrated in distributed
erbium-doped amplifiers in the early 1990s [10], [11], and
more recently, using distributed Raman amplification. In both
schemes, the transmission fiber is, in itself, turned into an
amplifier. This is a strong benefit, but at the same time, it
becomes more challenging to optimize the fiber design with
respect to amplifier performance since the fiber also has to be
optimized for signal transmission, i.e., with constraints to, for
example, the group-velocity dispersion and the nonlinearities at
the signal wavelengths.

When evaluating the performance of a distributed amplifier,
not only linear noise accumulation and pulse distortion due
to group velocity dispersion need to be considered, but also
effects due to Rayleigh scattering, nonlinear interactions be-
tween pump and signal channels, and pump–signal crosstalk are
essential. These noise sources become relevant because gain is
accumulated over tens of kilometers in distributed amplifiers,
and because the Raman process has a very fast response time
in the order of femtoseconds [11]. As a consequence of the
pump–signal crosstalk, Raman amplifiers are typically config-
ured with the pump propagating in the opposite direction as the
signal. This ensures averaging of pump fluctuation during the
amplification process. However, the forward-pumped amplifier
configuration, where pump and signal propagate in the same di-
rection, offers an improved linear noise performance compared
to the backward-pumped amplifier. Thus, the desire to imple-
ment forward pumping has led to the development of alterna-
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tive pumping configurations of distributed Raman amplifiers,
including second-order or cascaded pumping and quiet pumps.
A detailed review of Raman amplifiers and their design is found
in [12]. A large effort has also been published related to mod-
eling of Raman amplifiers assuming that both pump and signal
are continuous waves [13].

In recent systems, work there has been a push towards ultra-
high bit rates in a single channel, for example, in 320 Gb/s [7].
In these systems, the pulse duration becomes short enough
that the material response needs to be described by more than
just the Raman-gain coefficient. This is also valid in supercon-
tinuum generation in optical fibers, typically with a modified
group-velocity-dispersion profile [14]. In addition, optimized
ultrahigh-capacity systems also require the use of so-called
engineered spans, where the fiber design is pushed toward its
limits to minimize nonlinear penalties, while at the same time
ensuring optimum dispersion compensation [15]. These efforts
has motivated this work. Here, we review fundamental relations
between the fiber design, and its impact on the Raman response
and the intensity-dependent refractive index.

In Section II of this work, we review fundamental aspects of
the Raman response in fibers, in the frequency as well as in the
time domain. This is related to predictions of the Raman gain,
i.e., the imaginary part of the frequency response of the Raman
gain, Section III. In Section IV, we evaluate the Raman re-
sponse in different fibers based on the basic materials being the
main constituents of fibers. In Section IV-A, the prediction of
Raman-gain coefficients in different fiber types is highlighted.
In future new advanced fiber designs, the cutoff for higher order
modes may be pushed towards much higher wavelengths. Thus,
the pump may be multimode while the signal is single-mode or
multimode. The impact of this is described in Section IV-B.
When propagating short pulses at sufficient power levels, the
response time of the Raman scattering needs to be accounted
for. This becomes even more important as the bit rate within
a single channel is pushed beyond hundreds of gigabits per
second and with the increasing interest in supercontinuum
generation. Section IV-C describes the Raman response time
in various fiber types. In Section IV-D, the contribution to the
nonlinear refractive index due to Raman scattering is discussed.
Finally, Section V concludes the paper.

II. THEORY: THE INDUCED POLARIZATION

In the Raman process, light interacts with the glass network,
which on a microscopic scale is rotating and vibrating at room
temperature. As a consequence of this, the electrical field, i.e.,
the pump and signal, induces a macroscopic polarization. At
sufficiently high power levels, the induced polarization relates
nonlinearly to the electrical field. In the time domain, the
electrical field vector E is, in general, governed by the wave
equation

∇×∇× E +
1
c2

∂2

∂t2
E = −µ0

∂2

∂t2
P (1)

where P is the macroscopic nonlinear induced polarization vec-
tor, c is the speed of light, and µ0 is the magnetic permeability.
In glass materials, the induced polarization has a linear and a

nonlinear part. The linear part describes the refractive index,
whereas Raman scattering is described through the nonlinear
third order induced polarization. In general, both the electric
field and the macroscopic polarization depend upon both posi-
tion and time. However, in the following, we assume that the
macroscopic polarization is local, and thus, the induced third-
order polarization is related to the response T(3)(t0, t1, t2, t3)
through [16]

P(3)(t0) = ε0

∞∫
−∞

∞∫
−∞

∞∫
−∞

T(3)(t0, t1, t2, t3)

× E(t1)E(t2)E(t3)dt1dt2dt3 (2)

where T(3)(t0, t1, t2, t3) is a tensor of rank 4, which only
depends on the differences among the time arguments [16]. It
is noted that the response T(3)(t0, t1, t2, t3) vanishes for either
t1 < t0, t2 < t0, or t3 < t0 due to causality.

In the Raman-scattering process, the response function
consists of an electronic and a nuclear response. The latter
originates from vibrations and rotations of molecules [17].
Assuming that the material response may be expressed through
the electronic response σ and the nuclear response h as

T(3) = σδ(t0 − t1)δ(t1 − t2)δ(t2 − t3)

+ δ(t0 − t1)h(t1 − t2)δ(t2 − t3) (3)

the ith component of the macroscopic polarization is from (2)

P
(3)
i (t0) = σijklε0Ej(t0)Ek(t0)El(t0)

+ Ej(t0)ε0

∞∫
−∞

hijkl(t0 − t2)Ek(t2)El(t2)dt2 (4)

where (i, j, k, l) represent Cartesian coordinates. In (4) and
in the following, a summation is implicitly assumed over all
indices j, k, and l on the right-hand side according to the
Einstein tensor notation.

For glass, and more generally for isotropic materials, the
electronic response tensor reduces to a scalar and the induced
polarization P(3)

e due to the electronic response equals

P(3)
e = σε0 (E(t) · E(t))E(t) (5)

whereas the nuclear response may be approximated by the sum
of only two independent contributions [16] in the form

hijkl(t) = a(t)δijδkl +
1
2
b(t)[δilδjk + δikδjl] (6)

where δij is the Kronecker delta function, which is equal to
1 when the indices are equal, and is equal to 0 otherwise.
This equation also shows that the only nonzero tensor elements
are the elements where indices appear in pairs and that h is
invariant to the interchange of either its first or last two indices.
In addition, h is invariant to an exchange of is first pair of
indices with its last. Finally, these rules imply that hiiii =
hiijj + hijji + hijij and hijij = hijji.
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Inserting this response into (4), the induced polarization due
to the nuclear response P(3)

R in glass materials is then

P(3)
R (t) = ε0E(t)

∞∫
−∞

a(t − s)E2(s)ds

+ ε0

∞∫
−∞

b(t − s) [E(t) · E(s)]E(s)ds. (7)

In the frequency domain, the response, i.e., the susceptibility
tensor χ(3) is found from a simple Fourier transform of the
response function T. Assuming that the electronic response is
a delta function, the electronic contribution to the susceptibility
is a constant for all frequencies, whereas the Fourier transform
of the nuclear response h(t) in (6) is

Hijkl(Ω) = A(Ω)δijδkl +
1
2
B(Ω)[δilδjk + δikδjl] (8)

where Ω is the frequency difference between the pump and
the signal. This is an important result. It implies that in the
case when the electric field consists of monochromatic waves,
the induced polarization in the frequency domain reduces to
simple products of the frequency response corresponding to the
involved frequencies times the electric-field amplitudes.

III. FIBER WAVE EQUATION

In the following sections, we focus solely on the propagation
of light interacting with phonons in the glass.

In the simplest Raman amplifier, the electric field is a super-
position of two quasi- monochromatic waves: one at the pump
frequency and one at the frequency of the signal wave. In the
following, we use indexes s and p to distinguish the signal
and pump, respectively. In the amplifying process, energy is
transferred from the pump to the signal, and at the same time,
energy is given to the fiber in terms of vibrational quanta.

When restricting the description to the most common fiber
types, i.e., weakly guiding fibers, the electric field may be
separated into a transverse part Ri(r), i = s,p, and r = (x, y),
and an amplitude function depending upon z: Ei(z), i = s,p.
The total electric field is then the sum of the electric field at the
pump frequency ωp and the signal frequency ωs

E = êpEp(z)Rp(r) exp {i(βpz − ωpt)}
+ êsE

s(z)Rs(r) exp {i(βsz − ωst)} + c.c. (9)

where êi, i = s,p, is a unit polarization vector, and βi, i = s,p,
is the propagation constant, as determined from the waveguide
eigenvalue problem [∇2

⊥ + (ω2
i n2

i /c2)]Ri = β2
i Ri, where ni is

the refractive index at the pump or signal wavelength.
Adopting the weakly guiding approximation, i.e., ∇ · E = 0,

the wave equation in the frequency domain becomes

−∇2E =
n2

c2
ω2

s E +
ω2

s

ε0c2
P. (10)

Considering only the electrical field at the frequency of the
signal Es and assuming that the state of polarization for the
pump and the signal fields does not change during propagation,
and neglecting ∂2Es/∂z2, we obtain a wave equation for the
ith component of the electrical signal vector

∫
A

∂Es
i

∂z
|Rs|2dA =

∫
A

ω2
s

2c2βs
i|Rs|2|Rp|26

×
∑
jkl

χ
(3)
ijklE

p
j (Ep

k )∗ Es
l dA (11)

where the integration is over the entire fiber cross section.
From this equation, the Raman gain is described through the
imaginary part of the third-order susceptibility whereas the real
part relates to and induced change in the refractive index. When
pump and signal are polarized along the same axis, χ

(3)
iiii is

given by the sum: A(Ω) + B(Ω) in (8), whereas when the
pump and signal waves are polarized along orthogonal axes,
χ

(3)
ijji = B(Ω)/2. Using polarization-maintaining fibers, it is

possible to measure the Raman gain in the two cases. In [18]
and [19], such a measurement shows that the cross coupling is
ten times lesser than the parallel coupling and, in addition, that
the cross coupling peaks at a much lower frequency difference
between signal and pump when compared to parallel pumping.

Using the power Ps = 2ε0nsc
∫

A |EsRs|2dA, where ns is
the refractive index at the signal frequency and the integral is
over the cross section, and introducing the effective area as the
overlap between the pump and signal through

Aps
eff =

∫
A |Rp|2dA

∫
A |Rs|2dA∫

A |Rp|2|Rs|2dA
(12)

the rate equation for the signal power is

dPs

dz
= grPpPs (13)

where gr is the gain coefficient of the fiber. In the case when
the pump and signal are plane polarized along the same axis, gr

is given through

gr = − 3ωs

ε0c2npns

Im [A(Ω) + B(Ω)]
Aps

eff

(14)

where it is assumed that the susceptibilities are constant across
the entire fiber cross section, and βs is approximated by ωsn̄/c
where n̄ is the effective refractive index of the signal mode,
i.e., βs is proportional to ωs.

If the pump is unpolarized, as in many practical cases, the
Raman gain may approximately be found from (14) by dividing
by 2, under the assumption of a vanishing contribution from
B(Ω) and an equal pump-power distribution among the two
polarizations.

IV. RAMAN-SCATTERING IN FIBERS

One of the most important applications of stimulated Raman
scattering is in optical amplifiers. Since Raman scattering is
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intrinsic to silica-based fibers, optical amplification in silica-
based fibers is simply achieved by propagating a pump beam
together with the signal beam. The frequency spacing between
the pump and signal is determined by the Stokes shift, which,
in silica, gives the maximum gain when the pump frequency is
13 THz higher than the signal frequency. Since the amplifi-
cation happens in the transmission fiber itself, and over long
distances, the amplification is distributed, which allows for
improved linear noise accumulation.

One of the first experiments that demonstrated the im-
proved noise performance of distributed amplification was in
an undersea-system experiment, where remotely pumped inline
EDFAs were pumped at 1480 nm [20]. In this experiment,
145 mW of pump power was launched into a 66-km-long
dispersion-shifted fiber (DSF) at the receiver side. This gave a
Raman gain of 5.3 dB for the signal at 1558 nm. The remaining
pump power launched into the remote EDFA was 3.8 mW,
giving rise to a 15.4-dB gain in the EDFA. The power budget
was improved by 11.0 dB due to the remote EDFA and the
Raman gain. This demonstrated the potential application of
distributed Raman amplification as a means to upgrade existing
systems.

Equation (13) provides the Raman gain in the absence
of intrinsic fiber attenuation. However, taking the attenuation
into account, the signal gain, i.e. the signal output power
relative to the signal input power is G = exp(grLeffP 0

p )
exp(−αsL), where Leff is the effective length [Leff = (1 −
exp(−αpL)/αp)], αp is the fiber attenuation at the pump
wavelength, L is the physical length, P 0

p is the pump power at
launch, and αs is the fiber attenuation at the signal wavelength.
The first term in the gain is often referred to as the ON–OFF

Raman gain GR [GR = exp(grLeffP 0
p )], and for a typical high-

capacity transmission fiber, the ON–OFF Raman approximates
60 dB/W of pump power, assuming a physical length exceeding
the effective length (L � Leff).

The noise figure, i.e., the degradation of the signal-to-
noise ratio when the signal has passed through the amplifier,
is slightly more complicated to evaluate. The noise power
Pn is [21]

Pn = �ωsB0ηTgR

L∫
z=0

Pp(z)
G(z)

dz (15)

where �ωsB0 is the power of a photon within the bandwidth
B0, and ηT is the thermal equilibrium phonon number [22]; at
room temperature, ηT ≈ 1.14. From the noise power, the noise
figure F is calculated from

F =

(
2Pn

(�ωsB0)
+ 1

)
G

. (16)

For a backward-pumped amplifier, where the gain exactly
compensates the intrinsic loss, i.e., GR = exp(αsL), the noise
figure equals

F = 1 + 2
ηTαs

gRP 0
p

(GR − 1). (17)

Fig. 1. Raman-gain coefficient versus frequency shift between pump and
signal for different fiber types. In the dispersion-shifted fiber (DSF), the
germanium content is higher and the effective area is less than that in the
high-capacity transmission fiber, the TrueWave Reduced Slope (TWRS) fiber
supplied by OFS. The pure-silica fiber has no germanium in the core.

In optimized Raman amplifiers, this noise figure is typically
less than the signal attenuation in a transmission fiber, which
explains the improved noise performance [23]. It is noted that
the noise figure of a passive fiber equals the signal attenuation
of the fiber.

Fig. 1 displays the Raman-gain coefficient for different fiber
types. All are measured using unpolarized light and a pump of
1453 nm. The pure silica fiber (Pure-silica), which has a fiber
core of silica and a cladding with a lower refractive index, dis-
plays the lowest gain coefficient, with a peak value of approx-
imately 0.5 (W · km)−1. The dispersion-compensating fiber
(DCF), which has a silica cladding and a core of germanium-
doped silica glass, displays the largest Raman-gain coefficient,
with a peak value of approximately 3 (W · km)−1. The higher
gain coefficient, when compared to the silica core fiber, is
caused by the germanium content and the effective core area
[24]. In typical high-capacity transmission fibers with a lower
germanium content relative to the DCF fiber, exemplified by a
TrueWave Reduced Slope fiber (TWRS), as seen in Fig. 1, the
gain coefficient is in the order of 1 (W · km)−1 at its peak, and
Aps

eff ≈ 75 × 10−12 m2.
In the recent decade, there has been a significant research

effort into the design of Raman amplifiers, which has led to sig-
nificant conquests within the application of Raman amplifiers
[25]. In the following, we focus on the Raman-gain coefficient
and the implications of Raman scattering in optical fibers.

A. Raman-Gain Coefficient in Optical Fibers

The Raman-gain coefficient is one of the essential parameters
in the design of fibers for Raman amplifiers. Thus, it is critical
to be able to predict the Raman-gain coefficient. The composite
spectrum of any germanosilicate spectrum, with moderate
fractional germanium concentration (less than 50%) [24], may
be found if the germanium concentration is known together
with either the refractive index profile or the effective area
[22]. This is done on the basis of a material spectrum related
to silica–oxygen–silica (Si–O–Si) bonds and another spectrum
related to germanium–oxygen–silica (Si–O–Ge) bonds [24].
These spectra are illustrated in Fig. 2 together with the
spectrum for germanate glass, GeO2.
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Fig. 2. Material spectra for the Raman-scattering process in fibers. The
spectra for Si–O–Si, CSiSi and for Si–O–Ge, CSiGe are found based on
measured data of optical fibers, whereas the spectrum for GeO2, CGeGe, is
adapted from [26] applying a scaling of 7.7 to the peak of the Si–Si spectrum
[27], as explained in the text.

It is important to note that there are significant differences
between the spectrum related to germanium–oxygen–silica
bonds and the spectrum related to germanate glass.

The figure displays the material parameters related to the
Raman-gain coefficient. However, the spectrum related to
germanate glass is based on measurements in bulk samples.
In bulk samples, the Raman scattering is characterized by its
scattering cross section. Germanate glass has been reported to
have a Raman cross section that is 9.2 times higher than that of
silicate glass. However, in translating between cross sections
and gain coefficients, there is a scaling with the inverse of
the square of the refractive index of the samples. Thus, using
a refractive index of silica of nSiO2 = 1.46, and a refractive
index of germanate of nGeO2 = 1.6, the gain coefficient of
GeO2 is expected to be 7.7 times higher than that of SiO2.

From the spectra in Fig. 2, the composite spectrum is found
according to

gr = CSiSi

∞∫
0

(1 − 2x(r)) Ip(r)Is(r)rdr

+ CSiGe

∞∫
0

(2x(r)) Ip(r)Is(r)rdr (18)

where x(r) is the fractional molar germanium concentration,
and 1 − 2x(r) and 2x(r) are the fractional molar concentration
of Si–O–Si and Si–O–Ge bonds, respectively. Ip(r) and Is(r)
are the radial intensity distributions for the pump and signal,
respectively, normalized such that

∫ ∞
0 Ii(r)rdr = 1, i = s,p.

The two material spectraCSiSi andCSiGe are displayed in Fig. 2.
The spectra in Fig. 2 are the spectra valid for the case when

the pump is unpolarized. To obtain the spectra if both pump
and signal are plane polarized along the same axis, the data in
the figure are multiplied by a factor of 2. The gain coefficients
in Fig. 2 are based on measured data for a pump wavelength

Fig. 3. Calculated Raman-gain coefficients versus the normalized frequency
at the signal wavelength. Each curve is labeled according to the mode of the
pump and signal, i.e., G1101

R is the gain coefficient corresponding to the pump
being in the LP11 mode and the signal in the LP01 mode. The relatively large
gain coefficients are due to the high index contrast between core and cladding,
i.e., a large content of germanium in the core of the fiber.

at λp = 1455 nm. Scaling to another pump wavelength λ′
p is

done by multiplying by λp/λ′
p.

B. Raman Coupling Between Spatial Modes

In some transmission fibers, the fiber design is optimized
with respect to, for example, dispersion properties or effective
area. An example of such a system is an engineered span system
[15]. In this process, the cutoff for the first higher order mode
of the fiber may be pushed close to the wavelength of the pump.
In such a case, the pump may become multimode, whereas
the signal may still be single mode. To the first order, this
leads to a reduced Raman efficiency; but even more critical,
it may lead to an additional noise contribution since some of
the pump power may alternate randomly between being in the
fundamental mode and in a higher order mode.

The relation between the Raman gain and the spatial overlap
of the pump and signal mode was described in Section III. How-
ever, in this section, we evaluate the Raman-gain coefficient
when the pump and signal appear in different spatial modes.
A careful evaluation of potential induced noise is considered
outside the scope of this paper.

In Fig. 3, the Raman-gain coefficient, for a frequency shift
of 13 THz between pump and signal, is illustrated for the case
where the pump and signal are in the same polarization. In the
figure, the radius of the fiber core a in a step index fiber with an
extremely high germanium concentration 20 mol% is varied to
describe the single-mode and multimode operations. A change
in the core radius is analogous to a change in the normalized
frequency V defined through V = ka

√
n2

0 − n2
1, where k is

the wavenumber of the signal, and n0 and n1 are the refractive
indexes of the core and cladding, respectively. A pump of
1450 nm and a signal at 1550 nm is assumed. When V exceeds
2.405, the fiber becomes multimode. For a core diameter below
3.6 µm, the fiber is single mode for both pump and signal,
G0101

R . Note that even in this case, the fiber still supports
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two modes of orthogonal polarizations, leading to polarization-
dependent gain [28].

In the single-mode region for both pump and signal, the max-
imum Raman-gain coefficient is found for a core diameter close
to 2.8 µm. This is the geometry that provides the maximum
overlap of both the pump and signal modes and their overlap to
the core.

When the diameter of the core is between 3.6 and 3.8 µm,
the pump becomes multimode while the signal is still single
mode. As a consequence, the Raman-gain coefficient may now
assume two different values depending on whether the pump
is in the fundamental mode, G0101

R , or in the higher order
mode, G1101

R . In addition to the reduced Raman efficiency of the
amplifier (gain per unit pump power), the variation in Raman-
gain coefficient may translate into a noise contribution, if, for
example, the power in one mode at some random distance
within the span, or at some random ratio, transfers to the other
mode [29].

Finally, when the diameter of the core exceeds 3.8 µm, both
the pump and signal become multimode. Thus, the Raman-
gain coefficient may now assume several values because of
the degeneracy of pump and signal modes, also including the
degeneracy in the angular coordinate of a given cross section
of the fiber [30]. Assuming that the pump and signal are in the
same polarization state and also the same trigonometric mode,
the data in Fig. 3 are found for the Raman-gain coefficients as
a function of the core radius of the fiber.

If the core diameter exceeds 5.7 µm, even more modes are
guided, and the description gets further complicated.

This shows that there is a strong dependence in the Raman-
gain coefficient due to the mode profile of the pump and signal.
In the illustrated example, this may potentially lead to a 60%
reduction in the Raman-gain coefficient if the signal is single
mode, but the pump alternates between the fundamental mode
and the first higher order mode.

C. Response Time

The response time of the Raman process is related to nuclear
rotations and vibrations, and hence, longer than the electronic
response time. In [31], the Raman response time of fused Silica
is evaluated to be less than 100 fs. For most applications,
this appears instantaneous, and especially in relation to the
application as Raman amplifiers in optical communications sys-
tems, the Raman-gain coefficient provides sufficient informa-
tion. This is especially true because the propagation direction
of the pump is typically chosen to be opposite to that of the
signal to mitigate unwanted crosstalk between the pump and
the signal. In the case when pump and signal propagate in the
same direction, fluctuations in the pump translate to fluctuations
in the signal; this is enhanced due to the fast response time from
the Raman process.

When describing pulse propagation, the response time of
the Raman-scattering process is becoming an important para-
meter. This is because the pulse duration of a single bit in
a single channel as well as in a multiple wavelength channel
communications system is pushed close to a picosecond or
below. In both cases, the response time needs to be included

Fig. 4. Raman response function. The response is normalized according to∫
h(t)dt = 1.

even in a system that is not applying Raman amplification.
For the system with multiple wavelengths, or Raman amplified,
the propagation equation is further complicated because of the
mutual interaction among various channels, e.g., cross-phase
modulation or interactions between the signal and the pump
beams for the Raman amplifier [32], [33]. This will not be
considered in this paper.

A topic that has received much attention lately is super-
continuum generation of light [14]. Supercontinuum may be
achieved by launching short pulses into an optical fiber with
enhanced nonlinear effects obtained by reducing the effective
area and a group-velocity dispersion tailored to favor generation
of light within a broad spectral range. In this case, the response
function is critical for predicting the supercontinuum genera-
tion in specialty fibers including microstructured photonic crys-
tal fibers.

The Raman response function varies from material to mate-
rial, similar to the Raman-gain coefficient. Hence, it is difficult
to obtain accurate knowledge of the response function from
fiber to fiber. However, the response function of the Raman-
scattering process [h(t) in (6)] may be directly evaluated
through the Fourier transform of the Raman susceptibility of
H(Ω), e.g., as discussed in Section II.

Fig. 4 displays both the response from SiO2 and the response
from GeO2. From the figure, it is clear that the response time
for germanium is larger than silicium, which we attribute to
the larger atomic weight of germanium relative to silicium.
However, both of the materials have a response time close to
100 fs, with a difference less than 10%.

In a simple picture, the response time may be fitted to a single
damped harmonic oscillator with two time constants τν , which
is related to the frequency of the “phonon,” and τs, which is
related to the attenuation of the network of vibrating atoms, i.e.,

h(t) = a exp
(
−t

τs

)
sin

(
t

τν

)
. (19)

For the two curves in Fig. 4, we find the best fit to (19) with
the time constants listed in Table I.
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TABLE I
TIME CONSTANTS OF THE DAMPED HARMONIC OSCILLATOR RELATED

TO THE RAMAN RESPONSE FUNCTION. THE LAST COLUMN

NOTED WITH THE∗ IS ADOPTED FROM [34]

From the table, there is no noticeable difference between the
time constant related to the phonon frequency whereas there
is a significant difference in the time constant related to the
damping of the phonons.

A more comprehensive modeling of the response function
requires more insight into the possible rotational and vibrational
modes of the glass network. Such a modeling, provided in [35]
and [36], has shown that it is necessary to combine an ensemble
of damped oscillators to get an accurate fit to the response
function. In this intermediate broadening model, which involves
neither homogeneously nor inhomogeneously broadened os-
cillators, the Raman response is modeled as an ensemble of
13 damped harmonic oscillators with a Gaussian distribution
of the mean frequencies. As a result, the gain spectrum is a
convolution of a Gaussian and a Lorentz form, and the response
function has a perfect match.

D. Relation Between Raman Gain and Intensity-Dependent
Refractive Index

The propagation equation (11) shows that the real part of
the susceptibility is equivalent to an induced change in the
refractive index. In the case of Raman scattering, this implies
that the nuclear ro-vibrations causes a change in the refractive
index of the signal induced by the pump. If the frequency of the
pump equals the frequency of the signal, the effect is equivalent
to self-induced change in the refractive index or self-phase
modulation. In the following, we discuss this effect.

First, we consider the case when the frequency of the pump
and signal is identical. In this case, the transverse dependence
of the pump now equals that of the signal: Rp = Rs. From (11),
the electric field is then governed by

∂Es
i

∂z
=

ω2
s

2c2βs
i|Rs|26

∑
jkl

Re
[
χ

(3)
ijkl

]
Es

j (Es
k)

∗ Es
l . (20)

Assuming, for simplicity, that the signal is linearly polarized,
this leads to a nonlinear refractive index n2 given by

n2 =
3

4n2
s cε0

Re
[
χ

(3)
iiii

]
Aeff

(21)

where Aeff is identical to Aps
eff in (14), with Rp = Rs.

From (6), the response is a sum of an electronic contribution
σ, which is instantaneous, and a nuclear contribution h(t) with
a slower response time, discussed in Section IV-C. In the fre-
quency domain, the contribution to the self-induced refractive
index is found at Ω = 0.

Comparing n2 in (2) and gr in (14), it is seen that n2 may be
found from gr by interchanging the imaginary part of χ(3) with

Fig. 5. Raman-induced contribution to the nonlinear refractive index. The
contribution from GeO2 is 3.5 times higher than that from SiO2. In the figure,
contributions from the orthogonal Raman scattering B(Ω) is neglected. The
spectrum used to generate the SiO2 contribution is from [31]. The curve for
GeO2 is calculated assuming a gain coefficient 7.7 times that of SiO2 [27] and
a spectral shape adopted from [26].

the real part and multiplying by c/4ω. Thus, the Raman con-
tribution to the self-induced refractive index may be obtained
from the Raman-gain coefficient by using the Kramers–Kronig
relation to translate from the imaginary part to the real part and
multiplying by c/4ω.

It has been reported that the intensity-dependent refractive
index increases with the germanium content [37], and that 20%
of the nonlinear refractive index is caused by nuclear motion
[31]. At the same time, it is also known that the Raman cross
section is about nine times higher in GeO2 relative to SiO2 [26].
Thus, it is interesting to evaluate the Raman contribution to the
nonlinear refractive index for GeO2 as well as for SiO2.

In Fig. 5, the Raman contribution from GeO2 to the nonlinear
refractive index is displayed together with the similar contribu-
tion from SiO2. The figure shows that the Raman contribution
to the nonlinear refractive index is about 3.5 times higher in
GeO2 than it is in SiO2.

Nuclear motions are not only related to Raman scattering,
i.e., phonons at optical frequencies, but also to Brillouin scat-
tering, i.e., phonons at acoustic frequencies. As opposed to the
Raman-gain spectrum, the Brillouin spectrum is very narrow
(full-width at half-maximum); ∆νB ≈ 17 MHz for a pump
wavelength around 1525 nm [32]. In addition, the Brillouin-
gain spectrum is centered ≈ 10.5 GHz from the pump where
the Raman peak occurs at 13 THz from the pump. Evaluating
the contribution to the nonlinear refractive index from Brillouin
scattering, as done for the Raman contribution, it is found that
the Brillouin contribution is insignificant, because of the narrow
Brillouin-gain spectrum.

Since the nonlinear refractive index is known for both SiO2

and GeO2, the fractional contribution to n2 from Raman scatter-
ing may then be evaluated using Fig. 5. The results of this are
shown in Table II (fr is the nuclear contribution to intensity-
dependent refractive index).

From Table II, it is noted that even though n2 is 4.5 times
higher in GeO2 than it is in SiO2, the Raman contribution to n2
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TABLE II
n2 VALUES FROM [35]. FOR COMPARISON, A VALUE OF 0.18 FOR fr IS

NOTED IN [31], WHEREAS IN [34], A VALUE OF 0.3 FOR fr IS QUOTED

Fig. 6. Raman-induced contribution to the nonlinear parameter γ, defined in
the main text, as a function of the frequency shift between pump and signal.

is only 2.7 times higher for GeO2 as compared to that for
SiO2. This implies that the electronic contribution for GeO2 is
significantly higher for GeO2 as compared to that for SiO2.

In an optical fiber, the situation is more complicated since the
effective area is equally as important as the material parameter.
When describing pulse propagation, it makes more sense to
evaluate the nonlinear parameter γ defined as

γ =
2π

λ

n2

Aeff
. (22)

Fig. 6 displays the Raman contribution to the nonlinear parame-
ter for the three fiber types illustrated in Fig. 1. For comparison,
γ is typically in the range 1 to 10 (W · km)−1 depending on
fiber type [38], [39].

V. CONCLUSION

The Raman fiber amplifier has attracted much attention since
the mid-1990s. This is explained by its capability to provide dis-
tributed amplification, and hence improved noise performance,
in addition to gain at any wavelength, and finally, the gain
bandwidth may be expanded simply by using multiple pump
wavelengths. In addition to these benefits, the Raman scattering
is intrinsic to any silica-based fiber.

In this paper, we have reviewed the basic properties of
the Raman fiber amplifier. In addition, we have demonstrated
the impact of the fiber-design parameters on the Raman-gain
coefficient; this includes the germanium concentration, as well
as the waveguide design.

Besides essentially being an important parameter for the
Raman-amplifier performance, the Raman-gain coefficient may

also provide information regarding the response function of
the Raman process as well as the contribution to the nonlin-
ear refractive index. We have demonstrated the difference in
response time and in contribution to the nonlinear refractive
index, comparing silica versus germanate glass.
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